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Reduction formulas for { 1* } and {k } of SU(NV ) are derived which are useful for obtaining higher-
order indices. We also touch on the anomaly in higher-dimensional theories.
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I. INTRODUCTION

Recently there have appeared several works on the
higher indices'~ of the representations of classical groups.
Indices are of importance for particle physics and other
branches of physics. The second-order index which is pro-
portional to the so-called quadratic Casimir invariant® ap-
pears most frequently in physics. The fourth-order index /,
(see Refs. 5 and 7) [see Eq. (4)] has been used to obtain the
correct Kronecker products and subgroup decomposition.
The third-order index yields the anomaly® in the four-di-
mensional theory. To compute the indices in general is a
hard task although some progress has been made over the
last few years.

In the present paper we would like to present some re-
sults on the indices of SU( ). Specifically we present reduc-
tion formulas for {1* }( = k times antisymmetrized repre-
sentation) and {k }( = k times symmetrized representation).
(Reduction here refers to expressing an invariant associated
with a representation in terms of those associated with the
fundamental representation only.) Our expectation is that
the reduction formulas for {1*} {k } will enable us to deal
with other representations since they can be formed out of
{1%} and {k }. Section II is devoted to the derivation of the
reduction formulas. In Sec. III we will be in contact with
physics and touch on the higher-order anomaly which was
recently discussed by Frampton.*'°

Il. DERIVATION OF THE REDUCTION FORMULAS

The quantity we are concerned with is®
STr(X, X, X,), (1)
P

where X .. 18 the generator of a representation of a classical
group, and X, is a summation over p! permutations of indices
H, V,...,p. Various invariants can be defined through Eq. (1).
For instance,

D?(p)=g"™ ¥ Tr(X, X, X, ) (2)

(p denotes a representation), is one kind of pth-order index
and is related to the pth-order Casimir invariant J,(p) by

D?(p)=J,(p)d(p) (3)
where d ( p) is the dimension of p. Other invariants discussed
in Ref. 5 are
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D p)=g"* ¢ ¥ Tr(X, X, X, X, ), (4)

B 3 e 12

and

A P)ETr(ginil'Ij )2,
where in the latter H, are restricted to the generators of Car-
tan subalgebra.

So far as we know D¥ ( p) is calculable in general. How-
ever as for other such as /,,, an explicit compact expression
has not been given. We try to obtain it for {1*} and {k } asa
first step toward a general expression. To deal with the prob-
lem as we follow the approach of Okubo and Patera’ and
reduce the expression of Eq. (1) to terms associated with the
fundamental representation. Now to the derivation of the
reduction formulas.

Let 7% be a generator of the fundamental representa-
tion of SU(N),

(Tu)Z’ a= 1’2)---,N2 - 1, a, b = 1,2...,N. (5)

Alsolet § 2 be the N X N unit matrix. Then the generator 7 ¢
of { 1%} can be written as

(Tego= 1),(T“@w A B, (6)

k—1

where the wedge products denote antisymmetrization on the
lower indices only. Thus, if 4, B, and C are N X N matrices,

(4 A BACl
=4, B;;C;) —A,;)B;}C;) +4,'BCy
—APBECY +APBRCY —AYBECY). ()

In the above the matrix multiplication is defined by

(4B, =A B, (8)
Also trace is defined by
Trd =4, )

It is not very difficult to show that the following equation
holds:

Tr(d, A A, A —A,)

== F (=0
X {Z' (Tr 4 '(Tr A Y)*2.(Tr 4% )%}, (10)

where { X, ] is a partition satisfying
k

S iX, =k, (11)

i=1
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and
(TrA"’)"’ETrA,‘?l Tr4%--Trd?, (12)

where 3’ denotes a sum over permutations of (1,2,...,k)
which yields distinct terms. That is, one does not include
cyclic permutations within a trace, nor permutations which
simply exchange two traces. For instance,

Tr(A A B)=Tr A Tr B — Tr(4B),
Tr(d AB A C)=TrATr BTr C— Tr 4 Tr(BC)

— Tr BTH{AC) — Tr C Tr (4B)

+ Tr(ABC) + Tr(ACB). (13)
In particular note that
Trd, N Ay A NA)=Trd;, NA, N NA4,),
(14)

where (i,,...,i; ) is any permutation of (1,2,...,k ). It is easy to
show

Trid; A = AA_; NS Ao AS

=ln—k+I1W(n—kN] Trd, A~ A 4,_,). (15)

One more property we need is

A NA N~ NANT NSNS A - A b
= (k— D{A,T) A dy A — A A,
+ A, A A, T) A - A A4,
e+ A, ANAZ N A AT (16)
Now we wish to evaluate the quantity

STe (T4 T )

1

=W2Tr[(T "ASA - AP

X(T2ANSEN o ANEAT™ NS N - A8 (17)

Using Eq. (16) repeatedly and taking into account the sym-
metrization on the indices a; we obtain

STr (TT T

IS SRR m!
_M—mw‘ & k%num'
XSTr(T" AT™ A AT™, (18)

where 2, | is the sum over all partitions with », satisfying
3k _n,=m, and T" is a short-hand notation for
T T*..T (ordinary matrix multiplication). Using Eq.
(14), we can rewrite this as a sum over partitions {z, }, where
z, is the number of n’s which are equal to i. They satisfy

m
Zz,- =k,
i=0

Thus we have

Z iz; =m. (19)

i=0

3142 J. Math. Phys., Vol. 25, No. 11, November 1984

] STe[T" AT™ A AT™]
n} Thpeeeeliys

mik!

_;Tzo.z,' oz, (1)l
XSTr (e ASA TALAT
ATA=ATA } (20)

Inserting this into Eq. (18) and using Eq. (15) we obtain
S TH(T T )

= m!ki1 (” - k+zo)
z,=0

2y

2Tr[7 A-ATANTEA zz AT 3---z/\ T3...}

21202, (1))

e
21)

the right-hand side contains products of traces. What we do
in the following is to obtain the coefficient for each type of
trace product. With that done the reduction is completed.

First we deal with the one trace case. Its coefficient is
denoted as A 7 (n, k). For a particular partition {z,} the rel-
evant contribution from 2 Tr{--} in Eq. (21) can be pulled
out by the use of Eq. (10) and it is

(— 1) ke —zo— ny Te(T ' T*...T ). (22)
Thus we find,
k=1 —k
AL k) =m'S (=1} %" ‘(” +z°>(k —zy— 1)
=0 Zp
1 (23)
(z1 zylewez, (1) ()™
Then employing an identity,
1
% z.!...z l(ll)z"...(m!)z’"
k—z, I _ . ]\m
1 — 1)tk —zy—1) 24)

T m ,E Nk —zo— 1)
and defining j = z, + / we arrive at

k—1 ) —k o
A k)= ZOEZ( (" %+Z)
(k—j"
k—zyg— 19—
=
=_i 2(_1)k7j+1
n—k+z\(k —2z,— I
o (i

=5 (g 0

(This has been obtamed in Ref. 5. Our result agrees with
theirs.) Restricting ourselves to even m = 2p we readily
evaluate several coefficients in the expansion
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STr(T*T™) = = 345" “S[(Tr T™)(Tr 7],

(26)
where
Sn=2p, n<n<e, ni 32
Using Eq. (23) we obtain
A %12, 2 _ (2p)! (n - ZP), 27)
2pi\k—p
42224 (2p)!

2p 2~ 4.p — 2)!
x [ - (nk__if> + %(Z :;P:lz)}, (28)

A? 22 233 _ (2p)!
T op-3.32, 2(p— 3)’

n—2p) (n—2p+2)]

, (29
X [ (k o) T\ k—pir /] @
where 4 3277, 4 327%*, and 4 37** are, respectively, the coef-
ficients of

(Tr TP, (TrT? =2 (TrT%, (TrT? . (Tr T3
With a little more effort we can express Eq. (23) in a form

similar to the above:
n—2 n— 4)
2p - 1 (22 _ 2
=(2p — 1).[a, (k— 1) a; (k—2

g

The constants @® are tabulated in Table I for 1<p<7. They
can be written as

&= _wW B (k=12..p, (1)

+ (=

where the B s are the solutions of

2(1)2, 1B|k)_ 8,2k —1) (i=1.2,.k) (32)

Jj=1
In particular,

1
all2p) —

(2p) —
IR (33)

To obtain the other coefficients requires more effort. We
note first that an arbitrary coefficient can be written in the
following form:

"2 ny

Pr e N
p (2n23n3,.-)n2!n3!

)72
N
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TABLE L. The constants of a?*.

2p a, a, a, a, as A a,
2 1
4 L 1
3!
6 L 1 1
5! 4
g L L 1 1
7 40 3
o L 7 7 3 1
9t (84)(144) 144 12
p L3 4 1 1 1
11! (144)(4200) 945 240 2
14 L 1 13 LI 2
131 (144)(5280) (144)(360) 108 60 12

N R I i

Therefore a coefficient can be represented by a vector
(1, Ugy++,0,, 0--:0). For instance we have

43?2 =(1,0,..,0),
A3 =(1,1,0,..0), (35)
A3 =(1,40,.,0),
4 %Z = (af"', a;;z’i' 1 "% a‘lz.p(;, o)
Then by defining a vector multiplication,
(vys Uy - Nwy, wy) 5.0

= 0,(w,, W,,...) + V,(0, wy, wy,...) + -, (36)

we find the following rules of combination and addition of
coefficients.
Rule 1. If 43,

3 Tr(T*'--T**) then

is an arbitrary coefficient in

A =425, .
Rule 2.
A0 =A% 455 o8
Rule 3.
Ay = (al"w, n=lgem

n

n—2 1 .,
—=aPn,,..,—a, 0,...)
n n

n—1

XA "‘”""’. (39)

Using these rules and Eqgs. (27)—(29) one can obtain all

coeflicients in the reduction.

To make our procedure more understandable let us

work out the m = 2p = 8 case:
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> To(T-T* =AN, k )3 TH(T T

+ARN, k)Y [THT T T(T . 7]

+AFWN, k) [To(T " TT\THT - T*)] + A ¥(N, k )z[Tr(T“'...T“4)Tr(Tas...Tas)]

+ AN, ) S [TA(T* T T T T T * T T T T™)]

+ AN, k) S [ To T T THT =T )T T T ™))

+APPN, k)Y [To T T\ Te( T T “Te(T T “YTe(T T ). (40,

From Eqgs. (27)—29) we have

arw =i )
apwo =L (V7«0 75)] @
arwi = - ()23 )]
Also by solving Eqgs. (31) and (32) we find
A&Mk)=ﬂ[*(z:j)+%(z:§)

_ 1 (N—4 N -2
Za(k—z) +%<k— 1)] 2
AP2=(1,0,0,..),
AP =(1,40,..), (43)

AP =(1,40,..),

A§=@fkiﬁi,
340 T

We will also need
4;=(140,..),
s (1 1L 1 )
AG_(1,4,5!,O,... . (44)

Then 4 3° can be obtained by combining three 2’sin 4 ;°%*. By
Rule 2 we find

AW = 48422
=(1,4,4,0,.J1,0,.) (45)
=(1, 43,0, ..).
Here, A ** can be obtained by combining one 2 and one 3 in

A % By applying Rule 3 the generating vector is obtained
from 4 § by

AL = (LY=L 4= (1 4),
AP =(1,4,0,..),
AP =(1,4,0,..)(1,40 ..)=(1,440,..) (46)

Finally 4 # can be obtained by combining two 2’s in 4 3**,
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|
AP =A247=(1,1,0,.)(1,40,..)
=(1,14,0,..) (47)
Writing these in full, according to Egs. (27)—(29),

8t [/n—8 1{n—6 1/n—4
T (M B B |
8 T oel\k—4 4\k—3 +5! k—2/)

81 [/n—38 1{n—6 1 (n—4
2 LA - (A - |
vy VDY At VDY e VEIPY | B

8! n—38 1{n—26 1 (n—4
- G-)-3679-30 )
8 gao\k—4 3\k—3 +36 k—2
The tabulation of coefficients form = 2,4, 6, 8, 10, and 12 is
presented in the Appendix.
So far we have restricted ourselves to even m. For the
odd m case one has
n o

——
22..2 333
2p+ 1(N, k)

___ Rp+1) (-
(2723l

X (0[N, k, pl + 0[Nk, p — 1] + - + 0, [V, k, 1.

(49)

1)1 + Zn;

Here,

1 o
[N, &, p] —7(—1)"

N -2k (N—2p). (50)

N—2p\k—p
Then the coefficients are again represented by vectors and
Rules 1, 2, and 3 apply without modification. The starting
vector (1, 0, 0,..., 0) corresponds to
5 v gy L= P2+ 1)

A2p+1(N7k)_ 321741(1)_1)' [N,k’P] (51)

At this point we comment on how to obtain the formu-
las for the symmetrized representations { & }. In this case we
have to change the antisymmetrization in Eq. (6} into sym-
metrization. What this change amounts to is the following.
Denote the coefficients for {1“} and {k } as 4 {*'(WV, k) and
AN, k). Weknow 4 §3>)(N, k) can be expressed as follows:

A(zAS}N,k — < _1k+j+1 ) k_-2p41. 52
o= 3 - (Ve (52

j=o

Then make a formal change N— — N to obtain
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-

OHAD-G)

The coefficient A §)(V, k ) for { k& | has been found to be relat-
edto A5 (— N, k);

A‘g}f'(—N,k):(—1)k+‘A(2f,)(N,k). (54)
With this we come to the end of the derivation of the reduc-

tion formulas.
We can apply our results to calculate the quantities

12p({ 1% }Eg(ilizgigk.-.gizp— 162p) Tr(y/il ...%‘.zp)’ (55)

where 77, are the elements of the Cartan subalgebra in the
{1%} representation. We denote the elements in the funda-
mental representation by H;, and ( ) denotes symmetriza-
tion over indices.

By noting Tr(H,t;) = (1/7)6,;1,({1}) it is straightfor-
ward to obtain the following:

L{{1%)) = AN, K)L{{1}), (56)
L{1%)) = A4V, k)({1))
+";—rzA 2, k) [L({(1})]7, (57)
I({1%]) = A SN, k)il (1)
+ I o k(1)
Sr

+ A gag(ijgldgmn) TI‘(HIHJHk) Tr(HleHn)

r+4
+ S5r

I+2 g2 L)),
3r

Ly({1%}) = A (N, k)b, ({1})
r+2p—2
o 2 bl 1y (1)
r+2r+4 "_r+2p—2

3r 5r (20— 1)r

XA LN, k)L({1})]°.

+AZPYN, k)

4t

(58)

Calculating the right-hand side is not difficult since it in-
volves only the fundamental representation. A tabulation of
the result will be given elsewhere.

So far, all the coefficients for even m have been ex-
pressed in terms of the functions

(n — Zq)
k—q/
What happens when this quantity is not defined? (For exam-

ple,n — 2g < k — g.) Now, these terms arise from the expres-
sions

$-1() ()

<o v/ \k—2q+j/
each term in the summation being a contribution from a
particular partition in Eq. (21). Here we assumed that
n > k>2q. But this need not be the case. If k < ¢, clearly none
of the partitions contribute, and we simply omit the entire
expression
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(s<a=(L )=o)

But, if k = ¢ + I, 0 </ < g, the appropriate sum is

RELLH) s

— (") nok 44
= (_l)k(k+z:z—1)’ <l
0, 2g<n<k +gq.

Similar considerations apply to the case of odd m.

{Il. CONTACT WITH PHYSICS

The index /,, mentioned at the end of the last section
has not yet found its use in particle physics. On the other
hand a more common index has found another use in parti-
cle physics. Recently Frampton noted,”'? by generalizing
the works of Ref. 11, that in a d (> 4)-dimensional theory'?
the anomaly is well defined and can be separated from other
divergences inherent in such a theory. To state only the re-
sult the anomaly in 2d dimensions is given by 44+ |, with a
normalization such that the anomaly for the fundamental
representation is one. If we take such a theory seriously we
must take care of the anomaly, among other things. And
thus the freedom from anomaly should serve as a constraint
on the models in 2d dimensions. {Incidentally there is no
anomaly in an odd dimension.}

As regards the anomaly we only note one formula
which is handy to get numbers:

AT[N k] =ATIN—1Lk]+A7N=1,k—1]. (59

With the help of this formula one has to use Eq. (25) only
twice to get all other numbers. Classification of the models
based on freedom from anomaly will be given in a separate

paper.

IV. SUMMARY

We derived a reduction formula for {1*} and {k } of
SU(N ) which we think will serve as a basis for more general
cases. Generalization of our result is currently under investi-
gation.
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APPENDIX. THE COEFFICIENTS IN THE REDUCTION

FORMULA FORp =1,2,3,4,5

n—2
Ag:(k—l)’

6! /[n—6
A222= ( ),
S 233\k—3
i s)
( )+3 k—3

~li—a)+ )

8! n—8§ 1/n—6 1 [n—
(M N
=\ —4) T3\ —3) T gk -
8! n—38 1(n—6 1 fn—4
S (P B P P ()
T \VIEY s VARIEY s VIRPY J
8! /{n—8 1{n—6 1 (n—
e (M R N P
P26\ —4) T T\ =3/ T 0\ —
8! n—38 1{n—6
ap =g (-Gl 7))
T 24 k—4) T ’
233 _ 8! (n 8)_{__1_( ))
: T 2322 k—4) " 4\k-3

a3 =l o)

=9 5)-S6 0 e
i R R )

an=aa(-(9)+50 0
—l 2 6l d)

an=22 ()30
~3les) 720( )|

=2~ () =29
-:1—(::2)%(;:::)),

3146 J. Math. Phys., Vol. 25, No. 11, November 1984

)

)
)

10 n—10 1{n—38
an=2 ()20
=7\ " \eos/ T T4

030279
1 T34\\k—5/ 12\k—4/ " 24\k—3

w10 ((n—lO)_ln—8)+ 1(n—6))
T aa\\k—5/ 3\k—4/) " 36\k-3/)

425 10! ((n—lO) 1(n—8) 1<n—6>)
7 235\k=5 3\k—4/ " 48\k—-3/)

476 10! (( ) (n—8)+_1_(n—6))
4o 22620\ k—5/ 4\k 120\k — 3//

10! n—10 1/n—8
4225 _ ( _ ( ) _( ))
T 23202 k—s)t 4\k—4//)
10! n—10 1/n—8
g2 _ (_ ( ) __( ))
0T 93431 k—5) T e\k—4))

A 22222 10! (" - 10)

10

T 2SSk —

- 12 1(n—10 19 (n—8
(- ()02
41 1( k—6 +2 k—5 240 \k — 4

+ 4 (n—6)_ 31 (n—4)+i(n——2>)
945 \k — 3/ 15.80\k—2 1m\k—1/)

. 12!((n—12)_~1_(n—10)+ 17 (n—S)
127 eaa\\k—6 2\k—5 240 \k — 4

1 (n—6)+ 1 (n—4))
240 \k — 3 20-61\k —2/)

A57*g((n—-12> i(n—lO) 19 (n—S)
=5\ \k—6/ " 2\k =5/ T 2a0\k — 4

TR
66'k 24.6\k —2/)

A48_1_2!((n—~12)__1_(n—10)+ 29 (n—S)
27 4.8\\k— 6 2\k—5 360 \k — 4

_2(r=9), (=)
T \k-3 6T\k —2//

A39=1_2!((n—12)_i(n—10)+_3-(n—8>
27 39\\k— 6 2\k—5 40 \k — 4

1 (n—6)+ 1(n—4)>
315\k —3 2.80\k —2//

4200 121((n—12)_ 5<n—10)+ 7 (n—S)
2.10\\k — 6 12\k-—5 144 \k — 4

e D5l 23))

s 12!(_(11—12) _1_(;1—10)
A'2*42.3! k—6 +2 k—5

(Y9
12\k—4/ " 216 \k—-3//
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12! n—12y 1/n—10
=2 - (2 ¢)+ 50y
27 3.4.5 k—6) T 2\k_s
11 (n—8)+ 1 (n—6))
144 \k —4/ " 288 \k—3//
12! n—12\ 1({n—10
=g (- 25) 50y
27 32601 k—6 )1t 23\k—s
17 (n—8)+ 1 (n—6))
240 \k — 4/ * 480\k —3//’
12! n—12\ 5 (n—10
= (- 28)+ 2 2Y)
2T 52 k—6 )t T2\k—5s
7 (n——8)+ 1 (n—6))
144 \k —4) " 576 \k —3/)’
12! n—12 5 (n—10
arr= - (26 )+ (0 S)
2 =776\ \k—6/ T T2\k—5
(=) 2 (0)
k—4) " 120\k—3/)

12! n—12\ 5 (n—10
=)
XY k—6 +12k—5

_i(”_g) (n—6))
45 k—3/)
g 12 (n—lZ) l(n—IO)
2 =3
2-.8.2! I\k—5
~aole )7 3)
40 \k k—3
1 — — _
A0 12! ((n 12)__1_(n 10)+_(n 8))’
344\\k— 6 2\k-—5 16 \k — 4
= o Y
22.42.212\\k — 6 3I\k—5

+e23)
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42235 — 12! ((n — 12) _ _l_(n — 10> + 1 (n — 8))
2 7 22350\\k— 6 I\k—5/) " ag\k—4/)
A 2226 _ 12! ((n —_ 12) . _1_<n — 10) + 1 (n — 8))
T e\\k—6/ 4\k—5/" 120\k—4/)
12! n—12 1/n—10
A 22233 __ ( _ ( ) _( ))
T 23323121 k—6 +4 k—5/)
12! n—12 1/n—10
A 22224 _ ( . ( ) _( ))
2T aga\ " k—e /T e\k_5/)

4222222 12! (” - 12)
2=\ k—6/
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The theory of space groups and their subgroups is related to that of their irreducible
representations. Several important theorems concerning the determination of isotropy subgroups
are proved. In particular, we show that the translation subgroups of isotropy subgroups are in
one-to-one correspondence with certain subsets, called “substars,” of the “star” characterizing

the irreducible representation of the space group.

PACS numbers: 02.20. + b, 61.50.Em

1. INTRODUCTION

In this paper we show how to construct lattices of sub-
groups of the crystallographic space groups and explain how
to obtain from them the lattice of isotropy subgroups in a
given representation.

The problem of finding isotropy subgroups arises in
many physical applications, notably in theories of contin-
uous phase transitions' and in gauge theories.” In particular,
in continuous structural phase transitions the symmetry of a
crystal changes from one space group to a subgroup. This
subgroup is the isotropy group of a vector (order parameter)
in the representation space of an irreducible representation
of the space group. This characterization is most explicit in
the Landau theory of phase transitions® and in its renormal-
ization-group generalization.* In the Landau theory, the iso-
tropy groups which appear are those which correspond to
the minima of the Landau free energy. The first step in iden-
tifying the minima is to determine al/ the isotropy groups of
the representation.’ An algorithm for finding the isotropy
groups was recently given in Ref. 6. In this paper we present
the general mathematical results on which the algorithm is
based.

The direct computation of the subgroups of a space
group is made possible by the algebriac characterization of
an n-dimensional space group as an extension of Z" (See Ref.
7). In Sec. II we show how these concepts can be used to
construct subgroup lattices. We also describe the correspon-
dence between this algebraic approach and the geometric
point of view, in which a space group is regarded as a sub-
group of R "&O(n) (See Ref. 8).

Our main result is presented in Sec. III: a necessary and
sufficient condition for a translation group to correspond to
the translation subgroup of an isotropy subgroup is that it is
reciprocal to the translation group generated by a substar of
the star of the representation. This characterization greatly
simplifies the computation involved in determining which of
the subgroups in the subgroup lattice are in fact isotropy
subgroups.

An explanation of the notation which is used in this
paper is given in Table I. The Appendix contains a summary

®) Present address, Department of Physics, North Dakota State University,
Fargo, North Dakota 58105.
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of relevant notions and results regarding a group action. Spe-
cifically, it contains several important theorems regarding
centralizers and isotropy subgroups.

Il. SPACE GROUPS AND THEIR SUBGROUP LATTICES

When space groups are regarded as the symmetry
groups of real crystals, it is natural to think of them as groups
of symmetries in three-dimensional space. This means that a
space group is a subgroup of the Euclidean group, the group
of all isometries of real space. This geometric viewpoint has
been traditionally preferred by solid state physicists. Math-
ematicians and mathematical crystallographers, on the oth-
er hand, think of (n-dimensional) space groups as automor-
phism groups of the integral lattice. This algebraic point of
view was developed by Bieberbach and others in the first half
of this century to show, among other things, that the number
of space group types in any finite dimension is finite,” and to
classify them in three dimensions. ' As we will see, the alge-
braic viewpoint is also very useful for characterizing and
computing the subgroups of space groups.” We will also see
that the geometric viewpoint provides complementary in-
sights into the problem of isotropy subgroups.!

A. The geometric viewpoint

The Euclidean group E(n) in any dimension »n is the

TABLE 1. The notation and symbols used in this paper.

R" the vector space of real n-tuples;
the additive group of real n-tuples [elements: t, f, k, r]
z" the additive group of integral n-tuples [elements: ]
Ofn) the group of n X n orthogonal matrices [elements: p]
E(n) the group of all isometries of R " [elements: g]
Aln) the affine group of transformations of R ”
GL(n,R) the group of n X n real nonsingular matrices [elements: ¥]
GL(n,Z) the group of nX n integral nonsingular matrices with integral
inverse [elements: q, p]
A&B the semidirect-product-extension of 4 by B
A/B the quotient group, space
|4 ] number of elements in the set A
(t.k) the orthogonal scalar product in R "
pt the transform of t by p
® the direct sum of matrices, spaces
~ isomorphic; conjugate; reciprocal
< smaller than; included; subgroup; subspace (strict inequality)
< invariant subgroup
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group of all isometric transformations of the real vector
space R ". It counsists of linear orthogonal transformations
which keep the origin fixed [the group O{n)], translations in n
linearly independent directions (the additive group R ") and
combinations of these. Here R " is an invariant subgroup of
E(n), which is the semidirect product R "&O(n). Therefore
each element g of E(z) can be uniquely written as a product of
an element t of R " and an element p of O(n). Thus we can
write g = tp.

A space group G is the symmetry group of an n-dimen-
sional real crystal. Therefore it is a subgroup of E(n) whose
translation subgroup T'; is generated by 7 linearly indepen-
dent vectors in R . G is an extension of 7; by a finite sub-
group P of O(n) such that P; ~G /T, but it is not necessar-
ily a semidirect product. (In three dimensions 73 of the 230
space group types are semidirect products; they are said to be
symmorphic.) An element g of a space group G can be writ-
ten as a product tfp, where tisin T;, f(a “fractional transla-
tion”} is in R * and p is an element of P;. [An alternative
notation for g is (t + f)p where additive notation is used for
elements of R".] The point group component p and the
translation component tf are uniquely determined by g. The
term fp can be regarded as a right coset representative of 7
in G; f is uniquely defined modulo 7. If G is symmorphic
then f can always be chosen to be 0.

The product t,f.p; of two elements t,f,p, and t,f,p, is
t.£.( proto) poofs) popa, where pot and pof are the transforms of t
and f by p. Therefore,

def

t, =1 +pf,—£,eT,. 2.1)

Since G is an extension of T; by P, a subgroup L of G
must be an extension of 7, <T; by P, <P; such that
P, ~L/T;.

In this geometric formulation, an orthonormal basis for
R " is usually assumed, and all of t, f, and p are expressed in
that basis.® However if we take the generators of T; as a basis
for R " then T; becomes an integral lattice. This is the start-
ing point for the algebraic point of view.

B. The algebraic viewpoint

The above change of coordinates, which permits us to
identify T; with Z "2 also effects a one-to-one mapping ¥
from P onto a subgroup B of GL(n,Z ), the automorphism
group of Z". We will denote y{t) by t, ¥{f) by f, and (p) by p
(see Ref. 12). Thus the image & of G under ¥ is an extension of
Z" by a finite subgroup P, of GL(n,Z) such that
Be ~G/Z".

Condition (2.1) now becomes
def

t =t +prf,—feZ”, (2.2)

which is known as the Frobenius congruence. The set of all
fractional translations {f} is called a vector system for ®.

Bieberbach showed that two space groups G and G’ are
isomorphic if and only if they are conjugate in the affine
group A(n) = R" &GL(n,R ) (see Ref. 9). In fact, looking at
the problem algebraically, we see that @ and &' are conju-
gate in the subgroup R "&GL(n,Z) of A(n), since the conju-
gation must leave Z " invariant. Let the space group ® be
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characterized by B, and the vector system {f} and let the
space group &' be characterized by B, , and the vector sys-
tem {{'}. Clearly if @ and ®’ are conjugate in R "&GL(n,Z)
then Py and P, must be conjugate in GL(n,Z ); one says
that ® and ®’ (and also G and G ') belong to the same arithme-
tic class. To determine the relation between {f} and {{'}, let
o be the element of R "&GL(n,Z ) which affects the conjuga-
tion ®' = a®a~'. Thena = rq, wherereR "and ¢geGL(n,Z ).
Thus Z *{'p’ = a(Z "fp)a " implies

p'=apg”' and ¥ —[r+of—(gpa~"Jrlez”  (2.3)
When g = 1, then « is just the translation r and the vector
systems {f} and {{'] are related by a shift of the origin; in this
case they are said to be strongly equivalent. (If g1, the
systems are said to be weakly equivalent.)

Within each arithmetic class, each equivalence class of
solutions of (2.2) characterizes an isomorphism class of space
groups. In three dimensions there are 73 arithmetic classes
and 219 isomorphism classes of space groups the 230 space
groups are obtained by conjugation in the subgroup of proper
motions in R "&GL(n,Z ).

C. Subgroups and subgroup lattices

As we mentioned above, a subgroup of a space group is
an extension of a translation subgroup by a subgroup of the
point group, that is, 2<® is an extension of ¥, by B,
~Y/T,, where T, <Z " and B, <P, . Therefore T, must be
invariant under .. Here ¥ is isomorphic to Z ™,0<m<n.
We can specify T, by writing a set of m independent genera-
tors which are n-tuples of integers, as column vectors of an
n X mmatrix 4. Itis important to note that, alternatively, ¥
can be specified by any matrix AX, where XeGL(m,Z ). Thus
the condition that ¥, is invariant under P, becomes
P4 = AX or, since linear independence of the m genera-
tors ensures that A has a left inverse,

A~ B AeGL(m,Z ). (2.4)

An element of ¥ can be written in the form (t + f, + f)p,
where t€X, f,€Z ", pe,, and { is the fractional translation
associated with p in @. Then (fg + f}p can be interpreted as a
right coset representative of ¥, in { and therefore fg is
uniquely determined modulo &;. The f;’s must satisfy the
subgroup congruence’

for +Prfan — fos + 412€%,,

which follows from Eq. (2.2).

Each solution set defines a unique subgroup of . We
emphasize this because in order to construct the lattice of
subgroups of & we need to specify all the subgroups, and not
only isomorphism classes.

Now it is a simple matter to construct the lattice of
subgroups of &, that is, to determine their partial ordering.
Let & and & be subgroups of ®, with translation subgroups
g and T, represented by matrices A and A,.

Lemma 2.1: Tu <X, if and only if 4 7 'dg has integer
entries.

Proof: A 'dg =Y ifand only if 4, = 4, Y. Y is inte-
gralif and only if every element of T, is a linear combination
of the generators of ;. Q.E.D.

Theorem 2.1: Let & and £ be subgroups of ®. Then <2

(2.5)
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ifand only if (i) o <Pg; (i) Te < Ty ; and (iii) for each element
(fa + f)b of & there is an element (f; + f)p of & such that
fe = fo (mod Xy).

Proof: If 8<R then (i) and (ii} are immediate and also
{fe + Fpe, which means that it can be written in the form
(t +fs + fip, where teXy. Thus f; is congruent to
fs mod ¥,. Conversely it is obvious that {i)~{iii) ensure that
K< Q.E.D.

In applications to isotropy subgroups we will be inter-
ested in the sublattice of isotropy subgroups which has as its
minimal subgroup the kernel of the representation. We will
also wish to identify the subgroups in this lattice by space
group type. This is not a trivial problem. In the first place, if
the dimension m of ¥, is less than », then R is not an »n-
dimensional crystallographic space group and it need not
even be an m-dimensional one. Secondly, even if m = n, the
identification of ¥ is not always obvious. First 8, must be
described as an action on Z" and this is achieved by the
conjugation PR = A ¢ Py g, since 45 ' maps T, back
onto Z ". However it is often a difficult problem to determine
the conjugacy class of B in GL{n,Z), i.e., to determine the
arithmetic class of &. Next, the equivalence class of the vec-
tor system of & [see Eq. (2.3)] must be determined. We will
not discuss the identification problem further here; a com-
puter program for dealing with it has recently been written
by Engel, and will be published soon.'?

lil. TRANSLATION SUBGROUPS OF ISOTROPY
SUBGROUPS OF G

Throughout this section, we will adopt a geometric
point of view, returning to the algebraic in the concluding
section. Thus R " will be considered to be a real vector space
with an orthonormal basis, and its elements n-tuples of real
numbers. The usual scalar product of k = (k,,...,k,,) and
t == (ty,ent, ) ID R is (Kt) = Kyt + - + K8,

Let T be a (translation) subgroup of R". Then

def
T= {keR"™ (kt)eZ for all teT} is the subgroup of R "
“reciprocal” to T. Clearly 77 and if T< 7" then T'<T.
Conssquent]y, although T need not equal T it is always true

that T = T. If T, is the translation subgroup of an n-dimen-
sional space group G then we can identify it with a point
lattice and T with its reciprocal lattice. More generally, if
T <R "is generated by m linearly independent translations,
0<m<n, as in the case T<Tg, then T = T. Furthermore, if
T' is generated by m’ linearly independent translations,
0<m’'<n, then T<T' if and only if T>T".

Each irreducible representation R of T; is defined by a
vector keR " which is unique modulo T; in other words R is
labeled by a “wave” vector k from the first Brillouin zone
R7"/T; (see Ref 14). Specifically, for each te7,
R, (t) = 2k,

An irreducible representation R of a space group G'is, in
general, reducible when restricted to its translation sub-
group 7. Specifically,

R(To) =1 & Ry (To). 3.1)
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def
The positive integer / and the set (star) [o,] = {k,,ky....K; }

are uniquely determined by R. There is a one-to-one corre-
spondence between the vectors k; and the left cosets of the
isotropy group (little point group) of k,eR "/ T in the group
P,: [0,] is the orbit of k, under the action of P, on R "/T.

If X is the kernel of the representation R then an iso-
tropy subgroup L of G is a subgroup of G which contains K.
Clearly T < T, . However the fact that L is an isotropy sub-
group leads to a much stronger characterization of 7, . Es-
tablishing such a characterization is the purpose of the pres-
ent section.

Let o be any subset of [0,]. Then we can construct the
translation group

def

T\o) = {teTg: (k,t)eZ for all keo}. (3.2)

Clearly, T (o)< T while T (D) = Tg and T ([0,]) = Tk, where
Dis the empty set. We now show that T"(o) is reciprocal to the
group generated by o and 1.

Lemma 3.1: Let
def

Q)= (kk=k +k"
where k' = 3n,k;, k,co, n,€Z, and k"eT,]}.
(3.3)

Then T (o) = Q (0).

_ Proof:Since T'(0) = {teT: (k;,t)eZ forallk;e0} and
T, =T, we have T(o) = {teR": (k" t)eZ for all k"eT;
and (k;,tjeZ for all k;eg} = {teR": (k' + k",tjeZ for all
K = 3n,k;, k€0, n,eZ, and k"eT} = {teR ": (k,t)eZ for
all keQ (0)} = Q (o). QE.D

When Q (o) defined by Eq. (3.3) can be generated by n
linearly independent translations in R™ it holds that
Q0)=T(o) is equal to Qo). Otherwise, although
Qo) = T(0), Qlo) = T (0) is strictly larger than Q (). The
first case occurs when the image R(G )~ G /K is finite and
corresponds to commensurate {crystal-to-crystal) phase
transitions. The second case occurs when the image
R(G)~G /K is infinite and corresponds to incommensurate
phase transitions.

It is not necessary to consider @ {o} throughout this pa-
per; it suffices to consider only 7 (o) given in Eq. (3.2). How-
ever, we introduced @ (o) and proved Lemma 3.1 because we
found it sometimes conceptually simpler to first construct
Q (o) using Eq. (3.3) and then to use Lemma 3.1 to find
T(0) = Q (o) (see Ref. 6).

To establish our main theorem we will need several lem-
mas. The first of these is immediate.

Lemma 3.2: Let o’ <o"<[0oy], then T'(0")>T (0”) and,
equivalently, T()<T(o")

Lemma 3.2 suggests that there is a maximal o among
those subsets of [o] which generate the same T (o). Clearly,
every subset o of [0,] is contained in 7' (o)n[o,] and so a suffi-
cient condition for maximality is that o = T (o)n[og]. A o
satisfying this latter condition will be called a substar and
denoted by [0]. We will show in Theorem 3.1 that this is also
necessary for maximality.

Lemma 3.3: The subduction frequency of a subgroup 7’
of Ty is
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{T)=1|Tn[oo]].

Proof: By the definition of the subduction frequency (see
the Appendix) and Eq. (3.1), {T)=1Z%;_,j(T). Since
i (T) = 1ifk;eT and 0 otherwise, the sum in this expression
is simply the number of elements in the intersection
Tn[o,]. Q.E.D.

Notice that for a substar [o], {7 ([0])) = ! |[0]|. _

Lemma 3.4: 1 T< T, then T>T (o), where o = Tn{o,).

Proof: Since both T and T(o) are subgroups of
T, T>T (o) is equivalent to T<T(0). Also T="T so that
T={teTy: (kt)eZ for every keT }. Since o< T it then
follows that 7<T (0}. _ Q.E.D.

Lemma 3.5: Let T<T; and o = Thio,] as in Lemma
3.4. Then o is a substar.

Proof: Wemust show that o = T (0)n[o,,]. As we pointed
out after Lemma 3.2, o< T (0)n[o,); thus we need only show
the reverse inclusion. But this follows immediately from
Lemma 3.4. Q.E.D.

Now we can state and prove the first theorem of this
section.

Theorem 3.1: Let [o] be a substar of [0].

(i) [o] is the maximal subset among the subsets o’ of [o]
such that 7'{o’) = T'([¢]).

(ii) T ([o]) is an isotropy subgroup of T, in the restriction
of the representation R(G ) to 7.

Proof: (i) [o] = T ([olin[oo] = T (o')n[op) >0

(i} Assume there is a 7< 7 such that T'([o]) < 7. Then
T ([o]) > Tandby Lemmas3.4and 3.5, T([a]) > 7’([0’]), where
[0’] = Tr[o,). Consequently, [0’] <[] and by Lemma 3.3,
i(T) < i{T ([o])). Therefore, T ([c]) is an isotropy subgroup of
T by Corollary A.1 of the Appendix. Q.E.D.

Corollary 3.1: The isotropy subgroups of T are in one-
to-one correspondence with the substars of [o,).

Proof: We have shown that to each substar there corre-
sponds a unique isotropy subgroup of 7. Conversely, let T
be an isotropy subgroup of T; and let [¢] = Tn[o,]. Then
T ([o]) = T because otherwise by Lemma 3.4 T < T'([o]) and

TABLE II. Subgroups of p4 such that ¥, = Z({o]).

by Lemma 3.3 {(T) = {{T {[o])} which would imply by Corol-
lary A.1 that T is not an isotropy subgroup of 7;. Q.E.D.

The following immediate corollary is useful in compu-
tations. _

Corollary 3.2: Let a<[o,]. Then T {ojn[o,] is a substar.

We need two additional lemmas in order to prove the
main result of the paper: the subgroups T ([¢]) are precisely
the translation subgroups of isotropy subgroups of G. We
denote the normalizers in P of o< [o,] and of T< T, by N (o]
and N (T'), respectively. The normalizer of T is obviously
equal to N (T), and in particularN (T;) = N (Tg) = Pg.

Lemma 3.6: Let g<[o,). Then N (o)< N (T (o)}

Proof: Letpbein N (o). Thenp~'isin N (o) and for every
keo and every teT (o) (p-t,k) = (t,p ™ "*k)eZ because p is an
orthogonal transformation. Therefore, p-teT (o) and, conse-
quently, peN (T (0)}. Q.E.D.

Lemma 3.7: Let T<T, and let [0] = Tn[o,). Then
N(T)<N([o]). 5

Proof: By definition, if ke[o] then keT and ke[o,). If
peN(T) then peN(T)<P; and thus k'* =pkeT and
pk=K +Kk", k'elo,], k"eTs<T. Therefore, k' =k"’

— k”eT so that k'eTn[o,]. Consequently, peN ([0]). Q.E.D.

Theorem 3.2: (i) For every substar {o] there is an iso-
tropy subgroup L of G such that T, = T'([o]).

(ii) Conversely, if L is an isotropy subgroup then there
exists a substar [¢] = T, n[o,] such that T, = T'([0]).

Proof: (i)if T'([o]) is an isotropy subgroup we are done. If
it is not, there is an isotropy group L<G such that L > T'([o])
and /(L ) = {T ([0])) (see Corollary A.1 of the Appendix); if
T ([o]) = T, weare done. Thus we may assume T ([¢]) < T .
But {T{[cl)=iL} implies {T([o]))=#T,), since
T([o]) < T, <L. Thus, by Corollary A.1 of the Appendix,
T ([o]) is not an isotropy subgroup of T, which contradicts
Theorem 3.1.

(if) Assume that T, #7T([o]); then T, <T{[o]) by
Lemma 3.4. Let L be written as a left coset decomposition
with respect to 7,: L =ug,T,.

Vector system Subgroup
o Py f, fo fpe foo type Subgroup
2 0
[0 2] G (0,0) {0,0) p2
(0,0) (1,0} P2
(0,0) (0,1) P2
(0,0) (1,1) 2 &
C, (0,0) (0,0) (0,0) (0,0) 4
(0,0) (1,0) (1,1) .1 p4 2
(0,0) {©.1) (=11 (1,0) P4 L,
0,0) (1,1) (0,0) (1,1) 74
2 0
[0 1] G {0,0) (0,0) P2
(0,0) (1,0) p2 2,
1 0
[o z] G €9 0.0} p2
(0,0) (0,1) P2 L,
1 0
[o 1] G (0.0} 0,0 P2 2,
C, {6,0) (0,0} {0,0) {0,0) 4 @
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Let L'=ug,T([o]); obviously L<L’'. L' is a group
since N (T, )<N (T ([¢])) by Lemmas 3.6 and 3.7. By definition
(see the Appendix), {L)=dimFixL and L")
= dim Fix L’. We will show that Fix L = Fix L ' and thus
i(L') = i(L "), which contradicts our assumption that L is an
isotropy subgroup (cf. Corollary A.1).

Let veFix L. Then v is fixed by 7, and by every g;€ L.
Now (T, ) =1 |T n[o,]| = ! |[o]| by Lemma 3.3 and the de-
finition of [o] On the other hand,
(T ([o]) =1|T {[o])nloo]| = ! |[o]|since[o]isasubstar. Thus
i{T,)=1(T([o])) and every vector fixed by T, is fixed by
T {[o]) and vice versa. Thus v is fixed by 7 ([0]) and by every
&:,» which implies veFix L ', and hence Fix L<Fix L '. It fol-
lows (see Proposition A.3 of the Appendix) that Fix L
=FixL". Q.E.D.

IV. THE LATTICE OF ISOTROPY SUBGROUPS: A TWO-
DIMENSIONAL EXAMPLE

In principle, the isotropy groups are completely deter-
mined by the image R(G ). Thus one could first determine the
isotropy subgroups of R(G ) and then “lift back” to G to find
its corresponding isotropy subgroups. This procedure would
be feasible if representations were classified by their kernels
and images. However, such a classification does not exist
even for n = 2; in the meantime we need an alternative meth-
od for a case-by-case study. We can avoid the explicit con-
struction of the matrices in R(G ) by recalling that the lattice
of subgroups L of G which contain the kernel X is isomor-
phic to the lattice of subgroups of R(G ). Therefore, our strat-
egy will be to construct the lattice of subgroups L, K<L<G,
for which T, corresponds to a substar, and then to calculate
each i(L ). While the construction of the subgroup lattice does
not require any knowledge of the image R(G ), the last step
requires knowledge of the characters.

Let [0,] be the star of the representation. It is a simple
matter to calculate the substars [¢0] and the corresponding
translation subgroups %([¢]). Using a standard procedure, '
we can find a basis for each ¥([o]) and form the matrix 4
defined in Sec. II. (In this section we return to the algebraic
point of view.)

By the results of the preceeding section, we can assume
that ¥, = T([o]) for some substar [0]. The next step is to
construct candidate subgroups £: for each ¥; we choose
those B, under which it is invariant, use Eq. (2.5) to deter-
mine a vector system, and then use Theorem 2.1 to exclude
those subgroups which do not include &. If & is of finite
index, the work is simplified by recalling that B /B |

=By /Be| [Be/Be| and [T/Tel= 1T /Ta| [To/ T |
(note: T, = Z7).

Finally for each £ in our lattice we compute the subduc-
tion frequency (). This computation is explained in detail in
Ref. 6. In the following example we show only how to con-
struct the lattice of subgroups whose subduction frequency
is to be calculated.

Example: Let ® be the two-dimensional space group p4.
For the purposes of this calculation, we assume R to be an
irreducible representation of ® whose kernel & is the invar-
iant subgroup of 0} specified by
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2 0 ,
Aq = 0 2 Be =C,={1,p?}, and vector system

fi = (0,0), f,- = (1,1), where p is the fourfold rotation. Then
|G/R| = |Bo/Bg| |Z2/Te| =24=8. The star is
[o.] = {(1/2,0),(0,1/2)]. The substars of [o,] are &,[o,], {(1/
2,0)}, and {(0,1/2)}. The first two correspond to Z % and ¥,
respectively, while if [o] is the third or fourth then
2([o]) = {(x,p)eZ 2:x is even]} or {(x,y)eZ *:pis even}, respec-
tively. We conclude that they are represented by the matri-

2 0 1 0 .
cesA = [0 1] and 4 = [O 2], respectively.

Next we construct the subgroups & with these transla-
tion lattices. We list in Table II the combinations of ¥ and
%, which form subgroups of ., [see Eq. (2.5)], together with

. 2 0
representative vector systems. Note that 0 1 and

1
[0 2] are not invariant under C, and thus there are no p4

subgroups with these lattices.

By Theorem 2.1, £ does not contain & unless f,. = (1,1)
mod ¥y ; this requirement eliminates seven of the subgroups
in the list above. Thus our final subgroup lattice is

/®\ s
\’£ .
@//

where ~ indicates conjugate subgroups.

To determine which of these subgroups are isotropy
subgroups, one would first calculate the subduction frequen-
cies for the maximal subgroups ; and ¥ [note that
i(8,) = i{%,)] and compare them with /{(®)=0: then one
would calculate i(S,) and compare it with i(2s) if £5 is an
isotropy group or with i(®) if it is not. Finally, & is the iso-
tropy group by a general theorem.
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APPENDIX: GROUP ACTION AND ISOTROPY GROUPS

In this appendix we outline the basic concepts concern-
ing group action and isotropy subgroups which are assumed
in Sec. I1I of the paper.

Let G be a countable group (e.g., a space group) and let
R be a homomorphism of G into a group of unitary matrices
which act on a vector space V

VgeG, Rig—Rig), VeV, gv=Rgp, (A1)
where R(g) is the unitary matrix representing g. Usually R is
said to be a representation of G; the matrix group
R(G) = {R(g): geG }, the image of G under R, is also often
called the representation. We recall that the set
K = {geG: R(g) = 1}, where 1is the identity matrix in R(G),
is a normal subgroup of G, K<G, called the kernel of R. The
image R(G) is isomorphic to the quotient group G /K.
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Throughout this appendix we will assume that R is a given
representation.

Although the following definitions refer to the G-action
defined by Eq. (A1) they may be readily extended to a more
general group action.'®

Definition A.1: L<G is the isotropy group (stabilizer, lit-
tle group) of veV iff L is the largest subgroup of G such that
VgeL, g = v. We will write L = L (v). Similarly, we say that
L<Gisanisotropy subgroup of Giff JveVsuchthat L = L (v).

The maximal isotropy subgroup of G is, trivially, G it-
self. A reader should be warned that the term “maximal” is
used in the physical literature for a maximal isotropy strict
subgroup of G.

Definition A.2: N<G'is the normalizerof V'<Vin Giff N
is the largest subgroup of G such that VgeN and Vvel’,
gveV' . Wewillwrite N=N{(V').

Definition A.3: C<Gis the centralizer of V'<¥Vin Giff C
is the largest subgroup of G such that VgeC and Vvel,
gv =v. Wewill write C = C (V). Similarly, wesay that C<G
is a centralizer in G iff AV’'< ¥V such that C = C (V).

The following proposition is an immediate consequence
of the above definitions.

Proposition A.1:

(i} Every centralizer contains K which is the minimal
centralizer in G.

(ii) G is the maximal centralizer.

(iii) For every subspace V'<V,

NV)3>CWV')= ﬂV,L (v), (A2)
and, hence,
L{v)>C(V'), VYveV'. (A3)

Definition A.4: The G-orbit through veV is the set
{gv: geG }<V. Clearly, the G-orbit through v is also the G-
orbit through any of its points. Furthermore, points in the
orbit are in one-to-one correspondence with the set G /L (v),
the set of left cosets of L (v) in G. Sometimes, e.g., when
L (v) = K, we will use the same notation for the set of corre-
sponding coset representatives.

Since points on a G-orbit have conjugate isotropy
groups, L (g-v) = gL (v)g ", the following is clear.

Proposition A.2: Isotropy subgroups of G fall into equiv-
alence classes under conjugation in G.

Definition A.3: Let L be any subgroup of G. Fix L is the
largest vector subspace of ¥ such that C(Fix L )>L.

The following proposition is an immediate consequence
of the definitions.

Proposition A.3: Let L and L' be subgroups of G.

(i) If L <L’ then Fix L>Fix L’; conversely, if Fix L
>Fix L' then L<L".

(ii) C(Fix L) = L if and only if L is a centralizer in G.

(iii) For every V'SV, Fix C(V')>V".

(iv)Fix L = {veV'L (v)>L = uL ',whereL 'el (G),L'>L,
and I[G'} is the set of isotropy subgroups of G.}

The dimensionality of Fix L, {(L ) = dim Fix L, called
the subduction frequency of L, is the number of times the
trivial, identity representation occurs in the restriction of R
to L. For example, {(K } = dim V. In the case R(L ) is finite,
that is LnK is of finite index in L, i{(L ) can be calculated using
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the orthogonality relations for the characters of a finite
group:

iL)=

Tr Rg). (Ad)

=
LK1 g 7nk))

We emphasize that the following theorem holds for
continuous as well as countable groups.

Theorem A.1: A subgroup L of G is a centralizer in G if
and only if there exists no subgroup L ' such that L <L '<G
and i{L')=iL).

Proof:Let LbeacentralizerinG.ThenL = C (Fix L )by
Proposition A.3 (ii). Let L '<G be such that L'>L and
#{L’') = {{L }. By Proposition A.3 (i) Fix L '<Fix L and since
both Fix L ' and Fix L are vector subspaces of ¥, i(L ') = i(L )
implies Fix L' = Fix L. Furthermore, by the definition and
Proposition A.3 (ii), C(Fix L')>L'. Consequently, L>L"'
which is a contradiction. To prove the second part of the
theorem, assume that i(L ') < i(L ) for every subgroup L ' of G
suchthat L’ > L. Therefore, C (Fix L )is either equalto L, in
which case L is a centralizer by Proposition A.3 (ii), or it is
equal to such an L’. In the latter case i(L ') <i(L ) implies
Fix L’ < Fix LcontradictingFix C (Fix L )>Fix L whichfol-
lows from Proposition A.3 (iii). Q.E.D.

The following theorem, which is only true for countable
groups, will facilitate the use of the previous theorem to cal-
culate isotropy groups.

Theorem A.2: Every isotropy subgroup of G is a centra-
lizer in G and, conversely, every centralizer in G is an iso-
tropy subgroup of G.

Proof: Let L be an isotropy subgroup of G. It follows
immediately from Proposition A.1 (iii) and the Definition
A.5 that C(Fix L } = L, which proves that L is a centralizer.
Let L be a centralizer in G such that the set of isotropy sub-
groups L, of G which contain L, L, >L, is countable (this is
always the case for a countable group G ). By Proposition
A.3 (iv), we have Fix L =y, Fix L,. A countable union of
vector subspaces (e.g., U; Fix L;) is a vector subspace (e.g.,
Fix L) if and only if one of the subspaces in the union (e.g.,
Fix Ly, L,e{L,}) contains all the others. Thus, Fix L

= Fix L, which implies by Proposition A.3 (ii) that L = L,,.
Hence, we proved that L is an isotropy subgroup of
G. Q.E.D.

The most important result for calculating isotropy sub-
groups of a countable group G is the following immediate
corollary to Theorems A.1 and A.2.

Corollary A.1:

(i) A subgroup L of G'is an isotropy subgroup of G if and
only if there exists no subgroup L ‘ such that L <L '<G and
HL'Y=14L).

(ii) Let L <L '<G. Then {(L ) = i(L '} if and only if there
exist no isotropy subgroups L " of Gsuch that L{L " <L".

A general strategy for determining all of the isotropy
subgroups of G is then to systematically calculate i(L ) for all
subgroups L of G such that L > K and then to apply the above
corollary.

A justification of our restriction to irreducible represen-
tations in the main text is based on the following lemma.

Lemma A.1: If Risreducible, R = @ R;, then Lisan R-
isotropy subgroup of G if and only if L = nL,, where each L,
is an R;-isotropy subgroup of G.
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The proof follows immediately from the observation
that irreducible subspaces V; corresponding to R,,
V = & V,, are G-invariant subspaces.

Finally, although we do not use the following lemma in
this paper, we prove it here since it turns out to be very useful
in practical calculations of isotropy subgroups.®

LemmaA.2':If Land L 'arecentralizersin G then LnL’
isalsoacentralizerandi(LnL ')>#(L ) 4 i(L ') — i(LL '), where
LL’ is the group generated by L and L .

Proof: Let V' V'bethe subspace generated by Fix L and
Fix L'.ClearlyVveV ', YgelLnL ',g-v = v.ThusC (V')>LnL".
On the other hand C(V') =Ny, L (v)<LnL’. Therefore,
C (V') = LnL’and LnL 'isacentralizerin Gor, equivalently,
by Lemma 2.1, an isotropy subgroup of G. Furthermore,

V=V"eV,eV,., where V" =Fix LnFix L' and V']
and ¥V ;. are orthogonal complements of ¥” in Fix L and
Fix L', respectively. Clearly dim V'=iL}+#L")
— dim V".Ontheotherhand C (¥ ")>LL ' and by construc-
tion, Fix(LL') = Fix LnFix L' implies dim V" = j(LL").
Finally, using a general relation Fix C (V')> V"’ we arrive at
HLNL ")>i(L) + #L")y— iLL"). Q.E.D.
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A system of n first-order nonlinear ordinary differential equations x(t ) = f(x,?) is said to admit a
superposition principle if its general solution can be written as a function of a finite number m of
particular solutions and 7 constants. Such a system can be associated with the nonlinear action of
a Lie group G on a space M. We show that “indecomposable” systems of ODE’s with
supersposition principles are obtained if and only if the Lie algebras L,C L, corresponding to the
isotropy group H of a point and the group G, respectively, define a transitive primitive filtered Lie
algebra (L,L,). Using known results from the theory of transitive primitive Lie algebras we deduce
that L, must be a maximal subalgebra of L and that G must be an affine group, a simple Lie group,
or the direct product of two identical simple Lie groups. Affine groups lead to linear equations, the
other types to nonlinear equations with polynomial or rational nonlinearities. Equations
corresponding to the classical complex Lie algebras are worked out in detail.

PACS numbers: 02.20. + b, 02.40. + m, 11.10.Lm, 11.30.Na

I. INTRODUCTION

Certain nonlinear partial differential equations display
the interesting property that new solutions can be obtained
by a nonlinear superposition of specific known solutions (so-
liton superposition laws).' This property has been related to
the matrix Riccati form of the soliton generating Backlund
transformations.? A related property of certain ordinary dif-
ferential equations, including all matrix Riccati equations, is
the existence of nonlinear superposition principles, i.e., the
possibility of expressing the general solution as a function of
a finite number of particular solutions (a “fundamental set of
solutions”}. The question of characterizing systems of
ODE’s that admit nonlinear superposition principles was
raised and solved by Lie.’

More specifically, we shall say that the vector ODE

dx
— = )t >
” fix,1)

admits a nonlinear superposition principle if there exist m
“generic” particular solutions x,,...,X,, and a function

S:R*™+D_LR”
such that the general solution to (1.1) can be written as
x(t) = S(x,(t)s....X,,, (2 ),2) , (1.2)

where a is a constant vector, related to the initial conditions.
The expression (1.2} will be called a superposition formula
and the set x,(t),...,X,, (#) will be called a fundamental set of
solutions.

A recent series of publications*” has been devoted to a
study of systems of first-order ODE’s with quadratic nonlin-
earities that satisfy Lie’s criterion. Thus, explicit superposi-

x(t ).f(x,t )eR" (1.1

® Current address: Department of Mathematics, Ben Gurion University,
Beersheva, Israel, 84105.
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tion formulas were obtained for projective and conformal
Riccati equations,*’ as well as for the general matrix Riccati
equation.®

The purpose of this paper is to provide a general classifi-
cation of nonlinear ODE’s with superposition principles and
to reduce the study of these equations to that of certain “ele-
mentary” or “indecomposable” systems of equations (see be-
low).

If £ is linear in x this is just the representation of a gen-
eral solution as the linear combination of n linearly indepen-
dent solutions and in this case generic means linearly inde-
pendent. If fis independent of f and nonvanishing near a,€R”"
we can change coordinates on a neighborhood of a, so that f
becomes f = (1,0,...,0) and the general solution to the trans-
formed equation is X(¢) = %,(¢) + a — a,. Changing back to
the original coordinates this becomes a nonlinear superposi-
tion with m = 1. Generic in this case means that the solution
x, has a nowhere vanishing tangent vector.

More generally for the nonlinear time-dependent sys-
tem a theorem of Lie® gives necessary and sufficient condi-
tions for there to exist a nonlinear superposition principle.
Consider f(x,?) as defining a time-dependent vector field on
RII

Ei)= 3 fimn) 2

=1 ax!
The vector fields & (x,t,) evaluated at all possible ¢, must gen-
erate a finite-dimensional subalgebra of the algebra of vector
fields on R", i.e., there exist k vector fields £ ,(x),...,£, (x) such
that

(1.3)

k

Exr)= 3 at)(x) (1.4)
and h .
[£:x)6;x)] = 3 ¢jéi(x) (1.5)
=
for some constants /.
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When these conditions hold, there is a neighborhood of
the identity in a k-dimensional Lie group G which is acting as
a (local) transformation group on a neighborhood U of the
initial values a,, which we assume to be the origin of R”. The
differential equation on R" can then be solved for all initial
values in U by finding the integral curve g(¢) through the
identity in G of a time-dependent vector field on G and com-
posing with the group action, which we write as (g,x)—gx or
G XR"—R", although everything is only locally defined.
The function S (x,,...,x,, ,a) is a composition of two maps, the
first determines the solution g(¢) in the group from an m-
tuple of solutions in R” and the second is a composition of g(t )
with initial conditions x(0) = a

{x,(t)=glt)a; }>glt)—glt)a. (1.6)
The integer m is the number of copies of R” necessary to
make the “generic” isotropy group of the action on (R")™
reduce to the identity.

Lie’s results reduce the problem of finding all systems of
n first-order ODE’s with superposition principles to that of
classifying the finite subalgebras of the algebra of vector
fields on R". They also make it possible to read off the equa-
tions directly from the expression for the fields and vice
versa. Indeed, given the equations of the required form

dx* k
e Y a(t)s Hx), I<u<n (1.7)
i=1
we obtain the vector fields
n n 9
H(x) = Nx . 1.8
&ilx) v;f()axv (1.8)
Given the vector fields, we can write the equations as
dx* k n
Punt— ai t i-x‘“ B 19
i .;1 1313 (1.9)

In a different context, Lie himself classified all finite
subalgebras of the algebra of vector fields on R' and R2.®

For n = 1 only sl(2,R) and its subalgebras can be real-
ized, leading to the Riccati equation y =a + by + ¢)?, or
linear equations, respectively. For n = 2 infinitely many dif-
ferent finite-dimensional Lie algebras can be realized. Two
of them, namely those that in modern terms correspond to
two-dimensional symmetric spaces [quotients of sl(3,R) and
0O(3,1)] lead to coupled Riccati type equations. The equa-
tions corresponding to all other subalgebras (none of them
simple) partially decouple. A Riccati or linear equation is
obtained in one variable; once this equation is solved the
remaining equation reduces to a linear or Riccati equation
for one unknown function.

In seeking a generalization of Lie’s “decoupling” result
and an understanding of a reduction procedure for the gen-
eral equation (in R") admitting a nonlinear superposition
principle, one is led to the study of primitive transitive group
actions. We claim that a general superposition law on R” can
be derived from a knowledge of superposition laws for primi-
tive transitive group actions on R.%-!* Furthermore, we shall
show that the “building blocks” for constructing nonlinear
equations with superposition principles are obtained by con-
structing the vector fields, corresponding to the action of a
group G on a homogeneous space G /H, where either G is a
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simple Lie group and H a maximal subgroup of G, or
G=K@®K, H=K,, where K is simple and K, is the diag-
onal K-type subgroup of K ® K.

The nonlinear equations with superposition principles
that we obtain are not necessarily of the Riccati type, i.e., the
nonlinearities are not necessarily quadratic. The analysis
does however bring out the prevalence of matrix Riccati
equations in the theory.

The approach taken in this article provides both the
ODE’s with superposition principles and the general form of
the superposition formula in each case: this is given by the
group action of G on G /H.

In Sec. II we relate the problem of ODE’s with superpo-
sition principles to the theory of primitive transitive Lie alge-
bras. In Sec. ITI we apply known results on such Lie algebras
to construct the ODE’s we are interested in. In this article we
restrict ourselves to the classical complex simple Lie groups.
The exceptional simple Lie groups and the real Lie groups
will be treated elsewhere.

Il. SUPERPOSITION PRINCIPLES AND PRIMITIVE
TRANSITIVE LIE ALGEBRAS

Let us consider a Lie group G acting on a manifold M.
The first restriction that we make is that the orbit structure
of the group is regular, i.e., admits a stratification into sub-
manifolds of fixed orbit type. In fact we restrict our attention
to the superposition of solutions, all of which take valuesin a
stratum of one orbit type G /H. The superposition may be
based on solutions x,,...,x,,, taking values in different orbits,
but since they are all diffeomorphic to G /H, we will assume
that all the x; take values in the same orbit, which we identify
with G /H and further, that H contains no normal subgroup
of G. Thus, for the purpose of studying the superposition
formulas we shall assume further that the group action is
transitive and effective.

Assume now that the open set UCR" is a coordinate
neighborhood of the base point x,in G /H. Wesay that G acts
primitively on G /H, if there is no invariant foliation. The
group G acts locally primitively if there is no invariant folia-
tion of the open set U. A group G may act primitively, but
not locally primitively, when there is a foliation on a cover-
ing of G /H, or in other words, if the local foliations do not fit
together to a global foliation on G /H. Golubitsky'? deals
with this problem but it will not concern us here.

We will show below that the action G fails to be locally
primitive if and only if there exist coordinates (x',...,x") such
that dx'/dt for i = 1,...,r is a function only of x',....x" and ¢
{for some O < r < n). The group G acts primitively if and only
if there does not exist a subgroup K such that

HCKCG, dimH<dimK <dimG. (2.1)
The group G acts locally primitively if and only if there does
not exist an algebra k between the algebras hand g: hCkCg,
h #k #g.

If G does not act locally primitively, then there is an
invariant foliation on U and projecting along the leaves of
the foliation onto the quotient space, we can define a local
action of G on a lower-dimensional manifold.
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If there exists a subgroup K satisfying (2.1) we can iden-
tify the quotient space given by projecting along the leaves
with a neighborhood of the base pointin G /K. We can deter-
mine the curve g(t) in G from solutions (that is integral
curves) of the projected vector fields on G /K, if G acts effec-
tively on G /K. This is true whenever K does not contain a
normal subgroup of G. The local condition is that ¥ does not
contain an ideal of g. If K is chosen to be maximal (or £ is
maximal), then the action is primitive (or locally primitive).'?
If K contains no normal subgroup of G (or k contains noideal
of g) the superposition formula for G /H can be constructed
from solutions on G /K.

For simplicity of notation we assume that we are deal-
ing with the global problem, i.e., on the level of the group, as
opposed to the algebra, and the group action is on G /H.

If, on the other hand, K does contain a normal subgroup
of G, then denote the largest such normal subgroup N. The
action of G on G /K is not effective and the superposition law
on G /H cannot be derived from one on G /K without further
data. We will describe how to find the curveg(t ) in G from the
curve g,(¢) determined by the action on G /K, and a second
curve n(t ) given by an equation on a homogeneous space N /
NnH. Let JC L be theideal in L corresponding to the normal
subgroup N. The right invariant vector field £,€L defines an
element of L /J, which we denote £, /J. The Lie algebra of G /
N can be identified with L /J. Let g,(¢ ) project to the solution
in G /N, that is (dg,/dt g, ' = &,/J. To find the full solution
in G we must find a curve n(¢ ) in N such that g(¢) = g,(¢ )n(t)
solves (dg/dt)g~" = &,. This is equivalent to the equation

1,1, dn

dr & +&—— dr n_1g171_g.t'
We have £,(dg,/dt )g; 'e J so we must solve the differential
equation
dn(t) n—1 g ( dg(t) o )
t 1), t t).
” () =g (t)\& — ” (t))&ilt)

(2.2)

This is equivalent to studying the differential equation along
the leaf L, of the invariant foliation through the base point
given by the time-dependent vector field g,(t )~ '*(£, — £,,),
where £, is the vector field on G /H generated by differenti-
ating the action of g,(# ). The leaf L, is diffeomorphic to K /H
and we are studying the action of N. As before we can reduce
first to the transitive case by picking an orbit of N such as
Nx, =N /NnH and then reducing to the primitive case if
NnH or the appropriate isotropy group is not maximal. Since
dim K /H < n this process will end after at most # steps.

For the purpose of linking up with the treatment in
Refs. 3—7 we will discuss this reduction at the level of vector
fields. Let

gi(x) =

(2.3)

i

generate a Lie algebra L. Consider the subalgebra

Lo(xo) = {£|€CL, & (xo) = 0} (2.4)
(vector fields vanishing at the origin). Transitivity of the

group action on R" near x, is equivalent to dim(L /
L(xo)) = n. If there is a more complicated orbit structure,
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thend (x,) = dim(L /L(x,)) takes valuesbetweenOand n. Let

¥V, be the subset of R, where d (x,) = k and assume V, is a
manifold for each k (some V, may be empty). On V, the
vector fields in L form an integrable distribution, foliating
V. into submanifolds of dimension k. If R is a leaf of the
foliation the solutions to the differential equation with initial
data on R remain on R. By restricting attention to R we are
carrying out the same reduction as restricting to one orbit of
the group action. If the orbit is of maximal dimension then
all nearby orbits are equivalent as homogeneous spaces and
the restriction to one orbit is justified. On lower-dimensional
orbits whose neighboring orbits are of different orbit type,
the situation is not so clear.

We will assume that we have made the reduction and
that we are looking at a submanifold R of R” of dimension
equal to dim(L /L(x)) for all xeR. By changing to adapted
coordinates we identify R with R* canonically imbedded in
R”; to simplify the notation set k = n. Thus we have an alge-
bra of vector fields on R” such that the dimension of the
subspace spanned by evaluation of the vector fields at xeR",
{£ (x)|£€€L } is n for all x.

The action is called locally primitive if there does not
exist an invariant foliation defined on a neighborhood U of a
base point x,, thatis aset of k functionson U { fi,..., f; } with
{df.. ] linearly independent for all xeU such that for any
el &f; = hy( fi,-.-f%) for some h; depending on &. If such
{ /i } do exist we can assume they are the first & functions of a
coordinate chart y',...,y* and we label the remaining coordi-

nates 2+ !,....z". The vector fields in L have the form
x=(ya), &M= an-L 1+ SbinaL
T i=1 ' ay’ S oz
(2.5)
The differential equations
dx i
s Y aft)éi(x)x (2.6)

can be solved for y independently of zto give y(t) = g(t)- y,.
The solution y{t) can then be substituted into the full equa-
tions so that

=3 a't)b felt) yo2) .

These equations will only be of the form that admits a super-
position principle if we have

(2.7)

§ie)z)z=3 bit)ylz)z. (2.8)
In other words, the z components of the vector fields &, eval-
uated at different values of y must form a finite-dimensional
Lie algebra.
As an example consider the three-dimensional (decom-
posable) Lie algebra given by vector fields on R+ X R:
a d 14 ot d

= —z=, =——, =e¥”—. (2.9
5§ = ya % 52 7 oz s 92 (2.9)

Even though the original algebra is three-dimensional, the z
components generate an oo -dimensional algebra. Therefore,
the equations for z given by substituting the solution y(t) do
not admit a superposition law. It is, however, possible to
modify the equations for z in such a manner that a superposi-
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tion formula does exist for the modified equations and that
these together with the equations for y are equivalent to the
original system. The vector fields £;eL for which &;-y =0
form an ideal Jin L and the problem can be reduced to one
which involves only this ideal. To do this, first solve for the
superposition law in y-space, that is determine a curve g,(¢)
in the group such that for any y,, g,{t )y, = y(t) solves the
equation in y:

L _satgey.

Now let g,(¢) act on ( y,z) space:
g1t o = &1{t )( YosrZo) = (W2 ),2(2 ))-
Then

dg,
d;gt.xo = b(t)é:(glt)xo)

D ailt)gigleIxo) — 3 bi() (gl )xo)] y=0.

Therefore,

S a(t) = bit) .

If J=0 then Z(a;t)—b,(t))f; =0 which implies
a;(t)=b,(t) by linear independence of £, and the solution to
the superposition law on y space solves the superposition
law on x-space. Otherwise we must solve the equation

% e+ (S @de) ~ bl Do k)

for a function Z(t ). The solution to our original system is

(ple),2(t ) = 812 )-(yos2(t )
(g, denotes the derivative action of G ). The solution Z(¢ ) is
described by a superposition law based on the action of the
group corresponding to the ideal J.

The proposition stated below summarizes these results.

Proposition: Given a differential equation on R" which
has a superposition law there is an associated finite-dimen-
sional Lie subalgebra of the algebra of vector fields
L = {¢£,|i=1,..., p} such that the equation can be written

& _Satkx.

Let G be a (local) Lie group with algebra L acting on a neigh-
borhood U of the origin in R". If the orbit structure is regular
(admits a stratification into submanifolds) and if we consider
only those superposition laws based on r solutions
X,(2),...,x,(t) which lie in orbits of the same type then the
most general such superposition law can be derived from a
knowledge of superposition laws for equations arising from
transitive primitive group actions. O

For primitive group actions our primary reference is the
paper by Golubitsky.'? He studies the globally primitive
group actions and notes that the maximality of the isotropy
algebra L, is sufficient, but not necessary. For locally primi-
tive actions the maximality of L, is necessary.

Proposition: There is no invariant foliation of any neigh-
borhood U of x, if and only if L, is maximal.
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Proof: Suppose there exists an invariant foliation of
some neighborhood Uand let F, be the leaf through x,. The
condition that the vector field £ on U generated by an ele-
ment £€g be tangent to F, defines a subalgebra of L properly
containing L. The closure under brackets is trivial and the
fact that it properly contains L, is a consequence of the in-
variance of the foliation and transitivity. Conversely suppose
L,is not maximal. Let K be a proper subalgebra of g properly
containing L,, LDKDL,, L #K #L,. Define

Digro) = | glexp mhxolnek | > T, M.

D (gx,) is well defined for all g in a sufficiently small neigh-
borhood N of the identity in G such that the intersection of N
with the isotropy group is connected. This definition pro-
vides a G invariant integrable distribution, hence an invar-
iant foliation of codimension equal to the codimension of K
in L.

1. CLASSIFICATION OF PRIMITIVE TRANSITIVE
CLASSICAL LIE ALGEBRAS AND OF THE SYSTEMS OF
ODE’S WITH SUPERPOSITION PRINCIPLES

We have shown in the previous section that “indecom-
posable” systems of ordinary differential equations with su-
perposition principles are obtained by constructing the vec-
tor fields & (x) corresponding to the infinitesimal transitive
action of a group G on a homogeneous space G /H, where
HC G is a maximal subgroup of G.

Let us now look at the corresponding pair of Lie alge-
bras (L,L,), and reproduce some definitions from various
authors.

Definition 1: The pair (L,L) defines a transitive primi-
tive Lie algebraif (1) L, does not contain a nonzeroideal of L;
(2) Ly is maximal in L.

Definition 2: The transitive primitive Lie algebra (L,L)
is nonlinear if there exists a nonzero subalgebra L, C L, de-
fined by

L, = {geLo|l&L 112L,).

Definition 3: The transitive primitive nonlinear Lie al-
gebra (L,L,) is irreducible if no subspace M C L exists such
that [Lo,M1CM, M #L, M #L,.

According to the arguments of Sec. II we are now in the
situation of having a transitive primitive Lie algebra (L,L,),
where L is some finite-dimensional Lie algebra realized by
vector fields and

Lo = {£ (x)eL |£ (x0) =0} ,
i.e., L, is the subalgebra of fields vanishing at the origin x,,.

We can now make use of the classification of primitive
transitive finite Lie algebras due to Kobayashi and Na-
gano,'*> Ochiai,’' and Golubitsky'? to obtain a classifica-
tion of systems of ODE’s with superposition principles.

Theorem 1: (See Golubitsky.'?) Assume L is not simple.
Then either

{1) L is not semisimple and there is an abelian comple-
ment ¥ to L, on which L, acts faithfully and irreducibly.
This is the case of an affine group.

(2) L is semisimple. In this case there exists a simple Lie
algebra K such that L = K & K and L, is the diagonally im-
bedded subalgebra (isomorphic to K ). a
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Incase(1)the Lie algebra L is either aff{n,C) or one of its
subalgebras. The vector fields in natural coordinates are giv-
en by combinations of

[x,- ajk] and [ﬁ—’} (3.1)

The equations are linear, for aff{n,C) we have Ly~ gl(n,C)
and the superposition formula is the linear one involving n
linearly independent solutions. For other affine algebras
more economical nonlinear superposition formulas (involv-
ing less than #n solutions} may exist.

In case (2) if we choose K as a simple classical Lie alge-
bra, the homogeneous space G /H is a surface in a Grass-
mann manifold of n-planes in C*". The semisimple group G is
a subgroup of a larger simple group acting on the Grassman-
nian. Let us consider each of the complex classical Lie alge-
bras separately.

(a) K =sl(n,C). Consider first the action of a larger
group, SL(2n,C) on the Grassmannian G, (C*") of complex n-
planes in C*". Introduce homogeneous coordinates, namely
the matrix elements of two complex matrices XeGC">",
YeC"*". The rank of (¥) is n and two pairs of such matrices
X,Y)and (X,Y) characterize the same pointin G, (C*") if they
satisfy

£= @:) - (’)Y;Z) , 2,GL1,C). (3.2)

The action of SL(2n,C) on the homogeneous coordinates is
linear,

v)=s(y) e=(o &), ae-
(Y, =t\y) 2=\g &) dete=1. (3.3)l

_ 1 +(—‘ l)n(wlnyln _w2nY2n +'"+(_ l)nwnAInYn—ln)

The isotropy group of the origin () is given by the constraint
G, + G, = G,, + G,,. We also introduce affine coordi-
nates on G, (C*"), putting

W=XY"' if detY #0. (3.4)
The action of SL(2#n,C) is now a matrix fractional linear one
W'=(GuW+ Gp)GuW+Gyp)™' . (3.5)

Restricting to the group SL(n,C)  SL(n,C) under considera-
tion, we put

G,=0, G, =0, detG,,=detG,,=1 (3.6)
and the action (3.5) reduces to

W' =G, \WGy™'. (3.7)
In view of (3.7) we have

det W' =det W.

In order to have a transitive action we must choose a fixed
value of the determinant; we put

det W=1. (3.8)
Instead of writing out the sl{n,C) @ sl(n,C) vector fields we
shall just give the corresponding ODE’s. In homogeneous
coordinates they are

(X) _ (C 0) ( X,Y,C,BeC="

Y \0o —~B/\Y) TrC=TrB=0, (3:9)

and in affine coordinates, using (3.4) we obtain
W=WB+CW, TrB=TrC=0. (3.10)

We thus obtain a system of n* linear equations, subject to the
nonlinear constraint (3.8). Using (3.8) to eliminate one of the
variables, say the matrix element w,,, we obtain a system of
n* — 1 nonlinear ODE’s with rational nonlinearities. In-
deed, we have

o (3.11)
' Y,
where Y, is the subdeterminant of W corresponding to the matrix element w,, . Equations (3.10) reduce to
w"b = 2 (waa Bab + Caawab s 1<a,b<n —1 s
a=1
< “ 14+ (— 1w, Y, —wy, Yor ++(—V'w,_,, Y, _,,
Lb,,b = Z W, Bab + 2 Cnawab +Bnb ( ) ( 1 - 2 2Y ( ) : : ) ’
a=! a=1 nn
(3.12)
S = 14+ (= ) w, Y, —w, Yo + 4+ (=), _,, Y.
wan = z waa Ban + 2 Cabwbn + Can ( ) ( . 2 ZY ( ) ! ! )

a=1 =1

In the special case of n = 2 Eq. (3.10) can be transformed into
Riccati type equations. Indeed, then (3.11) reduces to

Wy = (1 + wywy)/wy, (for w,,#0) (3.13)
Introducing new coordinates

x=1/w,, y=wp/w,, z=uw,/w,, (3.14)
we reduce (3.12) for n = 2 to

x= —(by+enpx —xlby y+ci2),

Y=by—2byy+c;x* — by )P, (3.15)

> — 2
Z=1¢y — 201,z + by x? — 2% .
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(b) K = o(n,C). Consider again the action of a larger
group, namely O(2#,C) on the Grassmannian G °(C?") of iso-
tropic (with respect to the orthogonal metric) n-planes in C2".
Introduce homogeneous coordinates as in (3.2) and impose
the isotropy condition

I 0
xemo. k-, )
ETKE k=(, _, (3.16)
for all £eG °(C?"),
XX~ ¥YTY=0. (3.17)

This implies, together with the rank condition on (X,Y ), that
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det X #0, det Y 5£0and we can hence globally introduce the
affine coordinates (3.4). The group O(2n,C) acts as in (3.5)
and the group element g satisfies

gKg"=K. (3.18)
The O(n,C} @ O{n,C) subgroup is subject to (3.6) with
GlG,=1, GIG,=1I. (3.19)

The ODE’s corresponding to the infinitesimal action of
O(n,C) ® O(n,C) can again be written in the form (3.9) with
C+C"=0, B+B"=0. (3.20)
In affine coordinates we again obtain the linear equations
(3.10), satisfying (3.20). The isotropy condition (3.17) implies
that W satisfies the quadratic constraint
WWT=WTW=1. (3.21)

The constraint can be solved by means of the Cayley trans-
form

W={I+V—-V)", V=(W-L\W+I)"",

(3.22)
where (3.21) implies
V= —VT
and (3.10) is tranformed into
- B+C n VB—C _B-C y_ VB+C V.
2 2 2 2
(3.23)

This is a special case of the O(2n,C) Riccati equation to be
discussed below.

{c) K =sp(2n,C). Consider the transitive action of
Sp(4n,C) on the Grassmannian of symplecticly isotropic 2n-
planes G §,(C**). Introduce homogeneous coordinates as in
(3.2) and impose the symplectic isotropy condition

~ - (K 0
KE=0, K= ( ° ) ,
§°K¢ 0 -K
where K,eC*">*"is an antisymmetric nondegenerate matrix,

Y XTK X — YTK, Y =0, X,YeC2x?" (3.25)

Similar to the case of K = o(n,C) we obtain, in affine coordi-
nates (3.4), the linear equations (3.10) with a quadratic con-
straint:

(3.24)

WKWT =K, (3.26)
and B and C satisfying
CKy+K,CT=0, BK,+K,BT=0. {3.27)

Removing the constraint by the transform (3.22), we obtain a
special case of the Sp(4n,C) matrix Riccati equation, namely
Eq. (3.23) with B and C satisfying (3.27) and V satisfying

VIKy+ KoV =0. (3.28)

To summarize: The linear transitive primitive Lie alge-
bras are charcterized in Theorem 1, they lead to linear
ODE’s in case (1), to linear ODE’s with polynomial con-
straints in case (2). Removing the constraints we obtain non-
linear equations. For K = o{n,C), sp{2n,C), or sl(2,C) the con-
straints are quadratic and we obtain coupled Riccati
equations. For sl(n,C) with n>3 the nth-order constraint
leads to equations with rational nonlinearities.
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Theorem 2: If L is simple and the action of Lyon L /L, is
irreducible then either (1) L, acts faithfully and is thus a
maximal reductive subalgebra; or (2} L, does not act faithful-
ly, then we have the class of algebras called “nonlinear
primitive irreducible transitive Lie algebras” by Ochiai.!!
They can be written as a sum

L=g '+g°+g" lgg’lceg'™),

§=0, i»2, i<—2, (3.29)
and the subalgebra L, = g° + g' is a maximal parabolic sub-
algebra. 0

Proof: (1) If L, has a faithful irreducible representation
it is a reductive Lie algebra.'® It is maximal since the pair
(L,L,) defines a primitive transitive Lie algebra.

(2)If Ly does not act faithfully on L /L, then there exists
a nonzero element £€L, such that £ acts as zero on L /L,
Then xeL, 30, so the algebra is nonlinear in the Kobayashi—
Nagano—Ochiai sense (see Definition 2 above). By assump-
tion L, acts irreducibly (so M = L in Definition 3). The con-
clusion (3.29) and the fact that L, is parabolic is proven in
Ref. 14.

Theorem 3: (See Veisfeiler'®> and Golubitsky."?) If L is
simple and the action of L, on L /L, has a nontrivial invar-
iant subspace, then L can be written as

L=g*4g*+! + o ‘.}‘go _i_gl + o +gk
with g =0 for i< —k or i>k and [g'g/]Cg */, where
L,= 5 g.

Hence, L, does not act faithfully on L /L, and L is non-
linear primitive in the sense of Ochiai. Once again L, is para-
bolic. ]

Let us now relate these two theorems to the problem of
ODE’s with superposition principles.

Case (1) of Theorem 2 can be divided into two subcases.
The maximal reductive subalgebra L, can be imbedded into
the simple algebra L reducibly (leaving a nontrivial subspace
in the considered representation space invariant), or irredu-
cibly.

Let us first consider reducibly imbedded subalgebras
L,CL and the corresponding ODE’s with superposition
principles.

(a) L =sl(n,C). Case (1) does not occur since a maxi-
mal subalgebra L,Csl(n,C) leaving a k-dimensional vector
space invariant {1<k<n — 1) will be parabolic (will contain
the Borel subalgebra, i.e., the maximal solvable subalgebra).
A complex parabolic subalgebra will always contain a nilpo-
tent ideal and can hence not be reductive.

(b) L = o(n,C). A maximal reductive subalgebra is ob-
tained if we require that L, leave invariant a g-dimensional
nondegenerate subspace (spanned by g nonisotropic mutual-
ly orthogonal vectors). We put

n=p+gq, n—1>p>q>1,
and obtain
Lo =o(p,C)®0(g,C) . (3.30)
Let us now make use of the imbedding
SO( p + ¢,C)/ SO( p,C) ® SO(g,C)
~SL{p + ¢,C)/Aff{ p.,q,C), (3.31)
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where we denote Aff{ p,q,C) the group of block triangular
matrices

(G11 0 ) G, €CP*P, G,,eC?*?, G, eC?*?,
G, Gy, det G,,-det G, = 1. .32
We realize an element of the algebra sl( p + ¢,C) as
C A CeCr>?, BeC?™9, AeC**9,
§=(—D —B)’ DeC?=?, TrC=TrB,
(3.33)

and let SL{ p + ¢,C) act on the Grassmannian of g-planes in
C?+%G,(CP* %) ~SL(p + ¢,C)/Aff{ p,q,C). Introducing af-
fine coordinates W as in (3.4) we can write the ODE’s corre-
sponding to the SL{ p + ¢,C) infinitesimal action as
W=A+ WB+CW+ WDW, WeCr*?,

A,B,C,D asin (3.33).
We restrict to o p + ¢,C), p + ¢ = n, by imposing

(3.34)

I, 0
EK + KET=0, K=( ) (3.35)

0 -1,
and obtain a special case of the rectangular matrix Riccati
equation (MRE):
W=A+ WB+CW—WA™W,
B=—-B", C=-C". (3.36)

Note that the action of O(n,C) is not transitive. In homogen-
eous coordinates we have

¥)=le ¢)() s
= » K —_—-K‘
(Y’ G, Gyl\v)’ &°¢

The O(n,C) orbit of maximal dimension is given by the condi-
tion rank (X 7X — Y7Y) = n, which can be represented by
¥) satisfying

XX—-Y'Y=1I. (3.38)

This imposes no symmetry condition on W= XY ~!. As the
originwe canchoose (X,Y) = (0,i] ),i.e., W = 0. Theisotropy
group of the origin is O( p,C) & O(g,C), as it should be.

If we request that a maximal subalgebra L,C o(n,C)
leave a degenerate space invariant (containing 1 or more iso-
tropic vectors in an orthogonal basis) then L, will be a maxi-
mal parabolic subalgebra and these are treated below.

(3.37)

(c) L =sp(2n,C). The situation is very similar to that
of o(n,C). The only way to obtain a reducibly imbedded maxi-
mal reductive subalgebra is to require that L,C L leave in-
variant a 2g-dimensional nondegenerate vector space. We
then obtain

L, = sp(2p,C) & sp(24,C),

p+qg=n. (3.39)

To realize the algebra in terms of vector fields and to obtain
the corresponding equations, we again imbed L, into
sl(2p + 24,C) and use the imbedding
Sp(2p + 24,C)/Sp(2p,C) & Sp(24,C)

~SL(2p + 24,C)/Aff(2p,2¢,C) . (3.40)
Letting SL(2p + 2¢,C) act on the Grassmannian G, (C* + %)

we again obtain the Eqgs. (3.34) [replacing ( p,g) by (2p,29)].
Restricting to sp(2p + 2¢,C) we impose

3161 J. Math. Phys., Vol. 25, No. 11, November 1984

T Ky
EK+KET=0, K=

0 L) .
Ky=\_; o /=P4

_ qu> ’
J

and obtain a special case of the rectangular matrix Riccati
equation

W=A+ WB+CW+ WK, AK,, W,
CK,, +K,,CT=0,
BK,, + K,,B"=0,

(3.41)

WeC2x2 (3.42)

This completes the treatment of all ODE’s correspond-
ing to reducibly imbedded maximal reductive subalgebras of
the complex classical Lie algebras. We always obtain special
cases of matrix Riccati equations.

The case of irreducibly imbedded reductive subalgebras
of the classical Lie algebras is less uniform and more difficult
to treat from the point of view of the obtained differential
equations. The corresponding group-subgroup classifica-
tion has been given by Dynkin.'”'® The homogeneous spaces
G /H obtained in this case include symmetric spaces, but also
other classes of spaces, in particular, the isotropy irreducible
homogeneous spaces studied by Wolf.!°

We shall here restrict ourselves to two examples and
postpone a detailed treatment for a future article.

(a) SL(2n,C)/Sp(2n,C). Kobayashi and Nagano!® have
established the diffeomorphism U(2n)/Sp(2n)~SO*(4n)/P,
where P is a maximal parabolic subgroup of SO*(4n) [No. 5
in their list, which however contains a misprint: SU*(4n)
instead of SO*(4n)]. We complexify this relationship and
first extend SL{(2n,C) to GL{2n,C), then realize it as a sub-
group of SO(4n,C).

Realize O(4n,C) as the algebra of matrices

e=(2 7)), ex+reT=0,

K (o IZn)
“\5, 0 )’

ie,D= —A7, C= —CT, B= — B7,and construct the
Grassmannian of null planes G3,(C*"). Take

—_ 0) 2nX2n
[£)-0). ane

to be the homogeneous coordinates of the origin. The subal-
gebra of O(4n,C) leaving the origin invariant is the maximal
parabolic subalgebra P. We identify gl(2»,C) with the subal-
gebra

(3.43)

(3.44)

A AT+ JAT
o) =1 ,
0 1
-1 0
J= . (3.45)
0 1
-1 0

The subalgebra of gl(2n,C) leaving the origin invariant is
gl(2n,CjnP; it is represented by matrices p(d ) satisfying
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AJ+J47T=0,

i.e., it is isomorphic to sp(2n,C), as required.
The action of the group GL(2n,C) on the origin is given

g &/—JEg")™) (0

(o (g7) ! ) (1)~(§)
with

X=glg"—J, XT= —XCC™, (3.47)

Restricting to SL(2n,C) we have det g = 1. The orbit of the
origin under SL(2n,C) is thus given by

by

(3.46)

<’}’) X+XT=0,det(X +J)=1. (3.48)

Realizing o(4n,C) on G 3,(C* in affine coordinates and re-
stricting to sl(2n,C) as in (3.45) we obtain a system of linear
inhomogeneous ODE’s:

W=AJ+JAT+ AW + WAT, WeC<*",

W+WwT=0 (3.49)
with the polynomial constraint

dettW+J)=1. (3.50)

Using (3.50) to eliminate one of the matrix elements of W, say
w, _ , ,, weobtain a system of nonlinear ODE’s with rational
nonlinearities.

In the special case of n = 2 (3.50) is quadratic and in
appropriate coordinates we obtain a system of coupled Ric-
cati equations. Indeed, consider the case of SL(4,C)/SP(4,C).
Put

0 a b ¢
—a 0 d e
= 3.51
W —b —d 0 f ( )
—c —-e —f 0

in (3.49). Use (3.50) to eliminate f and introduce new varia-
bles

= 1 y= b ,=_C
l+a’ l+a’ 1+a’

=9 L (3.52)
1+a 1+a

Equation (3.49) reduces to
x= —(d; + A5,
Y=As+ As3 — Au)y + Asz + Ast — A x* — 2t)
+(— Ay —Apz + A5t +Auix,
z =Ap+ Ay +(—An+Auz+4u + Ay(x* + yu)
+ (A3t — Ay +A422)y, (3.53)
1= — Ay + Ay p+ (— Ay + Asa)t + Asgtt — Apy(x* + yu)
+(dyst + Ay u — Axp Y,
u= —Ay + Ayz + At + (— Ay + Aaau + Apx® —2t)
+ (A3t + Ay u — Ayz)u
(b) SL{n,C)/SO(n,C). This case can be treated quite
similarly to the previous one. SL{(n,C) is extended to GL(n,C)
and then treated as a subgroup of SP(2n,C) acting on
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SP(2n,C)/P, where P is the appropriate maximal parabolic
subgroup of SP(2n,C). Again we get linear equations with a
polynomial constraint, leading in general to rational nonlin-
earities. We shall not go into the details here.

In case (2) of Theorem 2 and in Theorem 3 the algebra L
is simple, the subalgebra L, is parabolic (represented irredu-
cibly in the first case reducibly in the second).

We shall now run through all classical complex Lie al-
gebras and their maximal parabolic subalgebras and obtain
the corresponding ODE’s. It turns out that if L, acts irredu-
cibly, we always get matrix Riccati equations. If L, acts re-
ducibly we again obtain matrix Riccati equations, some-
times with additional quadratic constraints, that lead to
cubic and quartic nonlinearities.

(a) The group SL(N,C). We partition N into N =n + k,
1<n,k<N — 1, and introduce the Grassmannian

G (C"t*)~SL(n + k,C)/Aff{n,k,C), (3.54)
where
nXxn k X k
H=Afi{nkC) = (Gu 0 ), G,,€C »  G,eC
G, Gy GZIGC" xn,
(3.55)

det G,,-det G, = 1.

The corresponding ODE’s in affine coordinates are simply
the most general rectangular MRE

W=A+ WB+CW+ WDW, TrB=TrC,
W, 4eC"**, BeC***, CeC"™ ", DeC**". (3.56)

This was treated in Ref. 6; for n = k2 the superposi-
tion formula involves precisely five particular generically
chosen solutions.

Letting n and k run through all allowed values we ob-
tain all maximal parabolic subalgebras H and MRE’s of all
dimensions. The action of H (or L) is always irreducible, so
we are in the situation covered by Case (2) of Theorem 2.

(b} The group O(N,C). Let us realize o{N,C) as the alge-
bra matrices XeC" *¥ satisfying

0 o0 I
XJ+JxT=o0, J=|0 Iy, o],
I, 0 0

k=1,.,[N/2]. (3.57)

The group O(N,C) will be represented by matrices G satisfy-
ing GJG " =J and a maximal parabolic subgroup H is ob-
tained by requiring that an isotropic subspace of the repre-
sentation space be left invariant. Choosing the invariant
space to be

f ()
LH|=[0], AfieC!, fieCN—2x
3
we find
G, 0 0
H=4|G, G, 0|}, HIHT=J, (3.58)
G, Gy, G33
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where G, are complex rectangular matrices of the appropri-
ate dimensions. Let us now introduce homogeneous coordi-
nates on the factor space G /H, putting

U
U= UZ ’ UI’U3ECka) UzGC(N_Zk'Xk’
U3
UtJu=0. (3.59)

As usual, to get rid of the redundancy in the characterization
of a point on G /H we introduce affine coordinates

Z uu;t!
zZ= (Z;) = (UzU;‘ for det U;#£0.

The isotropy condition in (3.59) implies that the affine co-
ordinates satisfy

Z +Z7T=-2Z1Z7,. (3.61)
In homogeneous coordinates we can write the ODE’s corre-
sponding to the infinitesimal action of O(¥,C) on O(N,C)/H
as

(3.60)

U, 4 B C \/U\ C=-CT
U,|=|p E —BT"JU,|, E= —ET.(3.62)
U, F —DT —A4T"/\UjJ) F=—FT

Using (3.60) we rewrite these equations in affine coordinates
as
Z2,=C+AZ, +Z AT +BZ,—~ZFZ,+2,D"Z,,

(3.63)
Z,= —B"+DZ, +EZ,+Z,A" - Z,FZ,+Z,D"Z,,
i.e., a system of coupled Riccati equations with the addi-

tional quadratic constraint (3.61). To get rid of the constraint
we split Z, into its symmetric and antisymmetric part

Z,+Z7] n z,-z7
2 2

and eliminate Z, ; from the equations using (3.61). Finally we
obtain the following system of ODE’s:
Z,=C+AZ +Z A"+ \BZ,—ZiB")—-Z,,FZ,,

+42,,D"Z,+ Z;DZ,,)

+4Z3\DZ) —Z,D"\Z, ~\Z]Z,FZ]Z,,
Z,= —B"4+DZ,+EZ,+Z,AT—\DZ]Z,

+2Z,D"Z,—Z,FZ,, + } Z,FZZ,.

The matrices A,...,F are all given functions of the inde-
pendent variable ¢, the dependent variables are the matrix
elements of Z,, and Z,. The equations obtained in general
contain quartic and cubic terms, attached to the quadratic or
linear ones. In special cases Egs. (3.64) reduce to quadratic
ones. Let us consider these cases.

() k=1.Then C=0, F=0, Z,, = 0 (because of anti-
symmetry). The first of Eqs. (3.64) drops out, the second
reduces to

Z,= —~B"4{EZ,+Z,A—\DZ1Z,+ Z,D"Z,.
(3.65)
This is a complexification of the conformal Riccati equations
studied earlier.’

Zi=Z,+Z,=

(3.64)
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(2) k=N/2, for N even. Then B=E=D=2Z,=0

and (3.64) reduces to
Zu =C+A4Z, + ZIAA T— ZIAFZM ’

C=-C7, F=—FT. (3.66)
Equations (3.66) can appropriately be called “orthogonal
matrix Riccati equations.”

(3} k= (N —1)/2 for N 5 odd. In this case B is a col-
umn, D is a row, E = 0, Z, is a row. Equations (3.64) again
reduce to Riccati type equations:

Z,=C+4Z,,+Z,, A" +4BZ,—-ZTB")
-Z,FZ,,+42,,D'2,+2]DZ,,),
(3.67)
Z,= —-B"4+DZ,,+Z,A"—}DZ]Z,

+2,D"Z,—-Z,FZ,, .
Returning to the question of reducibility of the primitive
transitive Lie algebra (L,L,), we have

4 B c C=—-CT,
L=oWwC)={lp E -BT|} E= —ET,
F —DT —A7]] F= —FT,
4 0 0
L,={|p E o |i, (3.68)
F —DT 4T
0 0 0
L,={0o o o]},
F 0 0
A B 0
M={lp E —BT
F —DT 4T

(see Definitions 2 and 3 for L, and M ).

For k=1 we have M =L, for k =N /2 (N even) we
have M = L. In these two cases L, acts irreducibly, the
primitive transitive nonlinear Lie algebra is irreducible, i.e.,
we have case (2) of Theorem 2. For all other values of k
[including & = (¥ — 1)/2 for N odd] the nonlinear algebra
(L,Ly) is reducible and Theorem 3 applies. The equations are
in general quartic; for £k = (N — 1)/2 the cubic and quartic
terms happen to drop out.

(c) The group Sp(2,C). Realize sp(2N,C) as the algebra
of matrices XeC" *¥ satisfying

0 o0 I
XK, +K,,X"=0, K,,=| 0 Kk o],
-, 0 0
K=( 0 1“), A+u=N. (3.69)
-1, 0

I
The maximal parabolic subalgebra L, will be characterized
by the fact that it leaves an isotropic A-dimensional subspace
of the representation space invariant:

A B c
L={|D E KBT |},
F —DTK —4T

(3.70)
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A 0 0
Lo={|D E 0o |,
F —D'K —AT
A,CFeC' ™%, EeC¥<%, DeC¥**, BeCl*
C=C", F=FT, E=KE'K. (3.71)

The homogeneous space G /H can be identified with the
Grassmannian of isotropic A-planes; in homogeneous co-
ordinates:

U,
U= U2 ) UI,U3ECA XA, UzECZ“Xl, UTKA”U=O-
Us
(3.72)

Affine coordinates are introduced as in (3.60) and satisfy
Z,—Z'=21KZ,, Z,eC'**, Z,eC¥**. (3.73)
The ODE’s corresponding to the symplectic action in affine
coordinates are
Z,=C+AZ,+Z A"+ BZ,— ZFZ, +ZD'KZ,,
Z,=KBT+DZ,+EZ,+Z,A" — Z,FZ, + Z,D'KZ, .
(3.74)

We thus again obtain a system of coupled Riccati equations
with an additional quadratic constraint (3.73). Putting

Zis= 4 Z,+2Z {] (3.75)
and eliminating the antisymmetric part of Z, from (3.74)
with the help of (3.73) we obtain a system of equations with,
in general, up to quartic nonlinearities
Zs=C+AZ,s+Z,sA" +1(BZ,+Z]B")
+4Z,sD'KZ,— ZKDZ\5\)+}Z K (Z,D"
+DZNKZ,— Z\FZ,; —Z1KZ,FZKZ,,
(3.76)
Z2,=KBT+DZ,; +EZ,+Z,A" + Z,DKZ,
+3yDZKZ, - Z,FZ i —\Z,FZ]KZ,,

The nonlinearities become quadratic in two special
cases.

()4 =0.Then B = D = E = Z, = 0 and we obtain the
symplectic matrix Riccati equation® that is of special inter-
est, e.g., in control theory®’:

ZIS:C+A215+leAT—leFZlS, C.—_CT,

F=FT,. (3.77)
{2) A = 1. In this case we rewrite XeL as
a b7 e’ y
d E E,, c
= , 3.78
X e E,, —Ei —b (3.78)
5§ e —dT —ga
E12=E|Tz , Ey=Ej, E,,eCH>#,
b,c,d,ecC**' | a,8,yeC.
We also put
Z=z, Z= (") , zeC, xpeCr>!. (3.79)
34
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Equations (3.76) again reduce to coupled Riccati equations;
in vector notation we have

z=7v+ 2az + (b,x) + (c,y) + [(d,y) — (e,x)]z — 622,

x=c+4+zd+ E; x4+ ELy +ax +x[(dy) — (ex)] —bzx,
{3.80)

y= —'b+ze+E21X—E1T1y+ay
+yl(dy) — (e,x)] — bzy .

The case u = O corresponds to an irreducible nonlinear
transitive primitive Lie algebra, and hence to case (2) of
Theorem 2. All other cases (including A = 1 when the equa-
tions happen to be quadratic) correspond to the reducible
case and hence to Theorem 3. Indeed, for p>>1 the space

A B , 0
M=1\D E KBT
F D’k —4T
in invariant under L: [Lo,M]CM and we have M #L,,
M #L. For uy=0wehave M =L,

IV. CONCLUSIONS

1t follows directly from the classical results® of Sophus
Lie, that all systems of n ODE’s of the type (1.1) with a super-
position formula (1.2) are obtained from finite-dimensional
subalgebras L of the algebra of vector fields on R” (or C”).
Such a direct approach is however both extremely difficult
and unnecessary. We have shown that for purposes of study-
ing superposition laws, it is reasonable to restrict the prob-
lem to a search for indecomposable systems of ODE’s. These
are equations from which it is not possible to decouple, by a
change of dependent variables, a subset of equations involv-
ing a smaller number of variables, having a superposition
formula of their own.

The restriction to the indecomposable case leads to the
requirement that the finite-dimensional algebra L should
correspond to the infinitesimal transitive action of a Lie
group G on a homogeneous space G /H for HCG. Further-
more, it is sufficient to consider group-subgroup pairs, for
which the corresponding Lie algebra—subalgebra pair {L,L,),
with L,CL, defines a transitive primitive Lie algebra. The
finite-dimensional transitive primitive Lie algebras have
been classified by differential geometers.***

The subalgebra L, of vector fields vanishing at the ori-
gin must be maximal in L and cannot contain an ideal of L.
The primitive transitive Lie algebras and the associated
ODE'’s are listed below:

(1) L is an affine algebra acting on the abelian comple-
ment V of L, The equations are linear inhomogeneous
ODE’s.

{2) L is the direct sum of two simple Lie algebras:
L =Ko K. The ODE’s are coupled Riccati equations or
equations with rational nonlinearities.

(3) L is simple, L, is a maximal reductive subalgebra.
The general form of the equations has not yet been deter-
mined. However, if Ly is imbedded reducibly in L, the equa-
tions are again coupled Riccati equations.

(4) L is simple, L, a maximal parabolic subalgebra. If L,
acts irreducibly on L /L, we obtain various types of matrix
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Riccati equations. If L, acts reducibly on L /L, the equations
have polynomial nonlinearities. If L is a complex classical
group, the nonlinearities are up to fourth order. In certain
special cases we again obtain coupled Riccati equations (the
higher-order terms drop out).

It is worth mentioning that all the obtained nonlinear
ODE’s with superposition principles can be interpreted as
either linear equations, or coupled Riccati equations, with
additional nonlinear constraints on the dependent variables.

Many questions concerning ODE’s with superposition
principles remain open. A detailed case-by-case treatment of
the vector fields and equations corresponding to L simple
and L, maximal reductive is forthcoming.

In this article we concentrated on the classical complex
Lie algebras. The situation becomes much richer when the
complex and real Cartan exceptional Lie algebras, as well as
the real classical Lie algebras are also considered.

The classification of ODE’s with superposition princi-
ples was performed up to arbitrary coordinate changes, i.e.,
up to arbitrary transformations of the dependent variables.
For instance, the scalar Riccati equation x =a(t)

+ b(t)x + c(t )x* represents the class of equations obtained
by putting x = ¢ ( y), where ¢ is an arbitrary single-valued
differentiable function of a new dependent variable y. It is
not excluded that some of the equations that we identified as
having rational nonlinearities, can be transformed into equa-
tions with polynomial nonlinearities.

Equations with quadratic nonlinearities (coupled Ric-
cati equations) are of particular interest in many applica-
tions. We have obtained many classes of such equations, but
we have still not been able to characterize directly all classes
of Riccati equations that admit superposition principles.

A separate problem is that of finding the actual super-
position formulas and determining the number of particular
solutions needed to form a “fundamental set of solutions.”
This has so far only been done for various types of Riccati
equations.*"*° The superposition formulas, in addition to
providing insight into the properties of the solution space of
solutions and reducing the problem of finding the general
solution, to that of finding m particular solutions, also pro-
vide efficient numerical methods for solving the correspond-
ing ODE’s.!
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A new set of Euler angles for the generalized Lorentz group
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A new set of Euler angles for the generalized Lorentz group O ( p,n — p) are defined, which turn
out to be much simpler than the ones defined in a couple of earlier papers, and have the useful
property that each factor in the factorization of a general element itself belongs to the same group.

PACS numbers: 02.20. +b

I. INTRODUCTION

In previous papers’ the author first obtained a Euler
angle parametrization of the complex rotation group
O™ (n,C) and some of its subgroups O *( p,n — p),> 0<p<n,
and then, using an isomorphism of O*( p,n — p) with the
physically more important generalized Lorentz (i.e., psuedo-
orthogonal) group O ( p,n — p), proved that this leads to a
corresponding parametrization of these latter groups also.
However, in addition to being extremely cumbersome and
involved, these angles have another more serious drawback
also; some factors in the resulting factorization of an element
of O*{ p,n — p) do not belong to this group. The removal of
this drawback is obviously very desirable if one wishes, for
example, to use these angles for the explicit computation of
unitary irreducible representation (UIR) matrix elements of
these groups. We prove in the present paper that by using a
rather simple trick, it is possible to overcome both these diffi-
culties. To get some idea about the nature of this trick, let us
recall that the Euler angles of Refs. 1 and 2 were, essentially,
a collection of sets of “polar angles,” this last phrase mean-
ing the (m — 1) angular elements of the m spherical polar
coordinates in the m-dimensional complex Euclidean space
C™. In Refs. 1 and 2, we naturally used a “fixed” definition of
these angles, i.e., the same definition for every set of polar
angles used at different stages. However, apart from being
quite natural and therefore assumed implicitly and uncons-
ciously, there is no real justification for this restriction. In
fact, as we show in the sequel, if we remove this condition
and use suitably varied definitions at different stages, then
not only does this completely remove the complexity of the
definition of Euler angles of O ( p,n — p), but also leads to a
factorization of elements of this group which consists entire-
ly of simpler elements of the same group. We start in Sec. 11
below with these varied definitions and obtain two impor-
tant theorems as easy consequences of them. With the help of
these theorems, we define in Sec. III, the (complex) Euler
angles of O*(p,n — p) which lead in Sec. IV, in a much
simpler manner than in Ref. 2, to (real) Euler angles of
O*{p,n — p). In order to avoid repetition and to save space,
we shall not describe here the notation already introduced in
Refs. 1 and 2; thus for any unexplained notation, the reader
is referred to these two papers.

1. POLAR ANGLES OF sth TYPE

Consider a Cartesian coordinate system [/ in the m-di-
mensional complex Euclidean space C™. Let s be any integer
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such that 2<s<m — 1. If the coordinates of a point Ze C”
(relative to 7 ) are

(Z1s Za9e0s Z,)s
with

t=(@ 45+~ +2,)"%
then

Re >0,

(X35 X35000s X1 )s

the “polar angles of sth type relative to I of Z are defined as
follows:

x; =06, +ip;, j=23,..m,
0«0, <,

all 0j,¢7j real,
z, =tcosx,,

z, ,=tsinx, cosx,_, 0<6,_,<m,

z,  =tsinx, --sinx,, ,co8x,,;, 0<6, ,<m,

z, =tsinx,,-sinx,, , sinx, —a7/2<0,<7/2,

z, | =tsinx,- sinx;,; cosx, sinx;_,, (1)
—m/2<0, <n/2,

Zy =t sin x,, - sin X, _ | COS X, COS X, _ - COS X, Sill X3,
— 7/2<6;<7/2,

Z, =t Sin X, sin X, | COS X, COS X, _ - COS X5 Sin X,,

0<02<27T)

z, =tsinx,, - sinx, | COSX; COS X, _ |+ COS X3 COS X,.
These mean
+z; .
cos X; = , s+ 1gj<m,

@ +za+-+27)"
(2)
+z

» 25K,
R

sim Xx; =

where the sign in each right-hand side is either ( + ) or ( — ).
Just as in Ref. 1, these angles and ¢ determine, and are them-
selves determined uniquely (for ¢ 70), by the set of Cartesian
coordinates

(21522512,
of Z.
Let ¢;,1</<m be the unit vector

¢, = [0,0,..,0,1,0,...,0]7,
Jth place

®© 1984 American Institute of Physics 3166



and ry (x),1<j,k<m, j#k, be the mXm matrix of rotation
through an angle x in the (j — k } plane, i.e.,

Fix (x)

cosx —sinx] —jth row

sinx cosx | —kth row
Jjth column kth column
where all the elements which have not been explicitly written
down are supposed to be those of the unit m X m matrix.
By explicitly multiplying e,, on the left by various ma-
trices one by one, it is now a straightforward matter to check
that fort =1,

ralxralXsr X s o (= X o s 20— X040 2)
ol — X )Em =2,

where
z=[zp23.2,, ]

This can be written as

rrTr‘n—lm(_xm)"'rsT+ls+2(‘xs+2)r¥-s+l(_—xs+l)

X Py slxg) = rplxoz =e,,,
which proves the following theorem, if we recall the well-
known result that if » and 7' are the column vectors repre-
senting the coordinates of the same point Pe C™ relative to
thesystems fand /', where I ' is obtained from I by a rotation
represented by the matrix N, then r = N 7r.

Theorem 1: If a point Ze C™ has coordinates

(215225052, )
referred to a system I, where z; + 22 + - 4+ 22, = 1, then
{(X20X35ee00X,, )

are the polar angles of the sth type relative to I, of Z, and I is
given a sequence of rotations

/12(x2)s---»/1s(xs),/xs+1(’”xs+1)’
/s+ls+2(_xs+2)""’/m—1m(—xm)’

in this order (whose resultant we denote by # ), the system I’
so obtained will have its mth axis along OZ. Here

# jx(x) = a rotation by an angle x in the (j — k ) plane.
Theorem 2: If {i) z of Theorem 1 is of the form

Z={— Xy — iX,,X, 4 14.00X,,), all X, real;

(i)

? j
Si=—Yxi+ Y xi forj=p+1,p+2..n
=1 i=p+1
(i) S; changes sign atj =5, i.e., S; <0and S, , , >0;

(iv) 7" is obtained from I by giving it the rotation # of
Theorem 1,

(v) v and v’ are the column vectors representing the coordi-
nates of a point Pe C" relative to 7 and I/, respectively, then v
being of the form

[ — i-Re,..., — i-Re,Re,...,Re] 7 (3)
pth place
3167 J. Math. Phys_, Vol. 25, No. 11, November 1984

implies that v’ is also of this form; here Re stands for “a real
number.”

Note first of all, that the explicit form (i) of z shows, with
the help of (ii) and relations (2}, that

Xy =0hpey Xgp7 =05, X,y =i@Q, 1, X; =i,

s Xp 1 =@,y X, =0,y X, =0,

where, as mentioned earlier, 6 ° and @ ° are all real numbers.
It therefore follows that

v’=rr{——1n(_en)"'rsT+15+2(_0s+2)rlTs+1(_i¢s+1)

X (@) 1 o 1 i@y 1 )1 p(6,)- 71 (620,
Keeping in mind the form of the matrices 7 (x), we now just
observe that if v is of the form (3) and we carry out the multi-
plication of v by the above (n — 1) matrices one at a time
[starting with r],(6,) and moving to the left] then at each
step, we get a column vector of exactly the same form. In
particular, the final vector ' is also of the same form (3), as
required.

Corollary: Under the conditions of the theorem, v being
of the form

[Re,...,Re,i-Re,...,i-Re]”

pth place
implies v’ is also of this form.

{ll. EULER ANGLES OF 0+ (p,n — p)

Consider now an arbitrary element & of O*( p,n — p).*
Assuming as usual that & transforms the Cartesian coordi-
nate system I in C” to another such system /', with the same
origin as I, we recall that if X; is the tip of the unit vector
along the jth axis of I, the coordinates of X; in the system /'
are given by the jth column of a. Now from the definition of
O*(p,n — p)," we see that the nth column of @, i.e., the co-
ordinates of X, in the system 7 will be

. . T
[ —i@ynsees — i@ s@p 4 1 mseees@un | 7s

where a;; are all real and, of course,

- Sa+ ¥ ai=l

i=1 i=p+1
IfS,;, p<j<n is the sum
P
Snp = - 2 a?n’
i=1
. J
Snj == 2 Cl?,, + z af,,, j=p+1l..n,
i=1 i=p+1

{so that S,, = 1), suppose that it changes sign atj =s,, i.e.,
S5, <0 and S, . >0

We now take
Xn23%n3 00X pn

as the polar angles of s, th type relative to Z, of X,,. Then (2)
shows that

Xpn = Oppsees Xngv2 =0ns 42 Xns,+1 = WPns, 1+ 15
xns,, =l¢ns,,""’ xnp+l =l¢)np+l’ xnp =9np9 (4)
ey X2 = 0,5,

Let us now subject 7 =" to the sequence of rotations

Ansaruddin Syed 3167



/12(xn2)""’/lsn(xns,,)’/ls,,+l(_xns,,+l)’
/s,,+ls,,+2(_xnsn+2)""’/n—1n(_xnn),

in this order (whose resultant rotation we denote by # ") and
call the system so obtained 7"~ . Then if NV, is the matrix
representing the rotation # ", the matrix

a" '=NTa
will transform the system /"~ ' to I’ as the coordinates of X,
in the system 7"~ ! will be represented by

N operating on the jth column of &
=jth column of @" .
Now by Theorem 1,3
1" \(n)=1I'(n)
= the last column of 2" ~ ' is [0,0,...,0,1]7
=5 the last row of 2" ~ ' is [0,0,...,0,1]

n

as @" "' is certainly orthogonal.
Next, as any of the last (n — p) columns of @ is of the

form
[ —i-Re,..., — i-Re,Re,...,Re] 7,

pth place

Theorem 2 shows that the same will be true for the last
(n — p) columns of @" ~ . Similarly, as any of the first p co-
lumns of & is of the form

[Re,...,Re,i-Re,...,i-Re] 7,

pth place

the corollary to Theorem 2 shows that the same will be true
for the first p columns of 2" ~ ! also. It follows that if 2" ~ Vis
the matrix obtained fr/o\m 2"~ ' by removing the last row and
column then 2" ~ e O*(p,n — 1 — p).

We thus have a procedure which, when applied to the
collection of objects’

{IEI:; I'=I’; ae 6+(p,n —p),}

a transforms I to I’ ’

leads to (i) a positive integer s, with p<s, <n — 1; (ii) a set of
(n — 1) angles (4); (iii) a coordinate system I” ! such that
I"'(n)=1I'(n); (iv) a matrix @"~'= NTa which trans-
forms the system /"~ ' to I’ and is such that @ — " trans-
forms the system 17~ to I _, (see Ref. 5) and belongs to

n—1

6*( p.n — 1 — p), from which another such collection
[1:::; I,_; @" %e0*(pn—1 —p),]

’

a"~" transforms I"~! to I,
can be obtained to which the same procedure can obviously
again be applied. Thus it is possible to repeatedly apply this
procedure; applying it (n — p) times in all, we shall end up
with the collection

[1 Bl @ne 6+(p,0)zo+(p,ﬂ),]

@'? transforms I to I, |
In the process, a large number of objects would have been
defined; in order to fully identify them all, let us consider the
Jjth step in some detail. At the end of the (j — 1)th step, we
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shall have the following: (i) the set of positive integers
Sy, k=nn—1,..,n—j+2,
with
P<si<k +1;
(ii) the collection of the set of angles
{Orrerersbs skt 25y 4 1rlPrp i1 ’gkp sesFr2 } (5)

obtained by giving k the valuesn,n — 1,...,n — j + 2; (iii) the
set of coordinate systems

I*, k=nn—1,..n —j+1,
such that
I*)=1(), I=k+1,..n
(iv) the set of matrices
a*=N[ ,-NTa, k=nn—1,.,n—j+1,

such that @* transforms I “to /', transforms I  to  ; and
a*e O*(p,k — p).

Here
N, = r12(0k2)"'r1p(6kp)r1p+ 1i@rp 1)
r sk(i¢’ksk)r1sk+1( — Qs 4 1)’:k+1sk+z( - Bksk+2)
i1l — O ) (6)
The jth step is as follows: Let the last column of

a'"~/*" [which, of course, gives the coordinates of
X(n—j+ 1)in the system I} _/% ] be

iyt —J+1 ran—Jf+ 1 Pt —j+ 1
[_la?nij+1’“_lagnij+l"“’—lapnfj+1’
—j+1 n—j+1 T
(27 M PSRN S HE P T (7)
and let
£ J+1 32
p— n—
Su_jr1p = z — (@i i)
i=1
2 i+ 1 32
— n—j
Sy ik = Z —lai i)
i=1
. i+ 1 32
+ Y (@), k=p+lL.n—j+L
p+1
We define s, _;,, as the value of k for which S, _; ,

changes sign, i.e.,
Sn4j+lsn7j+1<0! Snfj+ls,,,j+1+l>0'
We next define

Xn—jtin—j+1Xn—jrin—jrFn—jr12
as the polar angles of s, _,, ,th type relative to 7,71 ] of
X (n —j + 1) so that (7) and relations (2) show that
=6 X +2

x m—jln—jtrrXn s,

n—j+ln—j+1t
=8n~j+1s,,,j+|+2’

‘x"‘—j+ls,,,j+l+1 =l¢n—j+1s"7i+|+lv'“:x

n—j+1p+1
=Py _jyip+1s
Xn jiip =00 jiiprXn—jr1z =0 _jir2e

We now give to 1" 7+ the sequence of rotations

/12(’% —j+1 2)’-~-’/1sn,j+,(xn —j+1s,.,j+1)’
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/15,,_1-+,+1( _'xn—j+ls"_j+l+!)’
/s,,_j+,+1s,,_j+l+2( T Xt ls, L +2
"‘/n—jn—j+l( _xn—j+ln—j+1)’
in this order (we denote by " /%! the resultant of these
rotations) and call the system so obtained J" ~7; it satisfies
the property of (iii) above with k = n — j. Finally, as the last
item of the jth step, @" ~/ is defined by

sn—j+1

~n—j __ T
n—j+1&

a =
=N:—j+ le_j+2-.-Nfa,

and possesses the property of (iv) above with & = n — j. Here
N, _;, is the matrix of the rotation ,#"~/* ' and is there-
fore given by
Ny g

=rlZ(en—j+12)"°r1p(9n—j+lp)

X r1p+l(i¢’n—j+1p+1)"'rls,,_]+|(i¢n—j+1:"7j+l)

X rls,,+j+,+1(_l¢)n—j+ls,,_j+l+1)

X rsnfj+,+1s,_,+,+2(_en—j+1s,,_,.+,+2)

mrﬂ—.in—j-f—l(_en—j+1n—j+l},

ie,by(6)withk=n—j+ L.
Thus we have been able to define the collection of the set
of angles (5) obtained by giving &k the values

k=nn—1,.p+]1, (8)

and a sequence of rotations through these angles, in suitable
planes and in suitable order, transforms 7 into I ? whose last
(n — p) axes are along the corresponding axes of 7’ and the
transformation from /7 to I is given by the determined
matrix a@'Pe O*( p,R). Taking

Oy, 2<k<j<p 9
as the usual Euler angles® of &', we get the Jn(n — 1) angles
(5) with (8), and (9) which determine the transformation from
I toI” (rotations through these angles in syitable order trans-
forms I'into I ') and hence the element 20 *( p,n — p); these
angles may therefore be taken as the Euler angles of &.

In the end, let us make the following remarks.
(i) If e is the n X n unit matrix, then

e=NINT.NTQ

=@ =N,N,_,~N,, (10)
where N, ,k>p + 1 is given by (6) while

N =102 )r i 1O 1 )re — i) (11)
for 2<k<p.

(ii) Any collection of angles (5), {8), and (9) with

p<s,<k—1, k=nn—1,.,p+1,
0<8, 0 n — 1585, 4 2 <,
—7/2<60,,30k p _130esbi 3 <T/2,
0<8,,<2m,

all the ¢’s real numbers,

will give a (general) element of 6*( p,n — p) according to

3169 J. Math. Phys., Vol. 25, No. 11, November 1984

(10). [That @ given by (10) belongs to 6*( psn — p) follows
from the fact that each N, € O*(p,n — p).]

IV. EULER ANGLES OF THE GENERALIZED LORENTZ
GROUP

For the parametrization of the generalized Lorentz
group O¥(p,n—p), we use its isomorphism with
O*(p,n — p) considered in Refs. 1 and 2. Thus

ae O+ (p,n — py=>de O*(p,n — p),

where
@), =a, [for j<p and k<p,
7~ "for jpp+ 1 and k>p + 1,
(a)ﬂ( = iay for j>p+ 1 and k<p,

(@) = — i, for j<p and k>p+ 1,
ie,a=faf ',
fbeing the diagonal matrix

F=diag(L,1,...,1,i\i,....0)

pth place

We now obtain the Euler angles of @ as in the previous sec-
tion, so as to get

a =N,N,_,N,

=a=f""af
=fT'N,N,_ =N, f,
ie,a=L,L, L, (12)
where

L,=f"'N.f, k=23,..,n.
Now, it is easy to verify that
ST @) f=ry(0) 2<k<p,
folrelip) f=1lu(@) p+ 1<k<n,
ST e 10) f=rii1(0) p+ 1<k<n —1,

where /, (@ ) is the matrix of the simple Lorentz transforma-
tion by an angle @ in the (j — k) plane, and is therefore given
by

{ cosh ¢

— sinh <p] —jth row
—sinh ¢

cosl; @ | —kth row’

jth column kth column
Hence, we shall have, for k>p + 1,
L,= ’12(0k2)""1p(9kp)11p+ 1 (¢7kp+ g

/, sk(¢ksk)ll sk+l( — Prsy+ l)rsk+lsk+2( - oksk+2)

P _ il — i) (13a)
while for 2<k<p,
Ly =roOca)ry - 1(Oxr— 1 el — Ok )- (13b)

Thus we have the following set of n(n — 1) Euler angles of
ac O*{p,n —p):

{ekk""’eksk+2’¢ksk+ 1 ""’¢kp+l’9kp9"”0k2 } (14)
with
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k=nn—1.,p+1,

and

ojk ’

2<k<j<p;

(15)

(16)

in terms of these, a factorizes as {(12) with L, given by (13).
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In this paper, the main properties of the symmetry group of the n-dimensional cube are reviewed
and formulated with respect to possible applications in lattice theories. The connection between
the hyperoctahedral group W, and the orthogonal group O(n) is investigated by means of the

canonical representation.

PACS numbers: 02.20.Qs, 02.20.Rt, 05.50. + q

|. INTRODUCTION

A. Survey

Recently the importance of finite groups grew out of the
various possibilities of their application to physical prob-
lems, especially on lattices. First of all, the space symmetry
of a given problem is an important factor for the calculation
of possible solutions. In this context, the hyperoctahedral
group W, turns out to be a crystallographic point group in n-
dimensional Euclidean space with perhaps one of the widest
fields of applications of all. For this purpose, one has to know
in detail the group structure and at least the canonical repre-
sentation T, which is the most important one in all problems
with the outer symmetry described by the hyperoctahedral
group. Apart from the fact that the canonical representation,
as will be shown later, is the direct link to the rotation group
O(n), the tensor calculus of this representation leads to all
other representations of W,.

Especially, the adjoined representation of ¥, turns out
to be the skew-symmetric part of 7'® 7, as is valid for the
appropriate representations of O(n) in exactly the same way.

Second, the hyperoctahedral group is correlated with
discrete o-models where the partition function on a lattice
with & points is written as

1
Z = e PE =— 1.1
2 P (L)
with the energy
Ex Yss, s,eM, |s|=1,

1

where (i,j) denotes summation over 1<i<N and allj that are
next neighbors. Especially, if M CR” denotes the set of vec-
tors with integral components, the hyperoctahedral group of
dimension n describes the global symmetry of this model.

Third, the knowledge of the group characters, especial-
ly of the canénical and the adjoined ones, are required for the
calculation of chiral models on lattices, where the sum over
states is written as

— BE
Z= 5 e ",
8 8NEW,

E= zzaA'XA(gigj_ ), (1.2)

[
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where the a; ’s denote the coupling constants of the different
characters and y, runs through the system of irreducible
characters of W,.

Last but not least, the same is required for calculations
with lattice gauge theories where

E= z za,{ ¥a(8:8 8« g )

plaguets A4

In many problems one would like to use SU(n) and lat-
tices with nontrivial sizes (the sums in the above formulas
then turning to integrals), but such calculations, even if they
are done with Monte Carlo methods, are nearly impossible
from the view of available CPU time. The results of Creutz'
concerning the Monte Carlo study of SU(2) show that an
equivalent technique for SU(n) with higher » is impossible.
Calculations of Petcher and Weingarten® show that for
SU(2) a very good approximation is possible if one uses finite
subgroups instead of SU(2) itself. The best result was ob-
tained with the icosahedral group, which is of order 120.
Unfortunately, no family of subgroups of SU(n) is known
that seems to be of great promise for a generalization of this
method. However, as was shown by Lovelace,? calculations
with SU(n) and O(n) look similar in some cases for large n, so
that results with O(n) are of great interest. Obviously, direct
calculations with O(n) are restricted by the same reasons as
mentioned above, which raises the question of approxima-
tion with the aid of nontrivial finite subgroups.

For this purpose, it is favorable that for O(n) two nontri-
vial families of finite subgroups are known: the symmetry
group of the n-dimensional simplex and the symmetry group
of the n-dimensional cube. The first is identical with the sym-
metric group S, . ,, the latter with the so-called hyperocta-
hedral group which will now be discussed in those details
that may be important for physical applications. Clearly, a
lot of the results that will be stated below are well known, but
can only be found in mathematical textbooks which are cor-
related with too general a point of view (see Refs. 4-9). Thus,
the main properties of the hyperoctahedral group must be
presented in a simple language, prepared for the application
to physical problems. Especially, some explicit calculus with
the canonical representation has to be done as well as an
explicit calculation of number and order of conjugacy
classes. Hence, the paper is organized as follows.

After two possible approaches to the hyperoctahedral
group the structure of this group is discussed, in Sec. IT and
Sec. III, in some details such as the wreath product struc-

(1.3)
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ture, the permutation structure, and the classification of
conjugacy classes, where explicit formulas are given.

In Sec. IV, a minimal system of group generators is
presented that consists of only three members without de-
pendence on n. The following sections deal with the repre-
sentations of W,, mainly with the so-called canonical (Sec.
V) and the so-called adjoined (Sec. IX) one. Perhaps the most
important result of this paper is the fact that both representa-
tions appear to be a direct restriction of the appropriate O(n)-
representations, i.e., the canonical and the adjoined repre-
sentation of O(n) stay irreducible after restriction to the finite
subgroup W, , which is one of those properties that make W,
interesting for physics.

The canonical representation 7 is discussed in many
details, as are matrix form, geometric interpretation, char-
acters, and so on (Secs. V-VII).

Especially, the sum

1 2%
ord(W,,)gg’yn [xrg)] (1.4)

is investigated (Sec. VIII), which occurs in mean field ap-
proximations in chiral models (see Ref. 7).

As a nice result of these calculations we present, expli-
citly, the power series of the function

exp[cosh(z) — 1] (1.5)

on the complex plane.

In Sec. IX, we use the Kronecker product T® T for a
construction of the adjoined representation, which shows in
a canonical way the relations between W, and O(n). After a
short look at the representations of dimension one we
close—for the sake of completeness—with a brief descrip-
tion of the general classification of the irreducible W, repre-
sentations (Sec. X).

In an earlier paper we presented the structure and rep-
resentations of W, completely and derived the connections
between O(4) and W, in detail (Refs. 10 and 11). Recently,
this group found an application in four-dimensional lattice
theory (see Ref. 12).

B. Definition of the hyperoctahedral group

Let us introduce the hyperoctahedral group as the “lar-
gest” crystallographic point group of the hypercubical lat-
tice, the latter being generated by all linear combinations of
the form

x= 3 e, (1.6

k=1

Ank)=

with integral coefficients x* and the standard ON-basis
{ey,-..,e, } of the n-dimensional Euclidean space. This defini-
tion produces in a canonical way the wreath product struc-
ture and the permutation structure as will be shown later.
Furthermore, the geometrical interpretation can be seen
from the beginning.

C. An alternative approach

As is well known, the orthogonal group O(r) is the
group of all n X n matrices which leave the scalar product

xyyi= 3 x (1.7)

i=1
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of the Euclidean space R” invariant. Now, if we take all those
matrices of O(#n) that map an arbitrary vector x with integer
components, i.e., X € Z", to another vector y € Z", we obtain
the group O(n,Z), which is isomorphic to the hyperoctahe-
dral group. A proof of this statement is given in this paper.
Now we can understand why W, occurs as the global sym-
metry in the special case of o-models mentioned above where
M =Z". For an application the reader is referred to Ref. 13.

D. Preliminaries

The notation used is almost the same as in a preceding
paper about W, (see Ref. 10). The symmetric group of degree
nis denoted by S,,, the cyclic group of order 2 by Z, together
with the symbol ““ + ,” for addition modulo 2, and the group

Zz" = 22 ® o ®ZZ
N .’
n times
is used in the form
a,
|@ys-...a, € Z, ¢, (1.8)
a

n

together with the operation
a +, b
a+,b:= : (1.9)
8n + 2 b n
Furthermore, isomorphic groups are connected by
=,” and conjugate group elements by “~;,” where the
index G denotes the group relative to which the considered
elements are conjugate. Finally, the symbol ““ = used for
representations only denotes the equivalence, not the actual

identity of the representations.

“

H. STRUCTURE OF W/,

A. W, as wreath product

Let us now consider the following finite subset L, of the
n-dimensional Euclidean space R",

L, ={e; —ege,; —ey.e,;—e,}. (2.1)

The appropriate permutation group is S; =S,,.
Now, we call two elements x,y opposite, if

y= —x. (2.2)

In the case of L, we therefore have n pairs of opposite ele-
ments, i.e., (e;; — e;), 1<i<n, asshownin Fig. 1. We consider
the group W, of permutations of the elements of L,, which
leave opposite elements opposite. If one regards the elements
of L, asthe centers of the 2n faces of the n-dimensional cube,
W, turns out to be its symmetry group. In the language of
Fig. 1, the elements of W, obey the two following rules.

(1) Two elements of the same row may be interchanged.

(2) Only complete rows may be permuted.

Therefore, W, can easily be presented as the wreath
product Z,~S,, i.e,,

W,={@anlacZ, ,meSs,} (2.3)
together with the multiplication rule
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g -2 1
& | -4
. FIG. 1. Graphical presentation of the n-dimensional
: cube from the geometrical point of view.
e | -8
n n
(a,7) « (b,o): = (a, + ;b,7* T), (2.4)
with a, defined by
(8, )k = @ik (2.5)

(k th component of a_). (For details about wreath products
see James and Kerber’ or Ref. 14.) Since (a,7) = (b,0} is equi-
valent to a=b and 7 = o, it is evident that W, is a finite
group of order

|W,| =2"n. (2.6)

Direct calculation shows that for every n the center of
W, ie,

C(W,:={geW,lgh=hg for all heW,},

consists of two elements,

0
C(Wn) = {(olidsn );(I’idsn }) 0: = . s
0
1 (2.7)
1:=1:
1

B. Representations by permutations

As a consequence of §; =S,, and W, CS, , W, isiso-
morphic with a subgroup of S,, . If we rename the squares of
Fig. 1 as shown in Fig. 2, and admit again the two rules for
permutations listed above, we obtain directly the following
subgroup P, of S,,,

P, = {II¢_=SZ,,|1<Ak< [Tk+n—Ik)=n}. (2.8)
With some elementary combinatorics one can see that
|P,| = n!-2" = |W,|, as it must be. Now, P, can, together
with the usual multiplication rule for permutations, be
proved to be isomorphic with W, by means of the mapping
@ defined as follows:

. W,—P,,
"(a,m)—D (a,7),
with
D (a,m)(k)

_[ ﬂ-(k)'i_n'ak,
"k —n)+n(l —a,_,),

if 1<k<n,

if n+4+ 1<k<2n. (29)

Therefore, P, can be thought of as a faithful representation
of W, by permutations.
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Ill. CONJUGACY CLASSES

A. Classification

The group isomorphism @ is extremely useful for the
classification of the classes of conjugate elements of W, be-
cause we obtain the following theorem the proof of which is
given in an Appendix.

Theorem: Let (a,7), (b,0) € W,. Then (a,7)~ 5, (b,0) if
and only if 7~5 0 and @ (a,m) ~5, P (b,0), i.e., (a,7) and
{b,o) belong to the same conjugacy class of #,, if and only if
m and o have the same cycle structure in S, and @ (a7} and
@ (b,o) have the same cycle structure in S,,.

This classification of the conjugacy classes of W, is of
some importance because it allows the calculation of the
number and the order of these classes, a parametrization of
which follows later.

B. The number of conjugacy classes

The above theorem implies that for the number of con-
jugacy classes we have to fix a permutation 7 € S, with the
cycle structure

(1#1,2#2,. 1), Y kp =n, p>0, (3.1)

k=1

then to count the different cycle structures that @ (a,7) can
have in §,, for the various a € Z,", and, finally, to sum over
all possible cycle structures of S,,. By the special properties
of the wreath product, only two things can happen to a single
cycle of an S, -permutation 7 under the mapping @: (1) pro-
duced by the single cycle, @ (a,7) contains two cycles of the
same length, or (2} @ (a,7) contains one cycle of twice the
length.

Therefore, from p, S,-cycles of length ¢, u,>1, we
now get, by the action of @, for the various a € Z," (i, + 1)
cases of appropriate cycle structures in .S, :

g /g% ", (2q)//6"" 2917/
/197 (2q) 7/ /(2g)".

Let 7 € S, have the cycle structure (1#,2,...,n*"). The num-
ber of S, -classes in which we can find @ (a,7) fora € Z,"is so
far given by the product

Qliottn) = TL e +1)= T (s + 1)

Now the general formula for the number Q, of conju-
gacy classes of W, is easily obtained by the following sum-
mation over the partitions of n:

(3.2)

(3.3)

FIG. 2. Graphical presentation of the n-dimensional
cube from the algebraical point of view.
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TABLE 1. Number of conjugacy classes of W, for 1<n<150.

1 2 51 130673 928 101 2182704 238 810
2 5 52 164 363 280 102 2582113843795
3 10 53 206 327710 103 3052 274 960 840
4 20 54 258 508 230 104 3605 324 137 485
5 36 55 323275512 105 4255414211990
6 65 56 403 531 208 106 5019 039 720 949
7 110 57 502 810 130 107 5915411 540 970
8 185 58 625 425 005 108 6 966 891 449 865
9 300 59 776 616 430 109 8 199 492 148 220
10 481 60 962 759 294 110 9 643 456 347 436
11 752 61 1191 580 872 111 11 333922 675 812
12 1165 62 1 472 454 540 12 13 311 695 737 345
13 1770 63 1816715 170 13 15 624 131048 910
14 2 665 64 2238075315 114 18 326 156 951 000
15 3956 65 2753078 840 115 21481448170 126
16 5822 66 3381 689 157 116 25 163779232 718
17 8470 67 4 147 937 540 117 29 458 577 635 960
18 12230 68 5080 752 250 118 34 464 712 775 100
19 17 490 69 6214 880 700 19 40 296 547 446 390
20 24842 70 7592 053 897 120 47 086 297 888 049
21 35002 71 9262292216 121 54 986 738 253 280
2 49010 72 11 285 536 125 122 64 174 308 234 575
23 68 150 7 13 733 486 100 123 74 852 671 601 900
24 94 235 74 16 691 879 795 124 87 256 800 664 440
25 129 512 75 20263074 134 125 101 657 649 931 466
26 177 087 76 24 569 214 653 126 118 367 514 773 731
27 240 840 77 29755845120 127 137 746 158 532 330
28 326015 78 35996 306 025 128 160 207 830 443 720
29 439 190 79 43 496 760 380 129 186 229 283 983 960
30 589 128 80 52 502 280 642 130 216 358 951 877 650
31 786 814 81 63 303 821 602 131 251227421256 300
32 1046 705 82 76 246 618 325 132 291 559 408 377 040
33 1386930 83 91 739 827 630 133 338 187420 114 200
34 1831 065 84 110 268 082 280 134 392 067 356 653 475
35 2408 658 85 132 404 776 664 135 454 296 298 907 724
36 3157789 86 158 827 920 009 136 526 132 805 091 285
37 4126070 87 190 338 386 210 137 609 020 032 390 910
38 5374 390 88 227 881 604 535 138 704 612 097 171 965
39 6978 730 89 272 572 552 460 139 814 804 082 539 220
40 9035539 90 325725 355088 140 941766 219 818916
41 11 664 896 91 388 887 409 310 141 1087 982 771 678 576
42 15018 300 92 463 879 670 860 142 1256296 287 033 025
43 19 283 830 93 552 843 114 270 143 1 449 957 907 464 780
44 24 697 480 94 658 293 423 970 144 1672 684 577 368 315
45 31551 450 95 783 184 076 176 145 1 928 724 031 465 432
46 40210481 96 930980 399 327 146 2222 928 642 634 633
47 51124 970 97 1 105 744 993 420 147 2 560 839 250 666 680
48 64 854 575 98 1312237775425 148 2948 780 346 918 950
49 82 088 400 99 1556 031 348 120 149 3393968 049 615 390
50 103 679 156 100 1 843 645 820 766 150 3904 632 614 009 852
0= 3 QUpepta) Bink:= Y [ I + 1] 3.5)
Hiseroy 20 F720 a0 I=1
2o kpr=n 2 =k

T S

I=1

.....

22 ok =n

C. Recursive calculation of the numbers of conjugacy
classes

For an explicit calculation of Q,, it is of great advantage
to use the following recurrence relations. If we define for
n>0,
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with B(0,0) =1, B(0,k) =0 for k>0, and B (n,k): = O for
k <0, we get the formula

Bin+1,k)= 3 (I+ 1B (nk — Ln + 1)). (3.6)
1=0

Since B (n,j) = 0 for j <0, the sum on the right side is
finite and can be rewritten as
[k /n + 1))

Bin+1k)= 3

I=0
where [a] means the largest integer less than or equal to a
(i.e., the so-called Gaussian bracket). Together with the rela-
tion

(+1)-(mk—Hn+1), (3.7)
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Q, = B(n,n), (3.8)
the number of conjugacy classes of W, can easily be calculat-
ed with the aid of a computer. For 1<n<150, the result is
listed in Table 1.

D. Parametrization and order of the conjugacy classes

To obtain a formula for the order of the conjugacy
classes we first need a parametrization which, by our
theorem, may be done by means of the appropriate S, - and
S, -cycles.

For this purpose, let 7 €S, have the cycle structure
(1#1,2%,...,n""). Then, the above consideration concerning the
action of @ shows that @ (a,7} € §,, can only have a cycle
structure of the form

(12v.’22v2 + (e — v.),32v3’42v. + (2 — v;)’“ (2n)2V2n + (e — v,.)),

.

for 1<k<n, (3.9)

O<Vk <.u 13
v, =0, for k>n.
Consequently, our classes have 2n parameters according to
this description, i.e.,

WopeoortlnsViseosVa )y O kel =1, (3.10)
k=1

0y <
Some combinatorics on the distribution of the different
a € Z," to the several classes yield the ensuing formula for
the order of the conjugacy classes of #,,, which can easily be
calculated with the computer:

Ord( . sl ;V1seesVi)

= (B
nl.2" ( )
k1=-[l Vi

= (1”1#1!2“2#2!. e o nl‘nﬂn !2;1., 4 e +,u")
Using the well-known relations (compare Abramowitz
and Stegun'®)

. (3.11)

i (n
=2" (3.12)
200
and
1 =1, (3.13)
B30 1l o .n“".‘un!
i kp=n
one can easily verify the necessary relation
Hy Fn
> S Y Ord (s ofhnsViresVa)
Bieofig?0 v =0 v, =0
2Rk =n
(3.14)
=nl2"=|W,|.

IV. SOME MORE PROPERTIES OF W,

A. Ambivalency of W,

In this context is is interesting to remark that W, is an
ambivalent group, i.e., every element (a,77) € W, is conjugate
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to its inverse. By (a,7)' = (a,-,,7 ) and (a,id }-(a,-,,7 )
-(a,id )~! = (a,7~ ') the statement is reduced to the equivalent
one for the group S,,, but 7~ ; 7~ ' is a straightforward con-
sequence of the relation

(il'"iq)_l = (iq'"il)’ (4-1)

where (i,-i,) is the standard notation of a g-cycle (see James
and Kerber’). The ambivalence of W, is of some importance,
for it causes all numbers of the character table of #, to be
real.

B. On the order of the group elements

Additionally, it may be quite suitable to take a short
look at the order of the several group elements g € W,, de-
fined by the relations

0 =id, g";éidwn, for 1<k <ord(g).

First, if € S, has the cycle structure (1#,...,n"*") with 2} _ |
k-u, = n, we get

(4.2)

ord 7 = lem{k |u, >0}, (4.3)
where Icm is an abbreviation for the least common multiple.
As ord (a,7) = ord(® (a,7)) and conjugate elements have the
same order, we can give the order of an element (a,7) € W, as
a class function in the following way.

If (8,77} € (415l }V1se-sV,), then @ (a,7) has the well-
defined cycle structure in §,, described above and conse-
quently,

ord(a,m) = lem({k |v, >0}u{2k |0<v, <, }).  (4.4)

Calculating, moreover, the highest order possible in /¥, , one
obtains (see Table II)

TABLE II. Max{ord(g)|g €W, ]} for 1<n<60.

Max. Max. Max.
N order N order N order
1 2 21 840 41 60 060
2 4 22 840 42 65 520
3 6 23 1680 43 120 120
4 8 24 1680 4 120 120
5 12 25 2520 45 120 120
6 12 26 2520 46 120 120
7 24 27 3080 47 240 240
8 30 28 4 620 48 240 240
9 40 29 5040 49 360 360
10 60 30 9240 50 360 360
11 60 31 9240 51 360 360
12 120 32 10920 52 360 360
13 120 33 10920 53 720720
14 168 34 18 480 54 720720
15 210 35 18 480 55 720 720
16 280 36 27 720 56 720 720
17 420 37 27720 57 942 480
18 420 38 32 760 58 1021020
19 840 39 32760 59 1113 840
20 840 40 55440 60 2042 040
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max{ord(g)lge W, }

= max(lcm({k [vi >0}u[2k |0<v, <pir})

zl-p, =n, 0<v,<uy, 1<k<n]
I=1

zl‘,”l =”]

I=1

=2. max’lcm{k |4z >0} ‘ Nlop, = n]
I=1
=2 -max{ord(7)|7eS,}. (4.5)
C. Generators of ¥/,

= max[lcm{Zk |2 >0}

At this point we give a minimal system of generators for
the hyperoctahedral group, W, n>»>2, which consists of only
three elements «,53,y, independently of the parameter n.
These generators are defined by

0
\ (123 )

*= 8’(213 n) = (0,(12)), (4.6)
{0 123

N N (n—1m\ ) _

Fi= "(234 won 1) =(0,123 ..n)),  (4.7)
\0
(0
: ] (123 n .

"= 0 ’(123 n) = (e,,ids, ). (4.8)

\

As is well known, a and S5 generate S, i.e., precisely
spoken, all elements (0,7) € W, with 7€ .5,. From

07 Y-y (0,7) = (€r(my 21 )
and

(a,id) - (b,id ) = (a + ,b,id )
we get all the elements

(a,id)e W,, with aeZ,".

Finally, (0,7) - (a,id ) = (a,) yield the rest.
For the sake of simplicity, we list the ensuing relations:

a? =y =B"=idy, =(0ds), (4.9)

B~F-y-B*=lenids), 1<k<n, (4.10)
BX-a-B~*=(0,Kk+ 1)k +2), O<k<n—2, (4.11)
B a7 =(0,nl)) (4.12)

With these relations every (a,7) € W, can easily be expressed
by a, B, and 7, since every permutation 7 € S, can be written
as a product of transpositions and

(1k)=(12)(23) - - -((k — 1)k)
(12)(23) - - «((k — 1)k), for k>1.

etc.

V. THE CANONICAL REPRESENTATION

A. Definition

Let us now proceed to the representations of the hyper-
octahedral group. Quite important is a representation of de-
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gree n, by which W, is directly connected to the n-dimen-
sional rotation group O(n). The wreath product structure of
W, implies the following definition of an #n-dimensional rep-
resentation, which will be called the canonical representa-
tion:

T:W,—aut R",
where
[T@mle:=(—1)"-e,, for I<i<n, (5.1)

with {e;|1<i<n} being the standard ON-basis of the n-di-
mensional Euclidean space R”.
First, we have to prove the representation property

[T (a,7)- T(bo)le,

= [Tam(—1)" e,)

=(—1)"""ve, oy =[T(a, + b7 0)]e

= [T [(a,m) - (b,o)]]e;,, 1<ign. (5.2)
Furthermore, T(0,ids ) = Id,, and T'(Lids ) = — Id,.

Let us now calculate the representation matrices of T’
for the basis {e,;|1<i<n]. From

[T(am)]le; = > e Ti(a,m),
i=1
we obtain, by comparison with the definition of 7, the for-
mula

Tiam) =(—1)" &y- (5.3)
Consequently, for x = 27_ , x’e,, we have
[T@amnlx=Y ( S T{.(a,ﬂ)x")ej,
J=1\=0
and from
[T (a,m)T (b,o)]x
= [T(m)] Y x'¢Tibo)

Lj=1

= 3 xeTHamTibo)

Lpk=1
_— ( S THamT! (b,a)x")ek, (5.4)
k=1\ij=1
we see that the multiplication rule has now been reduced to
the usual matrix multiplication.

B. Properties and character of 7

At this point it is useful to prove T to be a real, faithful,
orthogonal, and irreducible representation of W,. The ma-
trices are real by definition. The faithfulness follows from

Tam =Ild,o A (— 18, =65
1<, j

<n

& A (a;=0mod 2 and 7(i) =)

1<in
Ha,m) = (0,idg ) = idy, . (5.5)
For the orthogonality it is easily checked that

7

S T (a,7)- T ,7) = ( — 18, = 5. (5.6)
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To prove T to be irreducible, we use the character y
afforded by T,

xrlg):=1tr[T(g)], geW,. (5.7)
Then, with
XT(a’ﬂ') - 2(_ 1) 61:11],
we get
| gEW,
2'" n'[”;qn -eZz" 1215"'('7
=0
1 n
== Z wm=—2(n—1)'=1 (5.8)

n' i=1weSs,
which proves the statement.

C. Useful sum rules for the characters

In Sec. IV A the ambivalency of W, was proved.
Hence, we have y (g) = y (g~ ") for every g € W, and every
irreducible character of W,. As a consequence, we obtain
the following sum rules for the canonical character y

S xrl8) y-leg) =$-xr(g )

ge W,

z Xr(8182) - X7(8285) - -

{IW,,["/n"*", k>2, keven,
[W,|k/m*=1, k»1, kodd.

For an arbitrary irreducible character y of W, with
dimension d these formulas read as follows:

(5.9)

cXr8k_18k) Xr(8:&1)

(5.10)

S xlg)xigg) = (W.l/d) - xig"), (5.11)
ge W,
2 X(8:82) - - X(8:81)
818 €W,
(5.12)
{|Wn|k/dk_2, k>2, k even,
|W,|*/d*~", k>1, k odd.

VI. GEOMETRICAL INTERPRETATION OF THE GROUP
GENERATORS

Now, with the aid of the representation 7, a geometrical
interpretation of the generators a, B, and ¥ is possible. The
representation matrices are (for n2)

T(a)=(1) ‘1) ’ T‘””(%H)’
id,_, "
T(7’)=<—01 id,f)l)' (o1
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Thus, y is a reflection at the hyperplane {x € R”|x' = 0} and
a is a reflection at the hyperplane {x € R*|x' —x* =0},
where x = Z7_ | x’e; as above.

For the generator B the two cases of even and odd space
dimensions must be distinguished. First, if # is odd, i.e,,
n =2k + 1 with k e N, B is a pure rotation round the axis
u=(1/yn)(e, + e, + - +e,) with the rotation angle
P =14

Second, if # is even, i.e., n = 2k with k € N, B is a rota-
tion reflection and can be writtenasf =y - 8', where 8’ isa
rotation round the origin with the angle ¢ ' = 7/2. Note that
rotation round the origin means embedding of R" in R"*+!
and then rotation round the axisu=e, , ;.

This is a remarkable difference between W,, and
W . 1 and should be kept in mind for the various calcula-
tions where the geometrical meaning is of any importance!

Vil. W, AS FINITE SUBGROUP OF O(n)

From the above considerations it is obvious that W, is
isomorphic with a finite subgroup of O(n), the isomorphism
being given by the mapping

W,—Mat(n,n)

Ty ) 7.1
M T hA T8, s cipems -1
where Mat(n,n) is the set of real 7 X n matrices.
Therefore, Ty, (W, )CO(n), where
O(n): = {4 e Mat(n,n)|4* =4 ~'}. (7.2)

A short look back shows that for every (a,7) € W, the matrix

(T’(a,7))1 ;<. contains only integers, so that W, is a sub-

group of
On,Z): =

(40| A 4)ez). (7.3)

From the restrictions that all matrix elements must be
integers and 4'=4 ~' we immediately obtain a special
property of the matrices of O(n,Z). In fact, they contain only
the three numbers — 1,0,and + 1, and, moreover, in every
column and in every row we find + 1 or — 1 exactly once.
Therefore, elementary combinatorics yield

ord(O(n,Z)) = n!-2" = ord(W,,)
with the consequence that
W, =0(n,Z). (7.4)

Thus, we have the following diagram for the isomor-
phisms between W, ,P,, and O(n,Z):

w -
T $oT ' 72
Ty' Tyod ™!

Viil. PROPERTIES OF THE CANONICAL CHARACTER

A. Number of elements with equal character

In chiral models as well as in gauge theories on lattices a
detailed knowledge of the characters used is necessary.
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One interesting problem is the calculation of the -
numbers of elements g € W, with y,(g) = @, a € R, i.e., the e
calculation of i ow

G(nk):=ord{ge W,|yrlg) =k}. (8.1) -
From the above considerations follows immediately mla
G(nk)=0ifkeZ or k>n. ~owwn

Furthermore, one can see = ; =
Gnun=1, Ginpn—1)=0, and G(nk)=G(n,—k). e ma

. . . ER8&g
Using the number £, of permutations 7 € S, without cycles Tga”
of length one, which turns out to be -

f,,=n!-§":(—_—l)k—, (8.2) wﬁ%ggg“
“o k! =2
one can get with some combinatorics the following general e owew
formula for G (n,k), — n<k<n, g § 22E § ®
l(n — [k 1721 1 Zoe
G(nk)=ni2"— | _— 2
<o 22MIM(I 4+ k)
n-\kI—ZI(_l)m —ogggg'?g%z\
X — (8.3) SE338
m=o m! -R2gsg
TherelationZ! _ _, G(n,k ) = ord(W,)isfulfilled, as it must ]
be. For 1<n< 15 the numbers G (n,k ) are listed in Table III. ~og3negg9s
B. Multiplicity of the trivial representation in Kronecker TTEEREEE
products of 7 with itself "8z %
Let us now look at the sum "
= > [xrl@)]™ 2ge2382"

n'2 geW, o 0 § % 2
which is nothing but the multiplicity of the trivial represen- “ge
tation in the m-fold Kronecker product of the canonical rep- M
resentation T with itself. Clearly, the sum equals one for TCBERUSESEEE
m =0 and vanishes for m = 2k + 1, k e N,. For m = 2k, =2¥335ds
k € N, we define ”§%§§

Alnk)=—— 3 [xr(g)]™ (8.4) -

PET IR LI EEELEY
and obtain, after some nontrivial combinatorics, the formula “za E é 8887
min(k.n) | (2k ! fesenm

Ank)= > — . R

= T L RS S 75 R VT -3
e =k BT EELEEEEE
o3 ) TR
Note that 4 (n,k ) is independent of » for k<n. g Z85%¥34
In order to simplify the above formula we look at the 3 S22
generating function ¥ a
N4
2%k 5|~°c3gz28888888¢%
nz)i:= >Aink = P eI Inoagogn
Tl = A by i 213583n30-
3 TRESRSFSE
__L v slo@l™2 ST
nl. 2 W, k>0 (k) ; - & §
1 g |ovegsgzriggssss
== cosh(z- g RESPA-GNG-Guih- G
TR nRBEEEEISES
" : SR
——L S Gnk)-coshik-2) : REEE
n!2" k= —n Z g §
1,8 ) 2 5
=l+ [———"2 G(n,l)-12 ]"——“ (8~6) ; '—NMQV‘AOI\NOO—NMV’V\E
1; ni2" 1;1 2k ) |
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With the above relation (8.3) for G (n,! ) a comparison of coef-
ficients yields another formula for 4 (n,k )

n 12k [(n—1)/2) 1
Ank)=2 —_—
S 2 S 29+ )
n—1—2j 1 m
x 3 =1 87)
m=0 m!

By the special property of the numbers 4 (n,k ), one ex-
pects the generating functions f(n,z) to build a sequence of
functions that converges uniformly on every compact subset
of the complex plane and, indeed, one finds the surprisingly
simple result

lim f(n,z) = exp(cosh(z) - 1). (8.8)

For a proof, look at the power series
exp (cosh(z) — 1)

0

z ki(cosh(z) —1)f

k 2k
=1+ k21[1;1( l!)
1 7
X . y 8.9
PP B V-/72Y '(2#1)!] (2k ) &)
M+t =k

and compare this with the results on 4 (n,k ). This may be of
some importance for mean field calculations with the hyper-
cubical group on lattices since

fin g =1 3

(8.10)
nt-2 ge W,

and

exp(cosh(z) — 1) — f(n,z) = 0(z*" +?), for z—0. (8.11)

C. Power series of exp(cosh (2) — 7)

Additionally, the power series of exp(cosh(z) — 1) can
easily be calculated and starts with

exp(cosh(z) — 1)

4_+31—_+379—

22
RRETIR TR 8!

2!
10 14

z Z z
+ 6556 2 1+ 150349 2 4 4 373 461 2o
o+ T 14!

18

16
+ 156 297 964 Z— 1 6 698 486 371 Z—
16! 18!

220

+ 337 789 490 599 S0 + - (8.12)

This is an explicit calculation of the first coefficients of the
general formula

exp(cosh(z)

(8.13)
(2k 0

Apart from the fact that even in special tables on power
series one can only find the first three or four coefficients this
result is a nice example of the mathematical connections
between group theory and analysis.
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IX. THE ADJOINED REPRESENTATION

A. Construction from 7¢ 7

Although the canonical representation 7'is without any
doubt the most important representation of the hyperocta-
hedral group, we should throw a short glance at the other
ones, especially at the so-called adjoined representation,
which will now be constructed from the twofold Kronecker
product of the canonical representation 7" with itself, 7'® T,
which is a representation of W, on the space R" @ R"” = R".

Using the standard ON basis {e;|1<i<n} for R" we find
fe; ®¢;|1<ij<n} as a new basis of R"® R". Furthermore,
three invariant subspaces can be obtained. From

TeT(e, ®e —¢ o¢)
= 3 & e, T —e e T /T
k,I=1
=3 (exoe, —eoe)T/T, —TT)), (9.1)
k<l

for i < j, the skew-symmetric subspace V',
= (((1I/\2)e; e, — € ®e)|1<i<j<n)), (9.2)

turns out to be invariant with dim¥ ™) = in(n — 1).
In an analogous manner it follows that the symmetric
subspace ¥+’ of dimension {n(n + 1), defined by

= (((1/42)(e; ® € + ¢ ®¢;)|1<i<j<n)),
is invariant under the representation 7'® 7.
But ¥* cannot be irreducible because the orthogona-
lity of the matrices T’} implies

[T@T](Zek®ek)=2e,®emETiT7§' (9.3)
k=1 L,m NI
61m
= i €, ®€e,.
m=1
Thus,
VO. = ({(1/Vn)e,®e, + - +e,ce,)) (9.4)

is a one-dimensional invariant subspace of R"® R” and of
7™ as well. Obviously, T® T acts trivially on ¥, so that
T® T'|, o is the identity representation.

Now, with V: = P _ pO — (=) g PO wede-
fine two new representations

T,:W,—V'CR"@R",

g—T,8):=TT|,-(g) (9.5)
Ty:W, >V CR &R,
e—-T.8)=TeT|,(g), (9.6)

where the subscripts 4 and S stand for antisymmetric and
symmectric, respectively. If 7,, denotes the trivial represen-
tation, we get the relation

TeT=TyeT,sT, (9.7

where nothing is said about the irreducibility of T, or T,.
Here T, is the so-called adjoined representation of W,.
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Since we only used the orthogonality of the representation
matrices, the last relation is also valid for the appropriate
representation of O(n).

B. Properties of the adjoined representation

Let us now examine the representation 7°,. From

T,e;2¢,—e; €)= > (e, 0¢ —e oe)T,,, (9.8)
k<l
we obtain the relation
T,M=TkT| -T|.T}, (9.9)
and, for the appropriate character y ,: =tr T,
x48) = [xr®)* — xr&)} (9-10)

Obviously, T, is real because T'is real. With the last relation
one can prove the irreducibility of T,,

ord(W)gZ .’ =1 n>2, (9.11)

using the following formulas:
man,kz @) =4 n>2 9.12)
ord(W)gZ [xr&)]* =4, n>2, 9.13)
2, Lo xre) =2, n>2 (9.14)

Od(W)g

Asavery 1mportant consequence, we find that the O{n}-
representation T, , constructed by the analogous algorithm
from the fundamental O(n)-representation T stays irreduc-
ible after restriction to the finite subgroup W, and thus has
to be irreducible itself.

In spite of this relation to the appropriate representa-
tion of Ofn), the representation 7, is less important than the
canonical representation T because T, is not faithful which
is an obvious consequence of its construction from the Kron-
ecker product. Furthermore, for # even, T, generally de-
composes into two parts after restriction to the subgroup
SW, of pure rotations. Thus, a more detailed investigation of
T, is omitted here.

X. SOME REMARKS ON THE COMPLETE SYSTEM OF
IRREDUCIBLE REPRESENTATIONS

A. One-dimensional representations

Before proceeding to a general classification of the W, -
representation, let us look at the one-dimensional ones. For
n>»2, we have at least four representations of degree 1 that
are clearly identical with their characters and therefore de-
noted by

YW, k=1..4

They are
YPam: =1 (“identity”), (10.1)
v Ya,m): =sgn(m) (“signum S,”), (10.2)
v Va,m): =sgn[P (a,m)] (“signum S,,”), (10.3)
¥ Vam): =det[T(a,m)] (“determinant”). (10.4)
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The definition of T leads to the relation

det[T(am)] =(— """ "% ZS sgn(o)-8%1) - - - 877
=(—1)" 77" % sgn(m). (10.5)
If 7S, has the cycle structure (1*,...,n""), where

3¢ _ ku, =n,onegetssgn(m) = (— 1)" "t Apply-
ing this to the permutation @ (a,7) € S,,, we obtain the re-
markable result

sgn[@(am)] =(— )"+ (10.6)
which implies a simple calculation of the ‘*‘determinant” as a
class function,

det[ T (a,})] = sgn(rm) - sgn[ D (a,7)]. (10.7)
Additionally, we have the following relations between our
four one-dimensional representations:

Wy =y, for any k. (10.8)
Yo =y, for any k. (10.9)
Y =Y, and all permutations of (2,3,4). (10.10)

B. Extension of S, -representation to ¥/,

The representations of S, are well known and can easily
be extended to representations of W, . If Dis a representation
of S, over ¥V, we define

D: W, -V,
(a,m)}—D (a,7): = D (m). (10.11)
The representation property is a straightforward conse-
quence of the multiplication rule in W,
D((a,m)-(b0)) = D(a, + :b,70) =
=D(m)- Do)
= D{a,7)+ D (b,0),
but none of these representations can be faithful.

An application of these representations without mixing
up, for example, with the canonical representation reduces
the symmetry to a much poorer one, especially the link to
Of(n) is lost.

D (ro)
(10.12)

C. A guide to the general classification of
representations

Let us now proceed to a short survey of the complete
system of irreducible representations of W, . Starting with
the two inequivalent, irreducible representations of Z,,
called D, and D,, one obtains a complete system of pairwise
inequivalent, irreducible representations of Z," in the form
D, @ --®D, ,where ® denotes the outer tensor product and
Pseesin € {0,1}. If we combine the subscripts i},...,i, to a vec-
tor I = (i,,...,i,, )", we have 2" different vectors (with compo-
nents O or 1) that label the different representations of Z,".
Thus we use the notation Dy : = D, - - -D, , where the tensor
product is reduced to the usual multiplication since all ap-
pearing representations are of dimension 1.

We now define a subgroup of S,

Sy = (7 €S, |71} = (izqyysreosim) =1} C S, (10.13)
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Together with
=i +i+~+i,

ngo=n-—n,

( Z number of ones of I),
(= number of zeros of I),

and the definitions

Sy ={meS,|nk)=k, ifi=1 k=1..,1]CS,,
Sy ={meS,|mk)=k, ifi=0k=1,.,n}CS,,
one finds the following relations:

Sing =5,

Siny =S,

Sy = St Sin» (10.14)

ord(Sy, ) = ngl * ny!.

Furthermore, if D " and D ™’ label irreducible repre-
sentations of S|, , and S|, ,, respectively, we get all irreduci-
ble representations of Sy, in the form

D("Ov"l): =D (no) @D ("l)‘ (1015)

The change of D "™ to a representation of the wreath pro-
duct Z,~S, CZ,~S, = W, is the same as explained in
Sec. X A,

D 1no,n.i(a,,”.): =D (no,n.)(,n.)’

(a,7m) € Z,~Sy,. (10.16)

On the other hand, a change of D, to a representation of
Z,~ Sy can be done by the definition

D ((a,7): = D,(a) =D, (a,)* -+ D, (a,). {10.17)

Thus, D7) =D,(aid, ) and D,@am}-D(bo)

=D I(ao' + 2b,7TO')-

Note that 7,0 € Sy, is a necessary condition for this exten-
sion which explains the definition of S;. We can now com-

bine D ; and D "™ to another representation of Z, ~Sy;:

(D 1,D ™" )a,m): = D (a,ids, ) ® D "0, ).

At this point, one has to extend these representations of
Z,~ S, to representations of Z, ~S,, using a complete sys-
tem of representatives 7,,...,%,, ¥ = n!/ny! + n)!, of the group
Sy as left coset in S, and Clifford’s theory.

Since this is done in many textbooks on the representa-
tion theory of wreath products (see, for example, Kerber® or

(10.18)

Osima),’ it is omitted here. If (D ;,D "™))* denote the ex-

tended representations, the following result can be stated
(for a proof see Kerber®).

If Dy runs through a complete system of irreducible
Z,"-representations so that every possible pair (ny,n,) ap-
pears exactly once, and, while I is kept fixed, D ™" runs
through the irreducible representations of S, then

(D y,D "="))* runs once through a complete system of pair-

wise inequivalent and irreducible representations of W,.
As is well known, the number of S,, -representations is
given by the number of partitions of m. Hence, with p(0): = 1
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we have p(ng)-p(n,) representations of Sy,. This yields the
following formula for the number Q ¥ of W, — representa-
tions:

Qx= Y plk)pln —k).
k=0
Since Q * = Q, (number of conjugacy classes), we obtain

k}i‘,op(k)~p(n—k)= > ]'[Lu, + 1)] (10.20)

ysenn 220 I=1

(10.19)

I rkpp=n

By construction, (D,D ™"* is of dimension (n!/nyln,!).

dim(D "™}, As a crosscheck, one can calculate

S [dim(D)}?

(ﬁ) - Sldim(R )1 3 [dim(T)1*

(kl( _k)l) "kt(n— k)t

n

e

k=0
(where D is the irreducible representation of W,, R is the
irreducible representation of S, and T is the irreducible re-
presentation of S, _ ), as is necessary.

kg()

(10.21)
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APPENDIX: A PROOF OF THE CLASSIFICATION
THEOREM FOR THE CONJUGACY CLASSES

In the main text it was stated that two elements (a,7)
and (b,o) of W, are conjugate to each other if and only if =
and o have the same cycle structure in S, and @ (a,7) and
@ (b,0) have the same cycle structure in S,,, . One direction of
the proof is almost trivial.

If (a,7) ~ y, (b,0), i.e., (b,0) = (c,p)(a,m)(c,p) " for some
(e,p) € W,, we obtain
@ (b,o) = @ (cp) Pla,m) - (P(ep) !

by the group isomorphism property of @ and o = pmp ™! by
application of the multiplication rule of W,. Thus, this part
of the proof'is complete. In order to prove the other direction
we first bear in mind that 7~ o, i.e., 7 = pop ™" for some
pE€S,, implies (b,a)~y, (0,0)(b,0)(0,0~ ") = (b,_,,7). With
¢: =b,_, wenow only haveto prove that @ (a,7)~ 5 @ (c,7)
implies (a,m)~ (c,7). Let 7 have the cycle structure

(1#,2%2,...,0""), 2% _ k-, = n. Now we ask what happens to
acycle oflength g under the action of the group isomorphism
@ and find that this is determined by exactly those ¢ compo-
nents of a the subscripts of which appear in the considered
cycle. The cycle becomes doubled in number if the number of
ones at the relevant positions of a is even, and doubled in
length if this number is odd.
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Now, we can make this number O or 1 since every pair of
I’s in the range of our cycle can be cleared by an equivalence
transformation of the form

(a,m)~ y (d,id fa,7)(d,id) "' = (d, + ,d + ,a,7).
Explicitly, if (m,m,...m,) is the considered cycle and a,,
=a,, =1, j#k, one has to choose d so that 4, =0,
k&{m,,..m,}, and

1, ifl=m, or l=m,,
dﬂ1)+d1=[ ’ *

0, otherwise,
which is always possible.

Next, if we have a single ““1” in the range of our cycle
(m;m,--m,), we can move it to any other position in the
range of the cycle, which is done by the same transformation
as for the clearing of pairs of 1’s.

Furthermore, if a has two cycles of length g, let us say
(mymym,) and (nny-n,), and a, =1, a, =0 for
k € {my,..m,n,,...,n, }, we can move the 1 from one cycle to
the other so that afterwards a,, and a,, are interchanged.
This is done by the transformation

(8,7)~ i, (0,0)(a,7)(0,0 ")
with

mymym, _ m mny B, 1,
p= ,
Rglyfy oM, M Myeemy, My,

=7, as

where p(k ) = k if k&{m,,....m_,n,,..,n,} and pmp~
it must be.

Last but not least let us again look at the two elements
(a,7) and {c,7). By construction, @ (a,7) and @ (c,7) have the
same cycle structure in S,,. This guarantees that our clear-
ing algorithm produces the same number of 1’s after applica-

tion to both elements.
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Next, we can move the 1’s to equivalent positions and to
corresponding cycles with the transformations described
above.

Hence, we find by construction

(8,7T) ~w, (f:ﬂ-) ~w, (C,?T),

since our algorithm arrives at the same element fe ZJ for
(a,77) and (c,7), respectively. From the beginning we have
(¢,7)~ w, (b,0) and consequently

(8,1T) ~w, (b,O’),

which completes the proof.
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After stating some facts concerning the calculation with “color variables” we cite some recent
results of the author with respect to the color analytic extension of variational principles, self-
adjointness, and Heisenberg commutation relations. As an apparent novelty, we then present the
color analytic version of the Hamiltonian formalism including the construction of color Poisson
brackets leading to a color (super)algebra with color derivation property.

PACS numbers: 02.30. + g, 11.10.Ef, 11.30.Pb

I. INTRODUCTION AND MAIN RESULTS

Recently, there has been great interest in generalizing
the statistics in quantum field theory (e.g., Ohnuki and Ka-
mefuchi,’?> Omote and Kamefuchi,> Levine and To-
mozawa,”* and others). This has its origin in Green’s propos-
al® to use parastatistical commutation relations, being
compatible with Heisenberg’s equation of motion. Also in
this connection, there is great interest in the recently intro-
duced generalized superalgebras, also called color (super)al-
gebras (e.g., Kac,® Rittenberg and Wyler,”® Lukierski and
Rittenberg,” and others). We refer to Agrawala,'® Green and
Jarvis,"! Scheunert,'? and others, for example, for the con-
struction of Casimir invariants, tensor operators, and repre-
sentations of color (super)algebras. The main idea of the col-
or {super)algebras consists in replacing the plus or minus in
the anticommutator or commutator by a complex commuta-
tion factor compatible with the grading.

In our short note, we pick up the idea of Rittenberg and
Wyler,” for example, where they have introduced color var-
iables in order to describe color (super)groups. But we take
the color variables as the foundation of an extension of vari-
ational principles, self-adjointness, Hamiltonian formalism,
Poisson brackets etc. We therefore start with an associative
I"-graded algebra A (over the complex numbers C) with unit,
with a finite abelian grading group I" and equipped with a
nonvanishing commutation functiono: I" X I" — C{0} com-
patible with associativity and the grading I'. The generaliza-
tion of well-known conventional supersymmetric (i.e., Z,-
graded) theoretical physics (for instance Kostant,'* Dell and
Smolin,'* Rogers,'* Corwin, Ne’Eman, and Sternberg, '® and
others) consists in replacing the infinite-dimensional Ban-
ach—Grassmann algebra B (Rogers," and Jadczyk and
Pilch'”) by A with an arbitrary finite abelian grading group I"
and an admissible commutation function o. Without insist-
ing on mathematical subtleties which can partially be found
in Ref. 18, we want to collect in this note some general re-
sults. The situation if the Hessian is not regular (i.e., if one
deals with constrained systems) and the globalization of the
results here presented only in local coordinates will be dis-
cussed in a forthcoming paper.

We point out that the content of Secs. II and III of this
article can already be found in Ref. 18. Because of math-
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ematical homogeneity, we have decided to include Secs. I1
and III in this note as a preparatory step in order to familiar-
ize the reader with color analytic calculation methods. The
new results consist in the construction of a color Poisson
(super)algebra and in displaying the interplay of two I"-grad-
ed products, the ordinary associative one in A and the color
Poisson bracket, both interrelated by the color derivation
property. The color Hamilton-Jacobi differential equation
is presented and also the extension to field theories is briefly
indicated.

Il. GENERALIZATION OF HEISENBERG’S
COMMUTATION RULES

Let A be a I'-graded associative Banach algebra over
the complex numbers C and with unit'®

®
AzyeFA” AA; CA, 5 VYY6el, (1)

where A, are Banach subspaces of A and where 0 € I'" de-
notes the neutral element in the finite abelian group I
Moreover A is characterized by a commutation function

oI’ XI' - C\ {0}, olaBoBa)=1, (2)
olaB)olay) =olaf+y), VaByel,

12 2 1 1 2

9095 = 0(aPpqa> V4, €A,, qg € Ag. (3)

Equation (3) can be found, for example, in Ref. 7. The condi-
tion (2) entails the relations

oal)=00a)=1, ogaa = +1,

(4)
olaB)=0{—a,—B)=0lf, —a)=0(—Ba), VYaBel,
which indicate that one deals with ordinary bosonic and fer-
mionic numbers in each subspace A, of A. Now let [n,]
:=(n, ), r denote a set of positive integers n, € N, satisfy-

ing n, =n_,. We introduce the Banach space {equipped
with the product topology)

&
Gl = ALY
oA (5
being a Aj,-module. Elements of GL"") are denoted by
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ie{L.,n,}

xpe G, x=(g), L™,
(6)
M er ™™, gm €A, .
We are interested in A-valued functions fon G!"",
LU A, e fe F(GIM); A, (7)

being sufficiently many times continuously Aj-differentia-
ble.’* If (1 e R),

_(_ 9 4
( g, f)x _( g, )Q arxwlio

sEw(d)

veli=1 ¥
denotes the left derivative of the function f (7) with respect to

g,€A, atxe G!"1, we can derive the generalized or color
Heisenberg’s commutation rules'®

a a a
o, 3qé—a( ) ot o

ola,a) = +1:>[ i,qa] =4/,

] / o

8qa

ola,a)= — 1::>[

YafBel, Vie{l,.
Viefl,.,ng}.
Note for the following, that

i, },

d (9
)= 2 f T g, + ol 2 (10

a

is vahd for arbitrary contmuously Ao-dlfferentlable maps

fB:G["’] — Ag, gY:G["r] —A,.
We point out that
) o) n
(ﬁ) en, . Tecreia,_y Yy
s /x 94
holds.!®

lll. GENERALIZATION OF VARIATIONAL PRINCIPLES
AND SELF-ADJOINTNESS

Let now Q denote the vector space of all sufficiently
many times continuously differentiable maps from [z,,, ]
to GI"), ¢, <t,;¢,,t, € R. Elements of Q will be denoted by

xyeQ, xit —>x(t)e GV, yir—p(t)e G,
i iefl,.., n, _ i ie{l,.., nyl
x(t) = (g e, ) = (1)
Let L (“Lagrangian”) be a sufficiently many times continu-

ously A-differentiable map from [7,,7,]XG!"Tx ...
(2 o
X G 10 A,. Using ¢',(t): = d’/dt ¢',(t), we then con-

sider the action o, being a map from Q to A,,
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g . . (n)
@y, : =f dt L(t,4q(t), Ga(t),, ga(t)), (13)

and its variation dw, (4 € R),

d
(da) (y): = d/l Doy 11y l1<0
n !
=y 2 dtn’y > (- ’d _‘3:1;__
yerj=1+, =0 dt a‘q’y’ )
n, n lf]) .
2 2 2 ) Pyl (14)
J= s
where
_,dF! JdL
P’-/"V’)" kZI( )k Id k—1 (K) €A,

aq, (t)
(15)

are the generalized canonical impulses (e.g., Ostrogradski).'®
The expression
(2n)

€, th:=6 _(t.g5(t).., qo(t))
= L d! JL
= Igo(— 1) F o €A, (16)
ag,(t)
VxeQ, Vite[t, ], Viefl,..n,}, Vyel

is called the set of evolution terms with respect to the La-
grangian L. If on the contrary one only disposes of a set of
evolution terms, one can search for a Lagrangian L so that
(16) will be valid. In this case, the prescribed set of evolution
terms has to satisfy

. ()
0= ——&,_,lt) +016) ugo( 1yt
Agj(t)
X d - a Ej —B(t )x
dr“—" () '
g, (t)
Vr=0,1,.,2n Yy,6€rl;
(17)
Vie(l,..,n,},jefl,.,ns}, VYxeQ,
where
(u) _ [u!|r!(u —n, if uzr,
rl 0, if u<r,
The Lagrangian then reads up to boundary terms
z q’,,(t)f dr
yelj=1
. (2n)
XE; _(,7qe (L )sesT G (1)) (18)

We refer to Ref. 18 where the Lemma of Poincaré on Banach
spaces is exposed and applied to the discussion of variational
principles and self-adjointness including the consideration
of boundary terms appearing during the variational proce-
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dure. Because of the commutation factor o{6,y) in front of
the sum in {17}, we call (17) the generalized variational self-
adjointness conditions.

IV. GENERALIZATION OF THE HAMILTONIAN
FORMALISM

According to, e.g., Ostrogradski,'® we introduce the
Hamiltonian

nyoon ()
H, =( 222 q’,,(t)-P,j,_y(t)x)_L
yelj=11=1
We are now supposed to be able to solve (15) for the variables
(n (n+1) 2n—1)
A : (G[nr])zn is

> @ v @,
spanned by the variables R:

(19)

so that our phase space P =

(n—1)

(qlr’ ’ qlr ’ 1./—1" ’P"J—Y

The equations of motion on the configuration space

P3R=

n i
g, ()

entail the generalized Hamilton equations on the color phase
space P

d =" d

—( g, (t)=olry) P H(R (¢),2),
(22)
4P 1)) = 9 H(R())
gt Pa=rlth) = = —=5— HiR 1)),
d gq, (t)
I=1,..,n

Note, that Hy-t) is a map from P to A, Let now
F(.;t)e % (P;A)denote a map from the color phase space P
to A. The time evolution of F reads

d _ FR(t)1) 1L
th(R (t)’t)_ at + {HO( 9t)’F( ’t)}R(z)’
{Hol+t).F (-t )} &
=5 § 3 (ot ZrOERs)
eremtE Py, o d d

_ OHyR:) dF(R¢t)\

V. COLOR POISSON (SUPER)ALGEBRA

We now construct a color Poisson bracket on the asso-
ciative I'-graded algebra of maps

F (PA) = © 7 BA,)

such that & (P;A) is again a I'-graded algebra under the
color Poisson bracket {{ , }}:

{{Bs: G, }}
2o & JdB ac.
= 2 Z olaajoip,a) 2 1—71)
aeli=11=1 3P,;,-,_,, { i
9 ga
dB; dC,
- a(a,B) U_i 1) aP}; W P’ (24)
9a
VB, e F(PAg), YC,eF(PA,).

We state the following rules: for { {Bg,
we have color antisymmetry,

Cr}} e‘?(P;AﬁH r)’

{{Bﬁ’cy}} = _ow’Y){{cr’BB}]; (25)
the color derivation property,
{{B,C,Ds}} = {{B5,C, }} Ds
+ olBYC, {{Bg, Ds }}; (26)
and the color Jacobi identity,
olma){{ {{4..B51}, C,}} + olaB){{ {{Bs,C, 1}, 4.1}
+ 0BG, 4al), Bp)) =0; (27)

all of which can be verified after long and tedious but
straightforward calculations using the nontrivial properties

23
t-u - 9p, 23) (2) of the commutation function . In order to show the tech-
d 4. nique, we, for example, prove (26):
]
(24) n, n 333
{{Bg,C,Ds}} = 2 2 |lelaaolBa) —————(C,Ds) — olaB) ——= —-(C D,
aeli=11=1 aPlt—a ‘ 'aPIl—a
8 3 q.,
(10) W JdB ac. oD
= Y ¥ Y|daappa)——L—[ 2D, +olralC, — -
deri=1/=h P, _ . =1 =1
* 9 4a d 4.
JB, ac. oD, 3r(11)
Tl A ( 3, _, Ds +otr el aPI;.-,_,,) = [t G11Ds

a
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OB, 6’D5

+3 5 3 [daapiBaityais + anc, =t 220 ol loly, ~ alolf ~ arC,
-t b a qa
3B;  dD,
auq_:'zl) aPl;i,Aa
@ e OB, D,
=BG HIDs+ 3 3 3 [olwaloiBalotByC, ==~ — olaBlolByC,
aelNi=11=1 Li, —a aqa

dB, aD,
=1 gp.
a q; PI;:, —a

= [{BB’CY} }Da + U(ﬂ,}/)cy[ {BB:DE ] }

Using (4), the definition of the color Poisson bracket (24) goes
naturally over to (23) because of Hy(-,z) € 7 (P;A,).

Corollary I (¥ (P;A){[ , }}) is a color (superjalgebra
[Eq., {25) and (27)] with grading

' (PA) =} rF (PA,)

and commutation function ¢, the same function o with
which we have started in the associative I -graded algebra A.

Corollary IT: (¥ (P;A), - ) is an associative I'-graded al-
gebra over the complex numbers with unit and with the same
commutation function ¢ as in A. The interplay of both the
structures {Z (P;A), {{, }1})and (F (P;A), - } is determined
by the color derivation property (26).

Corollary III: By virtue of the color derivation property
(26), the time evolution constraint is identically satisfied;

F('rt )’ G(')t) eF (P’A)
d . _ dF(R(t)t)
5 F IR ()t} — G(R1)t)
dG(R(t)t).
+ F(R(t)r) PR

(28)
{Ho(‘ of )’F’ G("t” = {Ho("t )’F(' ’t}} ¢ G( rt)
+ F(” t){HO('ft )’G('!t)}’

for all Hamiltonians Hy(-,t) € F (P;A,). Also

4t ={{ 2 e )+ {{s )

{{Ho{{Bs,C, 1} 1) ={{ [{HoBs1}), C,})
+ {{Bs{{H:C,}} 1)
VB, = By(- ,t)€.F (P;Ap),
C, =C,(-,t)e F (P:A,)
Hy=Hy-,t)e F (P;A) (29)

can easily be verified using the color Jacobi identity (27) and
(2) and (3).

VI. COLOR HAMILTON-JACOBI DIFFERENTIAL
EQUATION

In order to obtain the Hamilton~Jacobi differential
equation in our color analytic framework, one proceeds as in
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‘the conventional case. One calculates the action functional
@, along the solution trajectories xg, (21) and obtains a func-
tion of the end points

(n—1)

AO 3 waSO, = :S(ta ’q;(ta) LAt q:z (ta )’

(n—1)

Xty (ts) s G () (30)

which satisfies the color Hamilton Jacobi differential equa-
tion:

(j—1

IS("stys da ()
B at,
-1
s SUt, dh (6)
=HY s, i (1) ——
d QE (£s)
-1
IS("ty, qu (%))
Py 5= - , I=1,.,n (31
d qf? {ty)

VII. EXTENSION TO FIELD THEORIES

Let now H!"") denote the Schwartz space consisting of
C = maps from R to G"*! vanishing with all their deriva-
tives at infinity more rapidly then any power of ||r| =, re R®,

r]l: = *\J7 + 2 + 7. Elements of H""! are denoted by
¢ = (g, ) rr R
7 =) Tp e H. (32)
The A-valued and in general distribution-valued functions

fe F ,H");A) are supposed to be sufficiently many times
functional A,-differentiable and (4 € R)
b))
% fl41= f (¢ ]
y( ) 84, (r)’
< 5f (4]
—- + A o = f d’ Vil :
i f[¢ Nlico= ye[‘xgl y ;,(r)

(33)
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denotes the variational left-derivative of f with respect to
q,r)eA, atge H!""!. The color Heisenberg commutation
rules in field theory result:

é o P}
b _ B
5. oapiey P 6¢B(r> 544 ir)
= 41 2] s —r)
ola,a) :[5%()4/( )]_ r—r)
ola,a) = — l::>[ —. ¢ (r’)] =§8(r —r'), (34)
Oq.,,(r +

5 i . O
a# = WB(Y ) = olB.a)gs(r 6qf,(r)’
YapBel, ic{l,.,n,},

jef{l,.,

ngl; rr'eR’.

In order to avoid unnecessary repetitions we remark that one
only has to replace the ordinary color derivative 3/dg’,, the
summation 3, over i, and the vector space Glrl by the vari-
ational color derivative 8/8¢.,(r), the summation 2; fd°r
over i,r and the vector space H!" in order to transcribe the
results of the Secs. II-VI to the field theoretic case. We theiI

fore finish the paper by at least showing the construction of
the color Poisson (super)algebra in field theory

B,,C .= d
{{ g Y}} l—lael"l—lJ
X[ ola,loiBa) o
a
5})1[ —a(r) 5(14’71](r)
5B 5C,
—deb) = —o—} 09

§q, () "7°

By =By(-.1)€.F 4(PAg), C, =C,(,1)eF 4(PA,),

P: = (H!"),

and by specifying the color variational self-adjointness con-
ditions for evolution terms

&, _pl¥") b=2¢; _plx", g5 (x"), 9, go (x"),...
X 0, =0, qq(x*))

which depend (already in a symmetrized manner in the argu-
ments, see Ref. 20, p. 395) at most on the n-jet of the color
valued field functions ¢ € Q:

J i u hd a
= ——— . _glx")e + olaB ~1“+1() 4, w8, [ —————¢,_ (¥ )
EERIP T R P A P T 56, oy e
Vr=0,1,.,n, Va,Bel, Vie{l,..,n,}Vjie(l,..,ng}, ¥Yv,.,v,€{1234], VbdeQ,
Q=F([tasty 1, H"), &t — &t ):r — (¢, ), r ™ € G, Wx# = (r,0) e RP% L0185 ], 3,: = 9. (36)
x‘V
&; _plx*)y € A _ 4 fulfills (36), the Lagrangian
ny, 1 . )
f(x”)¢: = Z Z q’;(x“)J d7'zsk‘77,(x“,7'q’a(x“),...,rc?‘,l -d, g, (x")) € A, (37)
yel k=1 0
leads to
n 4 ag
£ _alx¥)y = — 1) a, d,[ ———|, 38
ol = 3 (-1 3o, ( TR w) 38)
where
zay ( 33. )
v \dd, qs
means 0.7 /3.
Proof:
n ( j
1;0 ..... aa,, - c? 5(x*)
)
d soesT0,, 0, G,
%(; j s oy 3,0, 2)
! 2 ' i i
+ 2 (— 1) ,2:’ a“’x av,(m(ggq;ﬁj; dTEk,——y(x'uqua,""Tay, '"ap,nqa)))
oN10) ) . 1 P _ '
= J(; dre, _g(x",rq,,,...,.70 0, 4a) + ZZU(yﬁ)qf,J dr 7- g )Ek"V(x#’Tq;"“’Taul w8, gh)
B
d .
+ 3 (-0 3 a, av( otr,8)g" f dr 19 e (g1, 0, 4
Z 2 (] 22 4 3(7'(9 ay}qﬁ) k, r( q TO,, ]
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1 1
d i i d i i
= J; dr e (€5 —pl*7q 5T 3, 0, G )) - L dr e €; _pX* 190570, 0, qo)

1
=&l erndydpg) = | ar 73T T T
'

I=0wv,..,

1 n
XEjs—ﬂ(x#’Tq;""’Tau."'aﬂnqﬁz) + J‘ dr TZ Z 0(7’,5) z ( - 1)1
0 v k 1=0

Xav ...av __i+5
T\ alrd,, +d.,q5)

By virtue of (36), the last two terms cancel after extending the

3() = 50)-

= s

!
(by putting (s) =0 if /<s) and after substituting

{— s, s — [l in the last double sum. [ ]
We emphasize that by virtue of the commutation factor
ol{a,f) in front of the sum in (36) the color variational self-
adjointness conditions (36) represent a nontrivial generaliza-
tion of the old mathematical concept ‘“‘variational self-ad-
jointness” studied in the pure bosonic case by Helmholtz?!
and recently by Vainberg,?? Tonti,?> Santilli,*?° Tulzcy-
jew,?” Dedecker and Tulzcyjew,?® Abraham and Marsden,”
Hughes and Marsden,®® Takens,>' Kosmann-Schwarz-
bach,*> Kamo and Sugano,>® Anderson,> Horndeski,*
Vanderbauwhede,>® Bauderon,>” Atherton and Homsy,*®
Telega,* Hojman and Urrutia,*® Trostel,?® and others. For
more references and for the technique of the modification of
a prescribed set of bosonic evolution terms by virtue of inte-
grating matrices in order to arrive at variational self-adjoint
evolution terms we refer also to the books** of Santilli.

Viil. CONCLUDING REMARKS

We have presented some recent results concerning the
calculation with numbers obeying unusual commutation re-
lations. These numbers can be regarded as elements of an
associative I"-graded algebra A equipped with a commuta-
tion function o satisfying nontrivial, nonlinear relations
which are also known in the theory of color (super)algebras.
Color Heisenberg commutation rules, generalized variation-
al self-adjointness conditions, and a color Hamiltonian for-
malism result. As a novelty, we have constructed color Pois-
son brackets leading to an algebra called color Poisson
(superjalgebra satisfying the axioms of a color (super)alge-
bra. This color Poisson (super)algebra is in addition charac-
terized by the associative I'-graded product structure inher-
ited from A. The bracket and the associative product are
linked by the color derivation property. We refer the reader
to our paper,'® first, concerning the concept of generalized
superdifferentiability or—being more specific—A,-differen-
tiability which generalizes the concept of conventional {i.e.,
Z,-graded) superdifferentiability according to Jadzyk and
Pilch'” to our case, if dealing with an arbitrary I-graded
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7d,,+0,94)

(0,,3.,45) -

%y (XFTGhsensTO, 0, G ))

9
a(Tav, "'av,q;ﬁ)

s 3(!)en-a.an

Viseney vls=0

% —y TGy, ---amq("z )).

I
associative algebra A; second, concerning the mathematical

foundation of generalized variational principles and color
variational self-adjointness from the viewpoint of an exterior
differential calculus for A,-valued and A,-differentiable p-
forms (p € N on Banachmoduli; and third, concerning the
initiation of color differential geometry characterized by un-
usual commutation properties of covectors within the asso-
ciative wedge product.
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Necessary conditions for a unique solution to two-dimensional phase
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In this paper we show that although in one dimension multiplicity of solutions to the phase
reconstruction problem presents a serious problem, in two or more dimensions multiplicity is
pathologically rare. We derive from a given solution pair (g,G ) necessary conditions for the
existence of alternative solution pairs (4,H ), and a characterization of their form. The
mathematical tools employed are from the theory of functions of two complex variables.

PACS numbers: 02.30.Dk

I. INTRODUCTION

The two-dimensional phase retrieval problems can be
stated as: Let 4 and B be bounded subsets of R%. Given the
information that g{(z,,z,) is the Fourier transform of a func-
tion G (w,,w,) with support contained in B and the values
m(x,,x,) = |g(x,,x,)| on 4, find the phase of g on 4 and recon-
struct G.

The phase retrieval problem does not necessarily have a
unique solution. The aim of this article is to derive from a
given solution pair g and G necessary conditions for the exis-
tence (and characterization) of alternative solution pairs 4
and H. An intuitive start for such an investigation is the
simple result that if f{z) is an analytic function of the complex
variable z, then so is f*(z*) and f(z) and f *(z*) have the same
modulus for real z. This suggests that if a solution g can be
factored into a product of analytic functions g, and g, then
the entire function of two complex variables
h(z,,2,)=g,(z,,2,)g¥ (zF,2¥) is also a possible solution. The
main result of this paper is to show that all possible alterna-
tive solutions must be of this simple form.

Il. ONE-DIMENSIONAL RESULTS

The following results from the theory of functions of a
single complex variable are required.

Theorem 1: (Paley-Wiener Theorem') Let B =[b,,b,] be
abounded interval in R. Then for any GeL ?(R), G #0on B,
the transform

giz)= J; 2 ™G (u)du (1)

is an entire function and there exist constants a and S such
that

ae~bI Imz’

lg(2)| < {Bebz Im z

The next result is the fundamental theorem providing
the necessary machinery to characterize all possible solu-
tions to the phase problem both in one and two dimensions.

ffImz>0,

2
if Imz <O0. @

* Also: RGB Associates, Box 8, Wayland, MA 01778.
Y Present address: Centre for Mathematical Analysis, The Australian Na-
tional University, Canberra, Australia.
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Although independently derived by many authors,>™ it ap-
pears to have been first stated by Akutowicz.> We state the
result as originally presented there.

Theorem 2: Let & be the class of all functions geL ? (R)
satisfying: (a) |g(x)| =m(x)#0 VxeR; (b) g=FG,
where support of G is contained in a bounded interval B of R.
Then any two functions g,#€% are related by equations of
the form

h(z) = " * 5B (z)g(z),

B(z)=f[l (i:j )

where the z;, form some subset of the zeros of g(z). The func-
tion (z — z;)/(z — z;) is termed a Blaschke factor.

Lemma 1: A necessary and sufficient condition for the
infinite product B (z) to converge is that’

(3)

= [Imz|
=1 =
A sufficient condition for the convergence of the infinite sum
is that G (u) have only a finite number of jump discontinuities
over B.

It is easily shown that if G has support in an interval B
and if 4 (z) = B (z)g(z), then H (u) = (¥ ~ 'h ) (u) also has sup-
port in B. Therefore, combining Theorems 1 and 2 and
Lemma 1 gives the following statement on existence of mul-
tiple solutions to the one-dimensional (1-D) phase retrieval
problem.

Theorem 3: Let 4 and B be bounded intervals in R with
a modulus m(x) specified over 4 and a solution pair g and G
be given to the corresponding 1-D phase problem. Then if
m(x) has an extension to the entire real line such that m(x) > 0
and G (u) has only finite jump discontinuities over B as well as
being nonzero in neighborhoods of the endpoints of B, then
all other solution pairs A,H are given by

h (z) = €“B (z)glz), (5)

H(u)=(F ""h)u), (6)
where B (z) is any finite or infinite product of Blaschke factors
and acR.

The conditions of Theorem 3 imply that a solution g(z)
has a Hadamard factorization

4)
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_ ia+mTT (1 2 7
ste) = g0+ T (1 ) U

2

where a,5eR, which may be rewritten as

glz) = [|g(0)|e““+""g(1 _i)]

Z;

<[ 1, (1-2)]

= g,(2)g,(2), (8)
where A is a subset of the natural numbers . Theorem 3
thus states that any solution 4 (z) has the form

h(z) = e"g,(z)g¥(z*), veR, 9

i.e., that all possible solutions are in one-to-one correspon-
dence with all possible factorizations of g{z).

lli. EXTENSION TO TWO DIMENSIONS

Conditions that multiple solutions to the 2-D phase re-
trieval problem must satisfy can be deduced from the 1-D
results. To begin, suppose that the problem as stated has a
solution pair g(z,,z,), G(w,w,), where z=x+iy and
@ = u + iv denote variables in the transform and physical
domains, such that G (u,,u,) has only a finite number of jump
discontinuities over B. Then

Lemma 2: g{z,,z,) is an entire function of the complex
variables z,,z, of exponential growth.

Proof: After defining the quantities

ut = maxfu,:(u,u,)eB },
u;" (u,) = max{u,:(u,uy)eB },
u; = min{u:(u,,u,)eB },

u; (u,) = min{u,:(uy,u,)eB §,
g(z,,2,) can be expressed as

ut ust (u,)
8lzy,2)) = J‘7 du, eizlulf( , du, %G (u,u,). (10)
lll u; (1,
Writing g(z,,2,) as g, (z,) to indicate that g(z,,z,) is to be con-
sidered as a function of z, only with z, fixed gives
lll+ ~ .

galz)= [ Gz du, (1)
Therefore, by Theorem 1, g, (z,) is an entire function of z, of
exponential growth. A similar procedure shows that g, (z,)
is an entire function of z,.

An immediate consequence of this lemma is that if a
solution exists then the modulus m(x,,x,) has an analytic
extension to all of R? which, under the assumption that
m(x,x,) >0, ¥(x,x,), is unique.

There are four points to be noted with respect to the
next three paragraphs.

(1) The first point is that the zeros 7, (x,) may be num-
bered in accordance with Eq. (13).

(2) For a given k, the maps ¢, and ¢, are analytic for
almost all x,. This follows from the fact that the set of singu-
lar points has dimension one less than the set of points x, for
which the set of zeros is analytic.
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(3) The next step is to note that the condition that k be
fixed can be dropped because there is only a countably finite
number of k’s, and the set of almost all x, is uncountably
infinite.

(4) The final step is to observe that if k is indeed an
alternative solution, then its zero manifold ¥ must be the
analytic continuation of the sets (p, (x,),x,) and therefore be
continuedin XuX *. IfY 2 Xand Y #X *,thenanyyeY (with
yalsoin X ) is part of an analytic submanifold ¥, with Y, CY
and Y, C X but Y,#X. Therefore, X must be decomposable
as a sum of analytic submanifolds.

Now let 4 (z,,2,), H (w,,w,) be any other solution pair to
this problem; then A, (x,) and g, (x,) must have the same
modulus m, (x,) over the set B, = {x,:(x,x,)eB}; ie,
h,, (z,) and g, (z,) are both solutions to a 1-D phase retrieval
problem. Therefore, by Theorem 2, Lemma 1, and the above
assumptions on g, G, and m we have that

th (z)) = e oe’ (x,)z.sz (z,)gx, (z)) (12)

where a(x,) and 8 (x,) are constants dependent on x, only and
B (z) is an infinite product of Blashke factors formed from the
zeros p, (x,) of g, (z,). Thusif 7, (x,) are the zeros of &, (z,) we
may order them so that

Nk (X2) = pi (x2) OF pE(X,). (13)

Nowlet YC C?and YC C?bethesets of zerosof gand A,
respectively. It is known® that the zeros of a function of n
complex variables from an analytic set of dimension (r — 1),
which in turn is the union of analytic manifolds of dimen-
sions (n — 1) and a set of dimension at most (» — 2). The
difference in dimensions implies that, for a fixed k, for al-
most all points x, the points {p, (x,),x,) and {7, (x,),x,) are
members of analytic submanifolds of X and Y, respectively.
That is, there exist maps

$5:C'>X, dilx,) = (ok (x2),x2),s
(14)

U:C'=Y, i (xy) = (mac(x2)xa)s
which are analytic on a neighborhood N, (x,) of x,. Since
there are only countably many & ’s, it follows that, for almost
all x,, all of the maps {¢,,¥, } ©_, are analytic in neighbor-
hoods N, (x,) of x,. [Note the dependence of N, (x,) on k.]
If we now suppose for simplicity that the zeros p, (x,)
are distinct, i.e.,

k #I5p; (x5)#p1(x,) or pF(xy), (15)
then Eq. (13), and the analyticity of ¢, and ¥, imply that

Yi(2) = pi(z) o1 pi(z*), zEN, (x,). (16)
Therefore, if X, CX and Y,CY are the extensions of the
neighborhoods {{p, (2),(z),(v« (2),2)}7_, to analytic mani-
folds, then

X, CYuY¥ (17)

Y, CXuX*. (18)
If Y, X, then there exists a point yeY, and an associated
neighborhood N, such thaty and N, are contained in analyt-
ic submanifold X, of X, but the analytic extension of NV, is

not X. Therefore, X may be decomposed into two submani-
folds X, and X, — X,.
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Thus, apart from alternative solutions generated by
varying a(x,) and 3 (x,), a necessary condition that an alter-
native solution 4 to the 2-D phase problem must satisfy is
that some of its zeros be the complex conjugates of those of
the original solution. Although this is the same mechanism
by which an infinite number of alternative solutions to the
1-D phase problem are generated, the zeros must now satisfy
the condition that they form a union of one-dimensional ana-
lytic manifolds as opposed to a union of zero-dimensional
manifolds, that is a collection of connected analytic line seg-
ments as opposed to a collection of isolated points. If an
alternative solution exists then either the whole manifold X
has been “flipped” to its conjugate, or it has been *“torn” and
only partially flipped. The connected nature of X, implies
that the existence of “dotted lines” along which tears may be
made is very unlikely; this compares to the isolated points in
the 1-D problem, each of which may be flipped independent-
ly of the other.

Given this condition the form of an alternative solution
may be determined. Let X, be decomposable into submani-
folds X,,X; and define

X, .. =X.n{(z,,2,):x, fixed,z,eC .} (19)
Then the function g,_(z,) may be written as the product

8x,(2)) = 81,5,(21)82.x, (1), (20)
where

4 ) (21)

1—
(Pk(xz),xz)exz,xz( Pk (xZ)
By Eq. (12) A, (z,) may be written as

Ry (2)) = 815, (2,)8% 5, (2F). (22)
If /4 (z,,2,) exists it is the analytic extension of A, (z,), there-
fore, A (21,22) = gl(zlrzz)g;(z;k!Zg‘)'

We have not been able to show that this necessary con-
dition for alternative solutions is also sufficient; i.e., given
submanifolds X,, X; and the decomposition of Eq. (20) that
the 4, (z,) of Eq. (22) may be analytically continued to a
function 4 (z,,2,). One source of trouble is the dependence of
N, (x,) on k; it is possible that for every x,, Ng_ | Ni(x,) = 4.
Then although each zero (o, (x,),X,) is analytic in a neighbor-
hood of x, there does not exist a neighborhood over which all
zeros are uniformly analytic, and therefore, a neighborhood
over which the product of Eq. (21} is provably analytic.

If the cardinalities of X, are finite, e.g., g(z,,2,) is a
polynomial, then sufficiency can be shown. In the polyno-
mial case decomposability of X, into X, and .X; is equivalent
to a factorization of the polynomial. However, almost all
polynomials of two variables are irreducible so that such a
factorization and decomposition does not exist, therefore,
alternative solutions do not exist. Irreducibility extends to
general functions of two variables with infinite sets of zeros,
so that exact alternative solutions are most unlikely in 2-D
phase retrieval. This result on polynomials and its implica-
tions is also presented in Ref. 9.

82.x, (z1) =

IV. THE SUPPORT OF ALTERNATIVE SOLUTIONS

In the previous subsection conditions that alternative
solutions g and /4 must satisfy in order that
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|g(x1,x,)| = | A (x1,%,)| were derived. We still have to derive
the necessary conditions on g and /4 so that (support
G ) = (support H ). The first is that B (x,)=0 in Eq. (12). This
follows by noting that if G (u,u,) is nonzero in neighbor-
hoods of points (u;",u),(u; ,u;)eB then the function
G (u,,x,) of Eq. (A11) will be nonzero in neighborhoods of
u, =u;" and u, = u; for almost all x,. So by Theorem 3,
h,, (z,)is the transform of a function H (u,,x,) with support in
(u;",u;") if and only if B (x,)=0.

A second condition follows from noting that the bound-
edness of the set B implies that % (z,,z,) is of exponential
growth in z,, so that a(x,) must only be a linear function of
x,. Summarizing these results and those of the previous sec-
tion gives the next theorem.

Theorem 4: Let g,G be a solution pair to the 2-D phase
retrieval problem. Then any other solution pair 4, H must
have the form

h(z,,2)) = €' * g, (z,,7,)g} (et 23), (23)

where g,g, is a factorization of g.

We have been unable to complement these necessary
conditions for equality of support with sufficient conditions
equivalent to those for the 1-D problem. The difficulty seems
to lie in determining the role of the geometry of B; we give
two examples.

1. The first example concerns convexity and is taken
from Huiser and van Torn.'? Let g,G be a solution pair, then
after the change of variables to the new orthogonal coordi-
nate systems (s,,5,),(¢,,f,) with

S, =u;cosy+u,sing, ¢ =x,cosy+ x,sin ¢,

(24)
$;= —u;sinyg+u,cosyy, t,= —x siny+ x,cos,
and definition of the quantities

s;' (5:) = max{s,:(s,,5,)€B },
s; (s1) = min{sy:(s;,5,)€B },
(25)

S1+ ¥) = max{slz(sl’sz)eB }’

si () = min{s;:(s,,5,)eB },

the relationship g = % G may be rewritten as

st st
glent) = f ds, eu't'f ds, €G (5,,5,). (26)
sp (#) 53 (s1)

For fixed ¢, the growth rate in g, (t,) is determined by
s;t (¥)and s; (¢). Knowing these values for all 1/ is equivalent
to knowing all supporting hyperplanes for the set B, which
by duality arguments from linear algebra is equivalent to
knowing the convex hull of B. If 4 and H is any other solu-
tion pair then 4,, (#,) must have the same growth as g, (1),
otherwise H has support outside of the convex hull of B.

If g has a factorization g,g, such that the growth of g, is
always dominated by that of g, (e.g., £, is a polynomial) then
the alternative function

h (2,,2,) = 81(2:,2,)83 (213) (27)
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has the same modulus as g and support in the convex hull of
B. If B is convex then A is an alternative solution, if B is not
convex then it is possible that the support of H is not B even
though still in the convex hull.

2. Let g,G be a solution pair, then it is trivial to show
that the inverse transform of g*(z¥,z¥) is G*( — w,, — w,)
which has support — B. So a sufficient condition that
g*(z¥,z¥) be an alternative solution is that B = — B, i.e., Bis
invariant under rotation by 180°.

Example 1 suggests that convexity of B is necessary for
existence of an alternative solution and taken with Example
2 suggests that for a factorization g into g,g, and an alterna-
tive solution 4 of Eq. (27) then B must have symmetries
linked in some fashion to those directions in which growth of
g, dominates g,.

V.CONCLUSIONS

Nonuniqueness in the phase retrieval problem in two
dimensions appears to depend on two conditions: (1) that the
zero space of g be decomposable into a union of several sub-
manifolds, (2) that B possesses a suitable combination of con-
vexity and symmetry. Both conditions will, in general, be
difficult to satisfy compared to the 1-D phase retrieval prob-
lem. Only in the case of symmetries that effectively reduce
8(z,,2,) to a function of one variable (e.g., the possession of
radial symmetry investigated in Ref. 11) will the manifold
have an infinite decomposition as appears in the 1-D prob-
lem. In most cases it will be indivisible. Likewise the general
two-dimensional bounded set has considerably more degrees
of freedom than the one-dimensional bounded set, the inter-
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val, consequently it has far fewer symmetries. Therefore, in
general the 2-D phase retrieval problem will have a unique
solution if one exists.
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The problem of analytic continuation to the boundary of the holomorphy domain from both
continuous and discrete interior sets has recently been the subject of detailed analyses. This
problem is important in phenomenological applications but is also of interest in theoretical
calculations, e.g., in attempting to evaluate the parameters of resonances or other nonperturbative
effects in QCD. Because of the inherent instability of the continuation problem it is necessary to
introduce additional criteria—which should be physically based—to select the right continuation
function. In this paper, the results thus obtained for continuation from a continuum are examined
for stability, and bounds are derived for the errors on the boundary in terms of the uncertainty of
the input data. The procedure is shown to be stable in the sense that these bounds tend to zero as

the data errors go to zero.

PACS numbers: 02.30.Rz, 02.60. + vy, 12.35. —i

I. INTRODUCTION
A. Summary

The problem of stabilized analytic continuation from
the interior to the boundary of the domain of holomorphy
has been studied in detail in some recent papers.'” The idea
is to use physically based hypotheses to provide the stabiliza-
tion which is necessary to define a meaningful continuation
process. It is possible in this way to formulate a systematic
procedure for testing a hypothesis against data, data which
may be either experimental or, in many interesting cases, the
results of a theoretical calculation. For example, the meth-
ods which are used to determine resonance parameters from
QCD fall into this category. The data set considered in Ref. 1
is a finite one, that is, the continuation is made from a finite
set of discrete interior points. In Ref. 2, the problem of con-
tinuation from a continuous data set is treated. An essential
aspect of both problems is that the input data, whether ex-
perimental or theoretical, are not exact, and errors must be
incorporated. The significance of introducing errors is more
than the simple admission of possible inaccuracy in the in-
put; it allows a flexibility in the output without which the
continuation procedure would be meaningless. This is ap-
parent when one considers the second case above where the
input forms a continuum. If the input were treated as exact,
with no provision for errors, the analytic continuation would
be fully determined even though it would be unstable in the
sense of Hadamard, i.e., extremely sensitive in relation to
minute changes of the input.

In Ref. 2, the problem of continuation from a contin-
uum, subject to a defined error function and stabilized as
indicated above by means of a supplementary physical as-
sumption, is solved. The required analytic function is ex-
pressed in terms of the solution of a Fredholm integral equa-
tion of the second kind. Having solved this problem, it is
however important to find precise error bounds for the re-
sult. Specifically, we would wish to answer the following
question. Let X %s) be the result of the continuation proce-
dure off the data given on 7; as in Ref. 2, we will suppose that
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the input region, denoted by ¥, is a continuous open curve
inside the cut s-plane, s being the relevant variable with re-
spect to which the true function X 7 (s), the actual physical
amplitude or Green’s function, is supposed to be analytic. If
|X T(s) — X %(s)||, <€, where ||-||, is a certain y *-type norm
defined on y, can we say that | X 7 (s) — X %s)|—0, when e—0,
for all points s of the holomorphy domain of X 7 s), and,
specifically, on the cuts? This question is answered in the
affirmative. This stability analysis is the main purpose of the
present paper and it is carried out in Secs. III and IV, where
we obtain precise bounds on |X 7(s) — X %s)| in the spectral
region (on the cuts) in terms of €. But before proceeding to
this detailed analysis, it seems desirable to discuss the phys-
ical background to the problem; so, in Sec. II, we shall out-
line and develop the results obtained in Ref. 2.

Throughout this paper, we shall use the variable z=z(s)
which maps the holomorphy domain of the function of inter-
est onto the unit disk, so that the boundary cuts come on the
unit circle |z| = 1, and the data region y becomes a contin-
uous curve inside the unit z-disk.

B. Background

An important problem in physics, which has attracted
much attention, is to extend the results obtained from per-
turbative calculations to yield information which is essen-
tially nonperturbative. The background to this is that very
often the only method of calculation which is available is an
iterative procedure, whereas many results of physical impor-
tance are nonperturbative in the sense that they will not be
revealed by a standard perturbation calculation. One well-
known method which has been applied to this problem is
that of Borel summation,? where the information contained
in the numerical values of the coefficients of a series, possibly
divergent, is used to construct an integral representation
with a specified domain of validity, provided certain condi-
tions are satisfied. Unfortunately, for the problems of phys-
ical interest, it is often impossible to ascertain whether these
conditions are met.*
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Interest in this problem has received a particular stimu-
lus from QCD.’ The relevance here arises from the fact that
the calculations which can be carried out in QCD (and which
typically will include nonperturbative as well as perturbative
components) are confined to a domain of validity which does
not extend into the physical region and so, in particular, they
cannot determine resonance parameters directly.

The hope of extending results calculated within one re-
gion to regions of physical interest which are outside the
domain of validity of the original calculations, is based on
analytic continuation. But analytic continuation off open
curves—this is the problem of interest, the usual objective
being to continue to the boundaries of the holomorphy do-
main (to the cuts)—is infinitely unstable in the Hadamard
sense. This means that although the continuation is unique,
errors in the input are magnified arbitrarily, so that without
some stabilizing recipe, the result is meaningless. There is
also the difficulty that the truncated perturbation expansion
which forms the input is itself an analytic function, so that a
straightforward analytic continuation of the precise input
data would yield exactly the same perturbative function
which is known to be incorrect in the resonance region. This
highlights the importance of introducing errors in the data?;
as we discussed above, quite apart from the recognition that
the perturbative input is only approximate, errors are essen-
tial in order to allow sufficient flexibility in the analytic con-
tinuation that it may be possible to obtain the true function
as a possible output, and not be uniquely restricted to the
false perturbative function.

It must be clear from this, that analytic continuation
alone cannot achieve the objective being sought; some sup-
plementary information must be introduced to stabilize the
problem and to remove ambiguity. The way in which this
can be done, and the resolution of the above difficulties, is
discussed at some length in Refs. 1 and 2. It is shown there
how this supplementary physical information (which in-
cludes information about permitted behavior at singular
points such as threshold and infinity, and which also in-
cludes physically based hypotheses about the types of struc-
ture permitted, such as discrete resonances) may be incorpo-
rated into the problem through a “filter”’ acting within the
function space. The operation of this filter, which acts by
means of a suitably defined norm on the function space, is
outlined in Sec. 2. We also show there how the discrepancy
method® can be used to incorporate whatever hypothesis we
wish to make about the type of structure to be permitted.

It should perhaps be emphasized that the need for stabi-
lizing information arises generally in problems of this kind.
Even if one tries, for example, to sum the perturbative series
by means of a Bethe-Salpeter (or equivalent) integral equa-
tion, it does not mean that this difficulty has been circum-
vented. The terms of a perturbative series may or may not
contain some latent information about the sought nonper-
turbative effect (see cases A and B discussed in Ref. 2). But
even in case A, when the terms of the series do contain such
latent information [as in the case with the coefficients of the
series S = 1 + z 4 Z°..., which contain all the needed infor-
mation about the position and residue of the pole S

= 1/(1 — z)], it is necessary to go through a Hadamard ill-
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posed problem in order to make this information explicit,
since indeed the results depend critically on the small terms
of the above series.

Hence, to obtain a stable output, some supplementary
information or assumption is required. This may be the alge-
braic semigroup symmetry zoS = § — 1, which is exact if
S=1 + z + z0z + --- but which otherwise represents a
strong statement about the irrelevance of any other possible
small terms of S. (If © means ordinary algebraic multiplica-
tion, S is the geometric series referred to above; if © means a
convolution integral and zoz, zozoz,... describe, for example,
ladder graphs, then the integral equation zoS = S — 11s just
the Bethe—Salpeter equation.) Similar stabilizing symmetries
are used when deriving linear integral equations for planar
(“parquet”) or other graphs configurations. For a general
review of the present status of the theory, the reader may
consult the recent and comprehensive paper by Jackson,
Lande, and Smith.”

It is important to notice that it is not sufficient simply to
assert that all terms which do not satisfy the semigroup
translation symmetry zoS = .5 — 1 are small with respect to
z (or to 20z, or to z0z°z), since the position and residue of the
pole 1/(1 — z) are not determined by the coefficients of z or z*
but in fact just by these small terms (the terms “-..” in the
expansions above!). Indeed, if one takes 102> instead of z% in
the above sum, one simply gets 1/(1 — z) + 922 instead of 1/
(1 — 2), the parameters of the pole remaining unchanged!

So, one sees that the resonances and the other nonper-
turbative effects found by summing perturbative graphs by
means of integral equations, depend critically on the alge-
braic symmetry which has been used in deriving these equa-
tions. This is a serious problem, the more so as the impreci-
sions of the small terms are not restricted only to some small
graphs which possibly remain outside the summation
scheme, but also to the imprecisions of the Lagrangian itself.
This might effectively be the case with Higgs-like Lagran-
gian transformations and saddle point methods used with
functional integrations in order to derive effective Lagran-
gians.

Bearing all that in mind, we attach much importance to
the requirement that the stabilizing procedures should be
based on physically controllable facts (or on physically con-
trollable hypotheses) rather than on purely algebraic as-
sumptions. Papers like that of Jackson, Lande, and Smith,
where the results are checked against alternative proce-
dures—variational schemes and hypernetted chain approxi-
mation in their case’—are extremely valuable for a sound
founding of the theory. The methods described in this paper
(and in Refs. 1 and 2) are intended to reflect this emphasis.

1. SOLUTION OF THE CONTINUATION PROBLEM—THE
INTEGRAL EQUATION

A standard procedure is to map the complex E-plane,
with cuts along the real axis, into the unit disk |z|<1 so that
the cuts map onto the unit circle® and the segment of the real
axis which is not a cut becomes the diameter — 1<z<1. The
data region is a continuum, denoted by ¥, which for conve-
nience (and also because in practice this is frequently the
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case) is taken to lie on the real axis ¥: z,<z<z,, where |z,],
|z,| < 1. The data (which we may, if we wish, suppose to be
the result of a perturbation calculation) will be denoted by
a(z,), where z, €y, and we will suppose that on y these differ
from the values of the true function (the actual physical am-
plitude) 4 (z,) by only a small amount €z, ):

alz,)=A41(z,) + €lz,). (1)

The actual deviation €(z, ) is of course unknown but we will
require it to satisfy a y 2-condition

XZEf n(z)(e(z))* dz<1, (2)

where n(z) gives a measure of the expected reliability of the
data.

The discrepancy method,® which enables us to intro-
duce a physically based hypothesis about the type of struc-
ture 4 (z) may possess on the boundary, works in the follow-
ing way.

Having decided on an appropriate hypothesis, we must
express this in terms of a suitable trial function 7, (z). We
should stress that the trial function does not need to be, and
in the spirit of our method will not normally be, an ansatz for
the whole structure of the amplitude. It is only expected to
describe this structure in some specific and limited range of
the spectral region, and it will do this in terms of a set of
variable parameters k. When testing the hypothesis 7, one
asks the following question: Can a set of parameters & = &,
be found for which the data are compatible with the struc-
ture of the trial function T, (z)? Since the parameters k typi-
cally describe such physically important quantities as reso-
nance pole positions or residues, the determination of the
values k = k, from the data is the physical problem in which
we are interested and the motivation for the whole analysis.
It is important to remember that any hypothesis T (z) we
may wish to test will be set against the data and rejected if it is
found incompatible. For any trial function T, (z), the dis-
crepancy function D, (z) is defined as

Dy (z) =4 (2) — T(2), (3)

and using the data a(z, ) for 4 (z) we can define corresponding
data d, (z,) for D, ()

di(z,) = alz,) — Ty (z,). 4

A physical hypothesis which is of particular interest is that
the dominant structure of the spectral function, particularly
over some specified range of energy, comes from a set of
discrete poles on the second Riemann sheet. This is repre-
sented by a trial function 7', which, when written as a func-
tion of the energy variable E, has the form

Tk(E)= z klr +lk2r' _ klr lk2r - ,
’=‘\/E—(k3r + iky,) \/F_(_k3r+lk4r) 5
where k,, must be real and k,, negative to ensure that the
poles are on the second sheet. As we have already stressed,
the method is however in no way dependent on this particu-
lar form (5) of T, (E ), which in what follows may be regarded
as a quite general function.
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The hypothesis that the structure of 4 (z) on some speci-
fied part of the cuts can be described by 7 (z) for suitable
values &, of the parameters, may now be expressed in terms
of the discrepancy function D, (z) by requiring that its struc-
ture on that part of the boundary |z| = 1 should be minimal.
To implement this condition, one must define a measure of
the structure on the boundary; this is done in terms of a norm
on the function space, defined as follows:

1 27 /2
=1 = o [Cwwraeis] @
7 Jo

Here X (z) are functions which are holomorphicin |z| < 1 and
x,(¢ ) are the “tangential derivatives” of their imaginary
parts, defined as
IIm X (z'=e*
x,(pj=2m X e =eT))
a
_ J(Re X (z'=re"))
or 2] =1

. (7)

and o(¢ ) is an appropriately chosen, strictly positive weight
function emphasizing that part of the boundary where we
wish to test the hypothesis 7 (z). We will normally consider
only functions X (z) which are real analytic, X (z) = X (z), this
means that o{¢ } may be defined as an even function o( — ¢ )
= 0(¢ ), whereo{ — ¢ }=0(27 — ¢ ). Otheralternativenorms
can be defined, but this one is particularly suited to detect
strong variations of the cross section [of Im A4 (z)]. Also, as
will be seen in Sec. I1I, its stabilizing properties are particu-
larly effective.

Strictly speaking, Eq. (6) does not define a norm over
the whole space of holomorphic functions, as x, (¢ ) will only
determine the function X (z) within the ambiguity of an arbi-
trary additive constant. However, if one considers the space
of those functions X (z) which vanish at some specified point
z = z,, which are holomorphic for |z| < 1, and have a tangen-
tial derivative x,(¢ ) as defined in Eq. (7), then Eq. (6) does
define a valid norm for this space. In this space X (z) is unique-
ly determined by x, (¢ ) and has the representation

21 i
X=1 [ =200 ®)

T —z
The kernel of Eq. (8) is the complex extension of the Neu-
mann kernel

N egz,2 V=2 In|2" — z,)/(z' — 2| (%)
(see the appendices of Ref. 9).

The norm ||X ||=6 [X], as defined in Eq. (6), is a func-
tional of the boundary derivative function x, (¢ ). We define
the functional # [ x, ] as

Flx =5 X 1= [ (6)olps. (10
If we adopt the notation

D, () =X (z) +d, (11)
where

do=D,(z,) (12)

we may use Eq. (8) to express the y 2-condition (which is con-
venient to use in the form of an equality y *> = 1, rather than
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the inequality y *<1) in terms of a second functional of the
boundary derivative function x,(¢ ), 5 ,[x, ], as follows:

Falx 1= D] — 1

= f dz n(z)[dk(z) —d,

1

27 2

Heoze* @M | —1=0. (13
27 Jo
The Neumann kernel .4 (z,;z,¢') is defined in Eq. (9).

The problem to be solved is to find the extremum of the
functional & [ x, ] subject to the constraint F[x,]=0.
This may be done, using a Lagrange multiplier A, by requir-
ing that the Fréchet differential 35 [ x,;p] of the functional

F[x,1=F 1[x,] + 15 ,[*,] (14)
should vanish, and also that the derivative of # [x, ], with
respect to the subtraction constant d,, should be zero. The
Fréchet differential is a two-variable functional 3.7 [x;y],
possibly nonlinear in x(¢ ), but, by definition, linear in y(¢ ),
which, when it exists, may be computed by means of the
Gateau differential formula

AF [x(¢) + ay(d)] (15)
da ,

dF [x;y] = lim
a—0

where a is a c-number. Setting .7 [ x,;y] equal to zero gives
the result

07 [x v = [ b9 {x.16)019)
—a [ demiah ¥ ez o) —
- " %8 f dz nA N (zz,e?)

X./V(zo;z,e""')” =0. (16)

The requirement that 3. /dd, be zero yields the value of the
constant d,,

dy = i L n(2)d, (z) dz — i L dz n(z)

x| f b N aze (6, (17

where n, =¢, n(z) dz. If we now substitute the value of d,,
given by Eq. (17) into Eq. (16), and use the condition that this
equation must hold for any function y(¢ ), we are left with the
following Fredholm integral equation for the boundary deri-
vative function x,.(¢ ):

(x,0"2)6 ) = AG4(6) + 4 5 j d' K (4.6 ")x,0")8").
T Jo

(18)
where
1 .
G =14 .z,e'
= f 2 nizbV (26i2,6%)
x[dk(z)——l— f dz n(f)dk(z')], (19)
n, Jy
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Ki(pd')

= 0,1/2(¢ )0,1/2(¢ /)
x { L f de eV azie®) - de' nig\ ¥ ')
n, J,

—fdz RN (zize® W(zo;z,ew')]. (20)

Notice that the kernel K (¢,¢ ) is Hilbert—Schmidt (symmet-
ric, and, in this case, also uniformly continuous).

Having solved Eq. (18) for x,(¢ ) in terms of 4,'® the
solution must be inserted into Eq. (13) [after d,, has been
replaced by the right-hand side of Eq. (17)] in order to deter-
mine the value of A. The optimal boundary derivative func-
tion x%(¢ ) thus obtained can be inserted into Eq. (8) to yield
the function X °(z) for |z| < 1. Using the value of d, from Eq.
(17) in Eq. (11), we obtain the optimal discrepancy function
D% (z) for the parameter set k. The minimum value §(k ) ob-
tained for the functional 5[D? ] is given by

1 0”d¢(x?<¢»za(¢)} St

— 0 _
Solk)=8[D3} ] I o

The above calculation allows one to evaluate 5,k ) for
any parameter set k. If §,(k ) has a distinct minimum at
k = k, then one can say that the data favor the particular
trial function T, (2}, and, within the context of the hypothe-
sis represented by T, one can say that the data have selected
the values k = k, of the parameters. As well as selecting a set
of parameters within one hypothesis, the method also allows
the data to discriminate between hypotheses. Thus, for an
inadequate hypothesis 7 (z), 8,(k ) would be expected to be
consistently large, with no pronounced minimum. If, on the
other hand §y(k ) is small with no significant minimum, the
conclusion must be that the data are not sufficiently accurate
to provide an adequate evaluation of the hypothesis.

When a set of parameters & has been selected, the func-
tion 4} (z), which defines the analytic continuation from the
data according to the criteria and procedures described
above, is now completely determined: It is the following
function:

2T i
AL =do+ 1 [ (20 )6 + T o)
T Jo e’ —z
(22)
where the constant d,, is given by Eq. (17), and where x%(¢ )
now stands for the solution of the Fredholm integral equa-
tion (18) when k = k,,.

lll. AN EXPLICIT ERROR BOUND

Let us suppose that the integral equation (18) corre-
sponding to a specific physical problem has been solved and
that the actual form of the function X %z)=D ¢ (z) — d,, hav-
ing the least norm & [see Eq. (21)] is known. If the assump-
tions [i.e., the functions T (2), o{z), n(z)] used to stabilize the
continuation process were correct, the function
X T=A47"(z) — T,(z) — d, corresponding to the true but un-
known amplitude 4 7 (z) should have a norm &, (also un-
known) not much larger than &, itself. It is the aim of this and
the next sections to derive bounds for the deviation function

Fi2)=X"(2) — X%%)=A4"(z) — A °z), (23)
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depending on 87, on 6,, and on the precision n(z) of the data
in the input region ¥. In Sec. IV, we shall derive the least (the
best possible) upper bound E °(z), for given weights o{z) and
n(z), as the solution of an extremum problem (a Fredholm
integral equation) similar to Eq. (18). Although the knowl-
edge of the precise value of this optimal bound is very impor-
tant when dealing with a specific physical problem, the solu-
tion of the corresponding Fredholm integral equation can be
found only numerically. Therefore, we shall first derive here
anapproximatebound, E (z), for the deviation function | F (z)|,
which has the advantage of being explicitly computable and
hence gives us direct insight into the contribution of the var-
ious factors. One might use this information to derive an
optimal strategy, taking for instance a suitable balance
between the values of the weight function o{z) inside and
outside the energy “window,” and so on.

Pursuing this objective, we make the following modifi-
cation in the initial problem:

Instead of the inequality

fdz(X %) —X

[which one obtains from the triangle inequality for the »-

weighted .’ %-norms on y of X °z) — d,(z) + d, and X " (z)

— d\(z) + d,], we shall use the .¥ *-condition
|F2)|l=|X%) —X"(z)| <e for zey. (25)

Here ¥’ is some subset of 7. Indeed, in order that an inequa-
lity of the type

(2)’nlz)<4 (24)

[ @=iFap <7, (26)

should hold [for simplicity we have taken here the case in
which n(z) is constant and equal to 1/77, /, being the length
of 7], it is necessary that

\F(z)l, <€ (27)
on some subset 3’ of the initial interval y; if € = az, with
a > 1, then the measure /,, of ¥’ must be larger than
(1—1/a?),.

One could have specified the accuracy of the data from
the beginning by means of a point-wise inequality
|a™™(z) — 4 (z)| < €(z) rather than by a .£°? one. In this case
the inequality (27) would have been the natural formulation
of the problem, but we wanted to stress here that, with some
loss of information, the inequality (27) also follows from our
original .#’? y *-condition.

The sole remaining information about F (z) [the differ-
ence between the (known) optimal continuation function
X %z) and the true but unknown one, X 7(z)], is that it is
holomorphic in the unit disk and that the o-weighted .%"*
norm of the boundary values of the (tangential) derivative of
its imaginary part

_dImF(e?)
f(é )————a s =
is bounded

L f " do 216 ol ) <A =80 + 5 P<28:P. (29)
27 Jo

Here 8 is the 5-norm [Eq. (6)] of the discrepancy asso-

x2¢) — x7() (28)
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ciated with the true (but unknown) amplitude 4 7(z). If the
definition (6) of norm (which is required to be small) and the
choice of the trial function T} (z) are physically reasonable,
then &, should be small, certainly finite. From (29) and from
the integral representation

Flo)=Flzg) + f d¢1(' /) (0

of F(z) for |z|<1, we may show that F (z) is bounded in the
whole (closed) unit disk. Indeed, using the Schwartz inequa-
lity, we get

IF(2) — Fle)?
2 i’ 2
E‘LJ d¢’2lnei,_j m}(ﬁ)
zqrf ¢a(¢)‘ w—zo
x—z—;fo dg’ F Yol ). 1)

The second integral satisfies the bound (29), while the first is
bounded even if z is on the unit circle. (If z = ¢, the integral
is finite, in spite of the logarithmic divergence of the inte-
grand at ¢ ' = ¢.) Taking z, on y', where |F(z,)| < €, we thus
obtain the result

|F(e)| <M. (32)

Our aim is to show that M—0, when é—0. The proof
which follows will use a combination of the Nevanlinna
bound (see below, Sec. A), and of a limitation on the growth
of F (z) over any interval (z,,2,) contained in the closed unit
disk |z| <1 because of the inequality (31) (see Sec. B below).

A. The Nevanlinna bound

Define w(z) to be that (real) harmonic function which is
equal to one on ¥’ and zero on the unit circle I,

Violz) =0 for z: |z|<],zey,
wlzey')=1, wizel')=0. (33)

Now let D' be the domain obtained if one removes from
the disk |z| < 1 the points of ¥’ as well as small circular neigh-
borhoods around the zeros of the function F (z), each neigh-
borhood being bounded by sufficiently small circles ¥, so
thatinside any of them In |F (z)| will be less than bothIn e and
In M. The function In F(z) being now holomorphic around
eachofthepointsof D ’,Re In F (z)=lIn | F (z)| willbe harmon-
icin D’. On the other hand, on the boundary dD ' of D’ we
have

In|F(z)|<w(z)In € + (1 — wl(z)In M, zedD'=y'ully,.

(34)

[This follows on ¥’ from (27) and from (1 — w(z))|,, = 0,onI"
from (32) and w(z)| - = 0, and on the circles y; from the fact
that |F(z)| is (there) less than min(e,M ) and that o(z)<1
throughout the whole unit disk.]

But both sides of the inequality (34) being harmonic
functions, this property, which is valid initially for the
boundary 4D, is automatically extended throughout the
whole domain D ’, and since it is also satisfied inside the small
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FIG. 1. Interplay between the Nevanlinna and the derivative bound near
r=1,iny coordinates (r = 1 — J?).

neighborhoods of the zeros of F (z), it is valid throughout the
whole (closed) unit disk. Hence,

|F(z)| <M (“—z) -

The Nevanlinna bound (35) is not expected to be the
best bound which one could find for |F (z)| from (27) and (32),
as the inequality (35) would have been valid even if 9’ had
been a part of the boundary of the holomorphy domain of
F(z), whereas in fact, ¥’ is completely embedded into the lat-
ter. However, (35) is sufficient to provide, in combination
with (31), a mechanism which makes M vanish with €.

Although (35) predicts that for every interior point
|z| < 1, |F(z)| tends to zero when € tends to zero [for such
points w(z) is strictly positive], the condition (35) has no pre-
dictive value at all for boundary points, since the inequality
(35) merely repeats there the already known fact that | F (z)| is
bounded on I"by M (w(z = € )=0!) However, even if no bet-
ter condition could be obtained, this would mean that, at
least for small €’s, a huge increase of the modulus of F(z)
would be allowed to take place in the immediate neighbor-
hood of the boundary (see Fig. 1). But considerations similar
to those which lead to Eq. (31) limit the rate of growth of
|F(z)| near |z| = 1 (see Sec. B below) and this in turn imposes
strong constraints on M, linking its value to that of €.

forall |z|<1. (35)

complex plane cut along ¥’ [where w(zey’) = + 1]and along
the image 7" of ¥’ through the unit circle I', where

w(zey”) = — 1. This means that the points of I" are all with-
in the domain in which w(2) is harmonic, with the result that
o(z) has a well-defined gradient at points on the circle, so that
we may write

o(z) = (1 — x)e?) =K (¢ )x + -, (36)
where
_ __dwlre?)
Kig)= | _.

is positive and bounded. Hence, for points close to I, the
Nevanlinna bound (35) may be rewritten as

[Flz=(1 —x)e?)|<Mexp[ — K (¢ )In (M /e)x]. (37)

B. A limit for the growth of ~(2)

For large M and small ¢, the right-hand side of the ine-
quality (37) has a very sharp growth when x tends to zero
(]z|—1). However, the other inequality (31) severely limits
the rate of growth of F (z) near the unit circle. Indeed, writing
1/0(¢ ) as the real part of the boundary values of the holomor-
phic weight function S (2) (see Ref. 9), where

1 1 1 )
S ” =Re S (e*),
“= f '—za(¢> gy e
(38)
the bound (31) reads
4 217 ,
IFleo) = Fiz,)| <67 +8)Re - [Tas
et 2 172
X | In—; S(e‘¢')]
e’ —z,
=67 + So)(Re 1)"/2, (39)

To see how (39) limits the growth of F (z) near the boundary
we take z, = (1 — x)e* and z, = ¢”. The integral

d(e) o (“*'—z) (l—e"‘”'Ex)
21r1§ Sl lin e? —z, tn 1—e*7%, (0)

may then be computed by moving the integration contour
around the singularities of the integrand. Observing that the
residue of the pole at 2z’ = 0 is zero so that the sole contribu-
tion to the integral is due to the cut of the first of the two
logarithms of (40) along the radial segment z’ = r'¢*®,

1 — x<r'<1, we get the result

Rel = Re4J dz S(z)l

1—-27Z,

1 -2z,

1 i

The above discussion emphasizes the importance of the =4 dar ReS(re ¢) 1-r(l —x) . (41)
way in which the Nevanlinna bound behaves at points 1—x r (1—r)
z = (1 — x)e”, for x small. As it is well known from elemen-  If x is small, Re(S (r'e#))/# can be expanded around
tary potential theory, w(z) should be harmonic in the entire Z' = z,(=e"),

J
Re(S z) ERC(ZO S@) ) —Rel [ Stz (S ) _ S Yy,
r z Zy 1' z, zz ‘
, dRe S
= ReSizy + 1~ N[ ERIEL | Resi) 4 2

where we have used the fact that (z/ — z,)==z,(# — 1) and that
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Jd(Re S (re®))

Re(S (zoh20) = =~

r=1

The bound (39) on the rate of growth of F (z) in the neighborhood of the boundary, in terms of the value of the weight

function §'(z) and its radial derivative at z = z, now becomes

|F(e”) — F((1 — x)e”)|><(AF (§ )*=(5, + 6T)2[x8 In2Re S(zo) + 2x*|(2In2 — 1)Re S(z,) —

This may be rephrased as
|(Fe®) — F((1 — y%)e?)|<(AF (4 )
=yA(@)+y'B(g)+0()y), (44a)

where we have introduced the notation y = v/x and the coef-
ficient functions 4 (¢ ), B{¢ ):

A(¢)=2y2Tn 2 YRe 5 (€%)(5, + 1),

(44b)
— _ id
B(p)= Ty 2)”2 [2In2— 1}/Re S(€?)
s \IRcaS'(r'ei") ](50 +68,).
r F=1

If one is interested to have a bound for
|F (") — F((1 — y*)e”)| independent of the magnitude of y,
this may easily be written in terms of the upper bound
Re S(¢?) of Re S (re?)in theinterval | — y> < r < 1. It reads
|F(e?) — F{{1 — y%)e”)|
<2~y 2/(1 — y')H( Re S(€*) /%8, + 7).
(44¢)
Equations (44a) and (44b) make explicit the relative contribu-
tions of Re S (¢®)=1/01{¢ ) and the derivative term
d Re S (¢*)/dr. This is of practical importance in devising an
optimum strategy with regard to the choice of the weight
function o{¢ ). On the one hand, we may wish to increase the
accuracy within a particular range [¢,,¢,] by making o{¢ )
relatively large (and Re .S'small) within that interval, but this
benefit is offset by the contribution introduced through the
derivative term d Re S (¢ )/dr which can become large if
o(¢) has a large variation.!!

C. Vanishing of the bound M of ~(z) on the boundary

If M is large with respect to €, there will be a sharp drop
of the Nevanlinna bound near r = 1, as one may see in Fig. 1

(where the variable y = {x = /1 — r has been used for con-
venience),
|F(z = (1 —)}e?)|<Me~ 2, (45)

where[see Eq.(37)]Q =K (¢ )In(M /¢). But,ashasbeenshown
in Sec. B, such a violent variation of the modulus of Fis ruled
out. So, starting with some M = M,, as in Fig. 1, we will end
up with a smaller M = M, if we take account of the fact that
the modulus of the increase of Fbetween z, = (1 — y?)e” and
z, = € cannot exceed AF (¢ ) given by Eq. (44).

To simplify the discussion, we shall suppose for the mo-
ment that the coefficients entering the right-hand side of Eq.
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dRe S{Z')
ar

m” 4o

(43)

-

(44) do not depend on ¢, or, more correctly, that by 4, B, and
K we understand sup, (4 (¢ )), supy(B (4 )) and inf,K (¢ ), re-
spectively. At the end of this subsection we shall drop this
condition.

The new value M, which replaces M depends on the
point y beyond which the rule (44) is applied. Obviously, the
lowest M, is obtained if y, is chosen to be the tangential point
y, where the curves Me — 2" and const — Ay — By® touch,
the value of the constant being chosen to ensure tangency.
This corresponds to M given by the implicit equation

M= inf (Me~ %" + Ay + By’). (46)

o<y<1

However, in order to simplify the calculation, instead of
¥., we shall use the (nearby) point y,, where the second deri-
vative is maximal, given by the condition

d3e % 3
= _—8Q%" c[c———]—o, 47
px Q% %y ly 20 (47)
the relevant solution of which isy. = y3/2Q.

Substituting this value of y as an approximate solution
in Eq. (46} above, we get the following fixed-point equation

for M:
3 (A + 2) (48)
20 20
which may be rewritten in the following form, which, if € is
small, is convenient for iterations:

et 3 3B
T @R \/ 2K In (M /€) (A K (M/e))')
(49

(See Fig. 2.) An asymptotic solution M, valid for vanishingly
small €’s, which is necessary if we want to prove that M,—0
when e—0, can readily be found by observing that for large
values of the ratio M /e the B term is negligible with respect
to the 4 term. Hence, for very small values of €, we have

M? 2 3e%4 2 1
—1 — = ———e ——
€ " ( e) €'* - 17K € (50)

But the asymptotic form of the solution of the transcen-
dent equation X In X = q, for a— w0, (a~1/€), is
X, =a/ln ag; indeed lim, , _ {1/a)X; In X,

M= Alé__3/2-+

=1lim__,  {{1/Ing){ln @ — In In @)} = 1. Hence the corre-
sponding form for M is
3/2 3/2 3A 1 — 172
0= 3/e2 f34 In ( 3/e2 02 _)] :
—1) K @2—1) K €

(51)

So, we have shown that the modulus of the difference
F (z) between the unknown amplitude A 7 (z) and the comput-
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FIG. 2. Because of its internal symmetries, it is convenient to rewrite Eq.
(49) in terms of m=M/{A/vK) and €'=e/(4/vK). Then, if
b= B/[AK), we have
el.s 31 /2 1 3 b ]

¢ 27 (am/e) 2 | 2 Wmimre))

In Fig. 2 the dependence on m versus x = 1/¢ is plotted for three different
values of 5. One should notice the initial sharp drop of M = m(4 /JK) with
1/¢, which slows down considerably for x greater than that corresponding
to the maximum curvature point. Nevertheless, M—0, when x— oo (€—0).

m=

ed one 4 °(z) does tend to zero when the errors of the data tend
to zero, even on the boundary |z = 1 of the domain of holo-
morphy. This is not a trivial consequence of the Nevanlinna
principle alone, but follows from combining this with the
stabilizing condition used on the cuts. To compute M for a
value of ¢ different from zero, one may start with the asymp-
totic form (51) and iterate it using Eq. (49); since the right-
hand side of (51) contains only terms which vary slowly with
M, the whole procedure converges rapidly.

In the above calculation, we took no account of the ¢-
dependence of either K (¢ ) or of the coefficients 4 (¢ )
and B (¢ ). We shall now indicate an approximate procedure
for introducing this g-dependence, which will yield a ¢-de-
pendent bound on the unit circle

|F(e®)| <A (). (52)

In the next section, we shall describe the calculation
which leads to the best possible bounds for F (z) at each point
z; here we are concerned to obtain a result which is explicit,
thus displaying the individual effects of the various terms,
even though in deriving this, we make approximations so
that the bound obtained is not the optimal one. The iterative
procedure outlined below is a reasonable approximation for
small € and provided that ¥ does not extend too close to the
unit circle. We define a weight function C (z}, holomorphic
and without zeroes in the unit disk, in terms of a real func-
tion {2 (¢ ), as follows:

ce=ewls- [T St ap)-n)],
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where

2
=21 f ¢ 02(8). (53b)
27 Jo
The above construction ensures that |C (0} = 1, since
2T i -
injce) = [ dsRe(SEE)aig)-2). (54
27 Jo e —z

Being a harmonic function, the value of In|C{(z)| atz=01is
the mean of its value (2 (¢ ) — £2 ) on the boundary (which is
zero by construction). We now use this weight function C (z),
which is allowed to have an arbitrary ¢-dependence, to re-
place F(z) by F(z)

F(2)=F(z)C(2). (55)
Having defined C (z) so that |C (0)| = 1, we shall make the
approximation of supposing that the error € applies un-
changed to F (z). This is reasonable provided that ¥ does not
extend too far from the origin and also provided that the ¢-
dependence of £2 (which will be determined below, and
which reflects the ¢-dependence of 4 and B} is not too
marked. If we now start with a bound M for |F (¢*)| and
proceed as before, since

|F(z)| <M (M /€)~ %, (56)

then for z close to (and within) the unit circle,
[putting z = (1 — x)z,, z,=¢" ], we find that

IF(z=(1—x)e”)|
<M exp[ — K (¢ )(In(M /€)}x]|C((1 — x)e”?)|

=M |C (z,)|exp [ —K(¢)In (A?{)x]

_dn|Cire?)
G I 5
Now define .#(¢ ) as

M (@ )=M |C (z,=¢€")], (58)

put y*=x as before, and combine Eq. (58) with the bound for
AF [Eq. (44)], taking y = y,=/3/(2K (¢ )In(M /€)), to obtain
the equation for .#(¢ ),

M (B )=M |C (z)|

_ 83/2
(es/z 11— d1n|C (re”)) 3 )
ar r=1 2K (¢ )In(M /€)
V3 3B(4)
[2K (¢ )In(M /€)1'/? [A 8)+ 2K (¢ )In(M /e) ] ’
(59)

To solve this equation by iteration, one first neglects the
term containing d In|C (re*)|dr in the first denominator (this
will be small relative to e>/? — 1 if € is sufficiently small), and
one gives M the asymptotic value M, from Eq. (51). This
yields a solution .# (¢ } whose ¢-dependence comes from
K (¢),4 (¢),B (¢ )and whichdetermines the normalized func-
tion £2 (¢ ) — 12 appropriate to this state of the iteration,

2,(¢) — 2, = n|C\(e?)|=In(A (¢ )/ M),

where
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1“M1=2,,L dé In A ($). (60)

Equation (60) follows from Eq. (53a) which may now be used
to construct C (z) and thus 3 In|C (re®)|/dr|, _ , . For smalle,
the iteration will converge rapidly to yield the desired bound
A (¢ ) for the difference between the true (unknown) function
A T(e*) and the computed one 4 °(e*) for each point ¢ on
the unit circle.

Although the stability of the whole procedure has been
proven (i.e., the vanishing of M for e—0), the dependence of
M on € in Eq. (51) is, of course, a weak one [ 1/4/In(1/€), as
e—0]. Itisinteresting to look at the graph of M with respect
to 1/€: At the beginning the variation of M with 1/€ is large,
and so, the value of 1/¢, for which this curve has a maximum
curvature gives a useful target value for the required preci-
sion of the perturbative calculus. [For example, for the func-
tion 1/y In X this pointis X, = 1.591, which, if we approxi-
mate M by its asymptotic form (51}, corresponds to an
€. = 1.404 /JK . Since this point is near that where the deri-
vative of the right-hand side of Eq. (49) with respect to M
equals — 1, €, may easily be recognized numerically by the
slowing down/failure of the iteration (49) for € > €..] The
benefit from reducing € much below this level is not great.

Once again, we emphasize that the method of this sec-
tion, and in particular the way in which the Nevanlinna
bound was applied [bearing in mind that F(z) is analytic on
7], involved approximations which were not required in
principle. Thus, the bounds derived above are not the best
possible,'? although their explicit form makes them interest-
ing and valuable. In the next section, we consider the prob-
lem of determining the best possible bound as a function of ¢
and show that this satisfies a Fredholm equation.

IV. DERIVATION OF THE OPTIMAL BOUND £°(2)

The problem to be solved may be stated simply. The
function F (z)=4 7 (z) — A °(z) is required (a) to be holomor-
phic in the unit disk, (b} to satisfy a y *-condition on y of the
form

X2[F]..=_f dz n(z)|F (2)|* = 4, (61)

and (c) to have a norm less than some constraint 4 2,

2 =_1_ o 2 2
6[F1_27f0 (f, (6 ool )do <A 2.

Subject only to these conditions, we want to know the
maximum value E °(z) which | F (z)| could have at any pointin
the unit disk and more particularly on the unit circle.

Observe that the value of | F (z)| at a specified point zis a
functional of F (z). But y >and & ? are also functionals of F(z),
so that the problem may be completely expressed in terms of
these three functionals. Instead of being expressed in terms
of F, they may equally be regarded as functionals of the
boundary derivative function f,, since f, (¢ ) [together with
the subtraction constant dy=F (z,)] determines F (z}. So, we
define
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F [f']E,LdZ n(z)
x{do+L [ (S=22)rws | -4,

e —z
(62
Falf 1= f (6 Vol dé — A2, (63)
FH]
— 1 " e’ —z, oz
= Jdo+ L [Tn( =R pg s | e
(64)

The conditions y 2 = 4 and § > = 4 ? thus become

F1[f,] =0and F,[f,] =0, respectively; these are the
two constraints subject to which we must maximize

F 9,1 To incorporate the constraints, we introduce two
Lagrange multipliers and define the combined functional

FL1=AF L)1+ FL0N1+HALF0] (69)

(We have written # as 4,.% , + % , + 4,7 ; rather than
AT | + AT, + F, for notational convenience.) The ex-
tremum condition is that the Fréchet differential of % and
the derivative of # with respect to d, should both vanish,

8F [f.w] =0, (66)
97 _y, (67)
ad,

As an alternative problem, we can look for bounds on
the real or imaginary parts. To do this the functional
F5/.] of Eq. (64) has simply to be replaced by the appro-
priate forms. Thus the value of Re F (z) at a specified point zis
given by

FE) = do+ 5 J N gz b )dd (=E (),
(64
and Im F(z) by

T ) = [ ez V10106 (=EO)
(647)

where 4 (z,;2,2') and .# (zo;2,2') are the real and imaginary
parts, respectively, of 2 In((z’ — z,)/(z' — z)). The two func-
tionalsfor Re F(z)and Im F (z)aresimpler thanthatfor |F (z)|,
which is quadratic in £, ; 5o, in order to keep the derivation as
simple as possible, and because the bounds for Re F(z) and
Im F (z) are of comparable physical interest, we choose the
Re F (z) case for the derivation which follows. In this case Eq.
(66) gives

£id)oid) + %/V(zo;z,e“) + Ado f d2 nZ W (2 )

& 1 27 ’ ’ ’
+ = de’ | dz’' n(')
2 0 v
X AN 20z €\ (2052 € )f, (¢ ') = O. (68)
As for the derivation of the integral equations (18) [see Egs.
(15)and (16)], we have required that .5 [ f,;y] should vanish

for arbitrary y(¢ ) and so have put the factor multiplying y(¢ )
equal to zero to obtain Eq. (68). The condition d.% /dd, = 0
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[Eq. (67)] gives the value of d,, (n, =, dz’ n(z')),

' 1[4 I
d, = ———[—3 —f d ’fdz’nz’
o n 2./11+2ﬂ' o ¢ ” )

Y
XNz 2 V8- (69

Substituting this in Eq. (68) yields the integral equation
o' )f(¢) = A:G%¢)

+ 4 f K408 Y8 )b’ (10)
T Jo

where
68) = 57 |tz

—f dz n(z'W(zo;z',e“)], 1)
Kigo')= WJ dz' n(z\ NV (252 e

% [/V{zo;z',ew - — f dz" nlz"\ N (252" €™ ,)}.
ny y
(72)

Wesee at once that the kernel X (¢, ') isidentical with that of
Eq. (20). This means that the program which was used to
obtain the numerical solution to the main problem, as set out
in Sec. I1, may be applied directly to the integral equation
(70). The desired optimal error bound E °(z) for

Re 4 T(z) — Re 4 %(z), [see Eq. (64')], given in numerical form
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by means of the solution of the integral equation (70}, may
thus be obtained with little extra effort.
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We consider all different possible definitions of commutants and bicommutants for an x-invariant
family of operators on a partial inner product space. We investigate their behavior with respect to
the weak topology and we describe the situation when all commutants (resp. all bicommutants)

coincide.

PACS numbers: 02.30.Tb

I. INTRODUCTION

Unbounded commutants of unbounded operator fam-
ilies have been studied in recent years by many authors.!™’

In this paper we start with a x-invariant family % of the
space Op V of all operators on a partial inner product (PIP)
space V,*° and we define the commutant of % within Op V.
The study of this commutant shows that it is too pathologi-
cal and this suggests another more suitable concept of com-
mutant, namely one starts with % and defines the commu-
tant within the *-algebra Reg V of all regular operators on
the PIP space ¥ '° and the bicommutant within Op V.

We assume that V is quasicomplete in its canonical
Mackey topology 7{ ¥, ¥*). This implies that Reg V is iso-
morphic to the *-algebra L *(F*) of all operators 4 € Op V'
such that 4 and its adjoint leave ¥* invariant. The space
Op V is equipped with the weak topology defined by the
following system of seminorms: 4—| < A4d, ¥> |; &, Y € V*.
On Reg V'~L *(V*) we will consider the weak topology in-
herited from Op V.

The paper is organized as follows. In Sec. II we recall
briefly some basic facts about PIP spaces and operators on
them. In Sec. IIT we introduce the different possible defini-
tions of commutant for an x-invariant family % of Op ¥ and
we study the relationships between our commutants and bi-
commutants with the ones considered in Refs. 2, 4, 5, and 6.
In Sec. IV we study the weak closedness of the commutants
and bicommutants. In Sec. V we give some criteria in order
that the bicommutant coincide with the weak closure of Z.
In Sec. VI we compare our commutants with the one intro-
duced in Ref. 1 and we describe the situation when all com-
mutants (resp. all bicommutants) coincide.

Il. PIP-SPACES AND OPERATORS ON THEM®#

A PIP-space ¥V is a complex vector space with the fol-
lowing structure.

{i).7 = {V,, r eI} isacollection of vector subspaces of
V which covers ¥ and is an involutive lattice with respect to
set interesection, vector sum, and lattice involution: V, <> V..
Besides elements of .7, we consider also the extreme spaces

VW=nV, and V= UV,

rel rel

(ii) A nondegenerate Hermitian form {-|-) (the partial

inner product) is defined on U, ¥V, X V5 .

® Boursier Administration générale de la Coopération au développement,
Belgium.
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(iii) There exists a unique element O = O in [ such that
V, = V=5 is a Hilbert space with respect to {-|-).

The nondegeneracy assumption ( F*)! = {0} implies
that every pair (V,, ¥;), as well as (V*¥, V') is a dual pair
with respect to the form (-|-). We may therefore equip each
V, with its Mackey topology 7(V,, ¥;) and similarly for
V.

An operator 4 on a PIP space V is a map D {4 )V,
where D (4 ) is the largest union of V,’s such that the restric-
tion of 4 to any of them is linear and continuous into ¥. The
set of all operators on ¥, denoted by Op V is isomorphic to
Z( V¥, V)= {linear continuous maps F*—¥V}. Equiv-
alently Op V~B( V*, V*) = {separately continuous sesqui-
linear forms on ¥* X V*}. Thus, Op V is a vector space.
Moreover Op ¥ carries an involution 4«<>A4™ (adjoint of 4 ),
but it is not an algebra for the multiplication is not always
defined. Such sets are called partial-x-algebras.'’ In order to
avoid this undesirable feature, one has to consider a smaller
class of operators; the so-called regular operators.'®

An operator A on a PIP space V is called regular if
D(4)= D (4"} = V.Equivalently, a regular operatorisalin-
ear continuous map of ¥ into itself, which maps /¥ into
itself continuously. The set of all regular operators on ¥,
denoted by Reg V'is a *-algebra.

The space Op V contains another remarkable subset,
namely

C(V*, §) = {A-closablein $|V* C D(4)nD(4*)}
— (4eOp V|4 5],

We have Reg ¥ C C( V¥, ) C Op V.

From now on, we will assume that Vis quasicomplete in
its Mackey topology. This implies in particular that we can
simply identify Reg ¥ with the *-algebra L *( *) of opera-
torsAsuchthat ¥* CD{4)n D (4 *)and4 'V* C V¥ (seeRef.
10, Proposition 2.5). An Op*-algebra on Vis a *-subalgebra
with unit of L *( ¥#). The condition of Mackey quasicom-
pleteness of ¥ is actually satisfied in almost all examples; the
only known exceptions are quite pathological.'?

We will endow Op V with the weak topology defined by
the following family of seminorms:

A | <Ap, ¥>|; @ peV*

On Reg V~L *( V*) we will consider the weak topology in-
herited from Op V.
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11l. COMMUTANTS AND BICOMMUTANTS

Let 4, Be Op V. Following Ref. 11 the operator 4 is
called the left multiplier of B (resp.B is the right multiplier of
A)andwenote 4 € L (B)[resp.B € R (4 )]iftheproduct 4Bis
defined. Similarly if # is a subset of Op ¥V, we may define

L#= n L(B)={CeOp V|CB exists VBe#}.
Be A

Definition 3.1: A subset & of Op ¥V is said to be a partial
x-algebra if the following conditions are satisifed.
(i) Z# contains the identity.
(ii) £ is x-invariant, i.e., 4 € # implies 4 * € %.
(iii) If 4, Be # and A € L (B), then AB€ %.

It is easily verified that Op V satisfies these conditions.
Let # be an x-invariant subset of Op V. It is natural to
define the commutant of & in the following way:

R ={XeOpV|XelLANRK
and AX=X4, VAeA]}.

This set is a vector subspace of L% n R%. Furthermore it is
x-invariant and contains the identity, but it is neither a par-
tial-x-algebra nor a weakly closed subspace of Op ¥. Now we
may define the following bicommutant:

R" =(R') ={YeOpV|YeLR nRA'
and YX=XY, VXeZ'}

This set is an x-invariant subspace of L#' n RZ%'. Moreover
it contains the identity and 7 itself. From this fact and the
relation #, C #, implies #; C % we get that Z" = %’
and therefore #"" = %" . Butin general " is not a partial-
x-algebra and furthermore it is not closed with respect to the
weak topology.

The lesson of these considerations is that the concept of
commutant introduced above is too pathological and thus
not interesting for applications. One can improve the situa-
tion by considering the case when the product of two opera-
tors is always defined. This is true in particular whenever one
of the two operators is regular.'® Thus another (well-be-

R

R - Ry
U

R - R, c R,

IV. CLOSEDNESS OF THE COMMUTANTS AND
BICOMMUTANTS

One of the main properties of the algebra B () of bound-
ed operators in $ is that the commutant and bicommutant
(in the usual sense) are weakly closed. If we try to extend this
property to the commutants and bicommutants introduced
in this paper, it turns out that this property remains valid
whenever one starts with an Op*-algebra on F#, i.e., % and
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haved) concept of commutant suggests itself: let % be an x-
invariant subset of Op V. We may define the following com-
mutant:

R = (XeReg VauL *( V*)|AX = XA, Y A€ R).

AsReg V C LA n RA, the commutant £ is contained in
Z'. The set #. is an Op*-algebra on V*. To prove this, it
suffices to show that if X, ¥ € 7/ then their product XY also
belongs to ..

We have X4 =4X and YA =AY, VAe€#. From
these relations, it follows that V £, g € ¥* we have

AXYf=AXg=XAg =XAYf=XYAf ie,XYeZ..

One can also start with a subset of regular operators and
define the commutant within Op V. Namely: let & be an
Op*-algebra on ¥*. We may define the following commu-
tant:

Ry ={XcOpV|AX=XA, Y AecR)}

This set is an x-invariant subset of Op V. Clearly
R =R,nL*(V*) coincides with Inoue’s commutant*
and we have the following relation between the different
types of commutants:

R.C R, C R
where 2/, is the “weak unbounded commutant” introduced
in Ref. 2.

Now we may define two different bicommutants.

(i) BH={YeOpV|YX=XY, YXeZ],
which is an x-invariant subset of Op V containing . From
the above definition, it follows that if # is a x-invariant sub-
set of Op V, then Z%. = #. and B0 = Rl
This bicommutant is related to #2” in the following way:

R C Rl =(R:) C Op V.
(i) g ={(YeL*(V¥)|YX=XY, VXeR,}.

This set is an Op*-algebra.
The two bicommutants %, and 2, are related to the
four ones considered in Ref. 5 in the following way:

c L c OpV
Ul v]}

c R, c C(V*, 9.
Ul ul

C R, C L*(W¥),

R, are weakly closed in Op V. But if one starts with an x-
invariant subset of Op V, then the commutants [here % and
(#§):]need notbeclosedin L *( V*)with respect to the weak
topology.

Proposition 4. 1: Let % be an x-invariant subset of Op V.
If #V* C V*, then #. is weakly closed in L *{ V¥).

Proof: Let {4, } be a net in #., such that 4,—A with
AL (V) ie., (4,0, ¢)>Ap, ¥), Y @, b c F*. We have
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to prove that 4e€ #.. Let Be%. This means that
BA, = A, B and we get the following relation:

(4, B*Y) = lim(d,p, B *y) = lim(Bp, 4 2¥) = (Be, 4 *Y).

This implies that A € %/, and since 4 € L *( V*), we have
that 4 € #.

Remark 4.2: The condition ZV* C V* implies that #
isan Op*-algebra on F* and therefore ., is Inoue’s commu-
tant, which is indeed weakly closed in L *( ¥*) (see Ref. 4).

Proposition 4.3: If % is an Op*-algebra on F*, then we
have the following.

(i) #¢ is weakly closed in Op V.

(ii) If moreover 2 V¥ C V*, then %, is weakly closed
in L *( V*).

The proof is similar to that of Proposition 4.1.

Remark 4.4: The condition #Z{V* C V* means that
R isan Op*-algebraon V* ie., #; = #.. Thus ¢, isnot
weakly closed unless it is equal to ..

Corollary 4.5: If & is an x-invariant subset of Op V,
then 7, is weakly closed in Op V.

Proposition 4.6: If # is an x-invariant subset of Op V,
then the commutant of & is equal to the commutant of its
weak closure, i.e., Z. = (#"“)..

Proof: The inclusion (#*). C #. follows clearly from
the fact that Z C Z“. Let us now prove that Z. C (#"“)..
Let B Z7“. Then there exists a net {B,} C 2 such that

B,—B. LetXe #.,ie,XB, =B,X. Wehave
(Bp, X *¢) = lim(B, @, X *¢)

= lim( Xp, BZY) = (Xg, B*Y),

ie.X e(#Y)..

Corollary 4.7: Let % and %, be two x-invariant subsets
of Op ¥V such that %, C % and &, is weakly dense in %.
then (#,). = Z..

Proof: The inclusion #, C (#,). is obvious, Now since
A, is weakly dense in %, we have Z¥ D % and therefore
(#%). C #.. From Proposition 4.6 we know that
(%), = (#,).. This implies that (#,). C . and thus we
obtain the equality (#,). = Z#..

Remark 4.8: In Proposition 4.6 one can start with an
Op*-algebra and consider the commutant (. In this case
the equality 2, = (%");, does not hold since %/ does not
leave V¥ invariant. We have only the inclusion 2§ O (%“),.

V. BICOMMUTANTS AND THE WEAK CLOSURE OF &%

For algebras of bounded operators, it is well known that
the usual bicommutant of a nondegenerate *-algebra .# of
B ($) coincides with the weak closure of #,i.e., #" = M
When one starts with an x-invariant subset % of Op ¥ (or an
Op*-algebra on V*), this property need not be satisfied and
our aim in this section is to find sufficient conditions on # in
order that the above property remains true.

Let % be an x-invariant subset of Op V¥ and consider
R ,=PR n B(9). Following Ref. 8 we will say that a sub-
space W of a PIP space Vis orthocomplemented in V, if Wis
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the range of an orthogonal projection P, i.e., W = PV. We
will say that &, satisfies the condition (@) if ¥ ¢ € V¥ the
norm closure of %, @ is orthocomplemented in V.

Proposition 5. 1: Let # be an x-invariant subset of Op V.
If %, satisfies (a), then (%)% = & ¥.

Proof: First, we know from Corollary 4.5 that (#, )% is
weakly closed and hence Z#¥ C (#,);. Now let
@ € V¥ C Hand consider the closed subspace %, @'l of .
Let P be the projection on Z,¢!'l. Since all elements
Ae R, are bounded and %, is an algebra, #, leaves
Z,¢"l invariant and this implies that AP = PA, i.e.,
Pe(R,),=(Z#,). nB($). On the other hand P leaves the
space R, invariant and therefore
Pe (R, ) =(R,).nB(D),ie,PeR..LetnowBe(#, )%
and ¢ € V*. Then

(1 —P)Bp, ¥) = (Bp, (1 — P)) =((1 — P)p, B*}) =0,
i, Bp=PBp, which in turn implies that
Bpe Z,p " andhence Be( %, ) C(#,)".

Proposition 5.2: Let 7 be an x-invariant subset of Op V.
If #, satisfies (@) and (%, ). = #., then B7, = R*.

Proof: The inclusion 27 D Z" follows from the fact
that Z7, is weakly closed. Now, the equality #. = (%, ).
together  with  Proposition 5.1. imply  that
Ry = (R, )l = #2. Taking into account the relation
.@f C %", we obtain the inclusion Ry C R,

Corollary 5.3: Let % be an x-invariant subset of Op V. If
R, satisfies (@) and #, is weakly dense in #, then
Ry = R™.

Proof: Since &#,, is weakly dense in #, it follows from
Corollary 4.7. that (%), = %#.. Now using Proposition 5.2
we obtain the needed equality.

Proposition 5.4: Let # be an x-invariant subset with
unit of Op ¥ and assume that ¥V @ € V¥, the o ¥, V*)-clo-
sure of g is orthocomplemented in V. If
Y ge V¥ P, e, [where P, € L *( V*)] is the projection
on Zg”""" then %2 = R*.

Proof: The inclusion #* C R, is obvious since #, is
weakly closed. Now let @, ¥ € V¥ and Be #,. Since
P,eZ. C L*(V¥)~RegV,P, is defined on the whole
space ¥ and PB = BP. On the other hand, we have the fol-
lowing relation:

(1 — P, )Bp, ¥) = (Be, (1 — P, JY) = (1 — Py ), B*4) =0,

ie., Bp = P,Bp which implies that Bpe Zop " ¥ and
therefore B e ™.

Let now # be an Op*-algebra on ¥* and P the projec-
tion on the space @g "*""):p € V*. Then on one hand
every element 4 € % is o V¥, V*) continuous and hence the
space R .7 is invariant under %, which means that
PA = AP,i.e., Pe %;. But on the other hand, by definition P
belongs to L *( V¥) so that finally Pe #;, nL *( V*)=Z..
So, if in Proposition 5.4 one starts with an Op*-algebra on
V*, the assumption P € & is automatically fulfilled. But in
this case we have to consider the bicommutant %, which is
not weakly closed in L *( ¥*) unless it coincides with ..
We summarize these considerations in the following.

J. Shabani 3206



Proposition 5.5: Let # be an Op*-algebra on V*. If
¥ ¢ € W theo{ V¥, V*) closure of Z is orthocomplement-
edin V*, then #. = #*.

VI. COINCIDENCE OF DIFFERENT TYPES OF
COMMUTANTS AND BICOMMUTANTS

If we start with an Op*-algebra % on V#, we may define
three different commutants, namely %/, %/, and %}, and
six different bicommutants: #%, #.,, R, ., R, and
R (see Refs. 2, 5, and 6). We should like to have only one
concept of unbounded commutant and unbounded bicom-
mutant for unbounded algebras. Thus our aim in this section
is to find sufficient conditions in order that all the commu-
tants {resp. all bicommutants) coincide.

Let # be an Op*-algebra on V*. We can define
R, R, and #;. In general these commutants are related
in the following way: #. C #! C Z#{. At this stage one
question arises immediately: when do they coincide? Obvi-
ously a necessary condition for the coincidence of these com-
mutants is that they all belong to L *( ¥*).

To answer the above question we will compare %, with
a commutant introduced in Ref. 1 for closed Op*-algebras.
This commutant, to be denoted by %, will be described
below. We will say that a closed Op*-algebra 77 satisfies the
condition J, (see Ref. 1)if # contains a generating monotone
increasing sequence 4, >1 such that 4, V* = V*.

Let % be an Op*-algebra on V*. Then % defines on V*
a locally convex topology ¢, (see Ref. 13) (the so-called -
topology) by the following seminorms: fr— ||4f]];
fe V*, A € % .This topology is the coarsest locally convex
topology on F* such that every 4 € % is continuous from
V# [t ] into  endowed with the usual Hilbert space norm
topology.

Definition 6.1: The Op*-algebra & is called closed if
V¥# [14 ] is complete.

Definition 6.2: Let % be a closed Op*-algebra on V*
and B( V¥ [t5], V* [t ]) the set of all sesquilinear forms
which are jointly continuous in the %-topology, i.e., for
BeB(V¥[t,], V¥[t,]) there is an 4 € # such that for
some constant M and all x, y € V¥,

1B (%, )| <M ||4x| || 4y].
One can define the following commutant':

Ry ={BeB(V[t5z], V¥ [t5))IBAS8) =B(f A*g)
VfgeV* and A€ #}.
Proposition 6.3: (See Ref. 1). If # is an Op*-algebra on
V* satisfying I,,, then (i) %, is an Op*-algebra on V¥ satisfy-
ing I,, but %/, is not closed; and (ii) the % — topology is
metrizable; it is defined by the seminorms

S 4, fl; neN, feV*

From now on we assume that the closed Op*-algebra %
satisfies /,,. Let us compare %, with %#{,. First, we know that
Op ¥ is isomorphic to the space B(V*, V#) of all Mackey
separately continuous sesquilinear forms on ¥* X F# (see
Ref. 8). Thus %, will coincide with £}, if in particular

B(V¥[15], V* [t |)=B( V!, V¥).
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Since the PIP space V possesses a central Hilbert space 9, the
topologies ¢, and 7 V¥, V) are comparable. In general the
Mackey topology is strictly finer than the 7-topology and
we have the following situation (where V, the dual of
W[tz ], and V,, the dual of ¥*[7], are endowed with
their Mackey topologies, and each arrow denotes a contin-
uous embedding with dense range):

7]V 15 |92 Ve >V,.

Now the #-topology is metrizable and this implies that'* on
one hand t, =7(V¥[t5],V4). On the other hand,
V¥ [t ] is a Fréchet space; it is therefore barreled. Thus,
V¥ [t ] = V*[7] and the dual of V* [z, ] is 7-quasicom-
plete, ie, V,=V,=V". Furthermore, since
V¥ [t ] = V¥ [] is a Fréchet space, every separately con-
tinuous sesquilinear form on ¥* X #* is jointly continuous
and we get that B( V¥ [t ], V* [t5 ])=B (V¥, V*), which
in turn implies that 2/, = %/ . Since & satisfies I,, %}, is an
Op*-algebra on V¥ and hence #; = %.. Now, taking into
account the relation #. C %, C %} we obtain the equa-
lity #. = R = R, C L *( V*). Summarizing this analy-
sis we get the following.

Proposition 6.4: Let V' be an arbitrary PIP space and #
a closed Op*-algebra on F* satisfying I, Then
B =R, =Ry =R, CL+ (V.

In practice, it is much easier to start with the closed
Op*-algebra % on V* satisfying I,, and build the canonical
PIP space V associated to it, following the construction of
Ref. 15. In this way we get another PIP space structure
around £, namely the lattice generated by all the Hilbert
spaces D (4 ) (with graph norm); 4 € #.

Proposition 6.5: Let & be a closed Op*-algebra on V*
satisfying I,,. If V is the PIP space generated by %, then
R, =R, =Ry, =R, CL(V*)

Now, let us look at the bicommutants. If 77 is an Op*-
algebra on V*, then we may define six different bicommu-
tants, namely: #.,, %%, RL, RL, Ry, and #7.. Obvi-
ously in order that these bicommutants coincide it is
necessary that they all belong to L *( ¥#).

Assume that Z is closed and satisfies the condition I,,.
Then, %/, is an Op*-algebra on V¥, but it is not closed. So in
general

Ria={reB(V* 15, ] V* [ta,]IMCLE)
=NAC*) VSigeV, CeZ))

is not an Op*-algebra and in this case no general connection
can be found between %7, and, e.g., Z7,. But %/, is an Op*-
algebra and we know that it can always be extended by con-

tinuity to the Op*-algebra (its closure) %, on
[Zr, ] =p* [£s, ] We can then consider the bicom-
mutant
(Za P [tar])a=(Z2).
={reB ( pH [t%:] v [t=])MCr8)
=N Chgl VfgeV, Ce 7, ),
which is an Op*-algebra on V* [t ﬂ—,] . In general this com-
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mutant is contained in %/, ,. Since %/, satisfies I,, W; also
satisfies 7, (see Ref. 1). Thus Proposition 5.4 gives us the
following  result  for R AT AN
=( @) =(R,); CL*(V¥). On the other hand the
Op*-algebra 7 itself satisfies the conditions of Proposition
6.4s0 B, =R, = R, = #. These two relations together
give the equality between the six different bicommutants for
R
Proposition 6.6: Let V'be an arbitrary PIP spaceand 77 a
closed Op*-algebra on V* satisfying I,,. Then

(Ro).=( R, ) =R =R, ), =R,

=( R =Ry )y CL*(V*) (*)

Proposition 6.7: Let Z be a closed Op*-algebra on V*

satisfying ;. If V'is the PIP space generated by A, ,then we
obtain (*).

Vii. THE BOUNDED PART OF THE COMMUTANT #;,

Definition 7.1: An Op*-algebra Z is called symmetric if
for every AeR,(1+A4*4)""' exists and lies in
R =% nB(D).

Proposition 7.2: If Vis a PIP-space and & a symmetric
Op*-algebra on V*, then #; = (#, )¢

Proof: The inclusion (%), D Z follows from the fact
that %, is contained in . Now assume that C € (#, )} and
let A=A "=A4*| . Since # is symmetric we know that
(1+A4%) 'andA (1 + 47 'belongto #,.Forallf,ge V*
we have

(CA(1+ 477 flg) =4(1+4%7'CSflg)

=(AC(1 + 477" flg).
Since (1 +42)~! ¥* = V* we have C € #;, and this implies
the equality (#, ), = #¢.

Remark 7.3: A similar proof in Ref. 5 shows that
R =(R,). so that finally for symmetric Op*-algebras
each commutant is equal to the analogous commutant of the
bounded part.

Proposition 7.4: (%), is a von Neumann algebra.

Proof: Since 2} is weakly closed in Op V, (#{), is
closed in B ($) = {(0, O)-representatives of %/ } (see Ref. 8)
with respect to the weak topology inherited from Op V and
therefore (%), is closed in B () with respect to the usual
weak topology of B (D).
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Assume now that the Op*-algebra Z is closed and sat-
isfies the condition I, (see Ref. 1). Let # be the Op*-algebra
generated by % and all4 7!, and N the von Neumann alge-
bra generated by all bounded operators in %. Then we have
the following.

Proposition 7.5: Let V be a PIP-space and # a closed
Op*-algebra on V* satisfying I,. Then we have the following.

(i) (#§)p = N’ [commutant in the usual sense in B (D)].

(ii) If moreover #{ is symmetric then it is an EW *-
algebra in the sense of Dixon'® {i.e., a symmetric Op*-alge-
bra whose bounded part is a von Neumann algebra).

Proof: (i) In Ref. 1 it is proved that if # is closed and
satisfies I, then (%), = N'. On the other hand %, = %
by Proposition 6.4, so that finally (%), = N'.
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The torsion and its curl form an anti-self-dual SO(8) tensor field F, ;. ( ¥). The Maxwell equations
are solved if this tensor is covariantly constant, while the Einstein equations are solved if it
satisfies an algebraic relation at the origin. Such F ., are found as the kernel of the holonomy
group in the 35 representation of SO(8) and they extend the SO(8) of the round S; to SU(8).

PACS numbers: 02.40. + m, 04.50. 4+ h, 11.30.Pb

Consider a general seven-dimensional compact but not
necessarily connected Riemannian manifold M, with spin
connection B % and vielbein B 2. The structure equations of
this M, read

T°=dB°*+ B{ANB*=0, (1a)

R**=dB + B°\NB; = R#4B°ANB°. (1b)
We recall that a Riemannian manifold satisfies (1a) with B *°

= B2n® = — B". We will assume that B“ and B “* admit
an isometry group G which acts transitively on M, with sub-
group H. Hence, we shall have HC SQ(7), M, will be identi-
fied with the coset space G /H, and the intrinsic components
of the curvature R % will be constants.

A solution of supergravxty must satisfy (1a) and the

Ricci tensors obtained from (1b) must satisfy the Einstein
equation on M,

wc’s = = WFocte F* — 1 8an { Fraey —24€%}), (2)
which follows from the Freund-Rubin ansatz, where
Fynpp splits into a 7-part F,, ,{y) and a 4-part F,,,
= le€,,,.,s- (Our conventions are the same as in Ref. 10.) With
this ansatz the Maxwell equations in 4-space-time are auto-

matically satisfied, while in 7-space they read
D 20(7)Fabcd + e‘/szcdefghFefgh — 0 . (3)

Indices M,N,... run from 1,11 while m,n,...= 1,4 and

a,b,... = 1,7. Allindices are flat and F,yp(, has unit strength.
The spin connection and vielbein in (1a) and (1b) can be

combined into an SO(8) connection £2 5 (4,B = 1,8)

ﬂab Bab’ .(ZbB:—.(ZS":pBb, (4)

where p is at this point an arbitrary constant. With this SO(8)
connection we will define SO(8) covariant derivatives.

We now show that the Maxwell equation in (3) is auto-
matically solved by introducing an SO(8) covariantly con-
stant anti-self-dual tensor F ., ( y)

D SO(S)FABCD = dFABCD + 4-0[0 D,FABC]D' =0, (5)
Fipcp = — (1/4!)6ABCDEFGFDEFG . (6)

Decomposing the SO(8) indices into SO(7) indices, one finds

' On leave from The State University of New York at Stony Brook, Stony
Brook, New York.
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D Eon)Fabcd + 4p6e[d Fabc]S = 0 ’ (7)
DO, o« —pF,,. =0, (8)
Fabcd - - (1/3') abcd eng . (9)

Equation (8) is the definition of the photon curl and tells us
that F_, ; is proportional to the photon field 4,,.. Recalling
that F,, , has unit strength we obtain

Fabcs = _pAabc . (10)

Equation (9) defines what we call sesquiduality, namely the
fact that the potential 4, is dual to its curl. The anti-self-
duality in (6) makes (7) and (8) equivalent. Contracting the
indices e and a in (7) and using (9) we retrieve the Maxwell
equation (3), provided we fix p appropriately, namely,

p= —6ev2. {11)
The integrability condition of (5) reads
R[DD,FABC]D =0, (12)

where R ** = #** — p’B° AB®and R “® = pT ° are the com-
ponents of the SO(8) curvature 2-form defined on M. Since
M, is by assumption Riemannian, 7¢ in (1a) vanishes and
(12) is equivalent to

‘%[dd’Fabc]d’ =0’ ‘@[cc’Aub]c’ =O‘ (13)

For the round S,,? where M, is maximally symmetric, 72 is
a product of Kronecker delta functions. Choosing the nor-
malization of #2 such that R % vanishes, the integrability
condition (13) is satisfied. In general the R % do not vanish
although they are constant, and the subalgebra of SO(7) gen-
erated by the following linear combination of SO(7) genera-
tors:

Cos =(Riq —p°6ed) s » (14)

must annihilate all SO(7) irreducible representations con-
tained in the SO(8) representation F,z,,. Because of sesqui-
duality there is only one independent SO(7) irreducible part
in this case, namely F,,.,. We see thus that a covariantly
constant anti-self-dual representation F ., of SO(8) exists
ifand only if there exists an F,, , which is a singlet under the
group generated by the C_; in (14).

The group generated by SO(7) generators in (14) is
called the holonomy group. Its relevance for supergravity
was first noted in the case of covariantly constant spinors on
the squashed S,.*> Our general discussion applies to any re-
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presentation and any manifold. The holonomy group is re-
presentation independent on a given manifold. For example,
the holonomy group G, for covariantly constant spinors on
the squashed S, is also the holonomy group for our F,,., on
the same manifold. It was recently shown that the squashed
S, is the coset Sp(4) x Sp(2)/Sp(2) X Sp(2).*

On a different manifold, the holonomy group will be
different, examples being the round sphere whose holonomy
group is the unit group, or the coset spaces SU,xSU,
X U,/SU, x U, X U,,” whose holonomy group is SO(7) or (in
one case) SU, as we shall discuss.

Let us briefly discuss the relation between our defini-
tion of holonomy group and the holonomy group one is fa-
miliar with in general relativity, that is, the holonomy group
of Riemannian geometry. In general relativity one parallel
transports a vector v° around a closed curve and finds a ho-
lonomy group generated by #%; J,, while in our case it is
generated by R % J,,. Thus, the maximally symmetric n-
sphere has in general relativity the holonomy group SO(n)
while in our case S, has as holonomy group the unit group.
Said differently, in general relativity one considers the ho-
lonomy group of the metric connection ( = spin connection)
while we consider here the holonomy group of the de Sitter
connection [SO(8) in our case] which is the sum of the spin
connection plus the vielbein term. The vector representation
of the de Sitter group splits into a vector plus a scalar under
the Lorentz subgroup, and since one restricts one’s attention
in general relativity to Lorentz vectors, one cannot consider
the de Sitter holonomy group. However, for such representa-
tions as spinors and anti-self-dual F, ., which remain irre-
ducible under the Lorentz subgroup, one can define both
holonomy groups.

Returning to the main theme, we note that we have
solved the Maxwell equations provided we can find an SO(7)
tensor F,, ; which is invariant under the C, in (14). The %%
which appear in (14) must also satisfy the Einstein equation
in (2). The Ricci tensors %% in (2) are constant, but the
Maxwell curls F,,., depend on the coordinates y of M. Be-
cause of the covariant constancy, the dependence of
F,pcp(y) on p can be obtained by sweeping out F,;c5(0)
from the origin in a way we will now first describe. After-
wards, we will come back to the Einstein equations.

Consider any SO(8) covariantly constant SO(8) repre-
sentation, denoted generically by F( y). Consistency of the
covariant constancy requires that the SO(8) Lie algebra val-
ued curvatures R *2/, in{14) annihilate F ( y)at all y. Hence,
F(y) must belong to the null space N of the matrix R *°J

R4] v =0oveN, F(yleN for all y. (15)

The 21 SO(8) Lie algebra valued matrices R 27 J,,=C,, lie
actually in SO(7) since the torsion 7'¢ vanishes as explained
above. [Our connection is the Riemann ( = metric) connec-
tion which has per definition vanishing torsion, and not the
connection which appears in the Maurer—Cartan equation of
the coset manifold G /H. This Riemannian connection is in
general not equal to the H-connection, but we need it since it
appears in the field equations of supergravity.] In general the
C.,; donot already span a Lie algebra; however their commu-
tators generate the holonomy algebra C of the given mani-
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fold, which may coincide with SO(7) or be a proper subgroup
thereof. Given the null space N of C, we denote by X' the set
of generators of SO(8) which annihilate N. Clearly X is a
(proper or inproper) subalgebra of SO(8) and contains C:

C =S0(7)ns . (16)

Since CF( y) = Oforally,and F( y)eN, also X F( y) = Oforall
». Let us denote by g{ y) the SO(8) matrix which sweeps F( y)
out from the origin and the group generated by X by S. Then
25eSO(8) and (g5 — Sg)v = 0 for veN. Hence,
F(y)=g(y)F(0), g(y)eSO(8) for all y. (17)
Clearly, g( y) maps nulvectors of % into null vectors of 3. Let
us denote the generators of g( y) by Z. Then we must have

(Z2]C3. (18)

These generators Z define a new subalgebra of SO(8) because
of the Jacobi identities. Z is the normalizer of 2 in SO(8), i.e.,
Z is the largest subalgebra of SO(8) in which 3 is an invariant
subalgebra (an ideal). The matrix g{ y) can now be written as
exp €/( y)Z,, where I labels the generators of Z. The relation
between €/( y) and the SO(8) connection £2,,7( y) is dictated
by the requirement that F be covariantly constant, namely
by

(dg(y) + 2% (YW ,5)F(0)=0. (19)

Example: Suppose X =SO(p). Writing SO(8) as
SO(p + g), clearly [SO(p), SOlg)] =0, hence Z contains
SO( p) XSO(g). Since the Grassmann manifold SO(p + g)/
SO(p)XSO(g) is symmetric, no other generators of
SO(p + g), when commuted with SO( p), produce SO( p),
hence, Z = SO( p) X SO{q).

Having discussed how F ;. (y) depends on y, let us
now come back to the Einstein equations in (2). Since

Foped(P) = Y2DY E DY ANY 2 Y)F 45c000) (20)
where Y 4(z) are SO(8) matrices in the vector ( = defining)
representation [the product of four Y’s is the matrix g( y) in
(17)], we can write

Facde(y)FZde(y)
= Y DY S Facoe(0)F 5272 (0)
X(BS, — YSYE )60, — YRY5 )65, — Y§Y5.).
(21)

Due to the antisymmetry of the F,.,:(0), only terms with
three and two Kronecker deltas contribute

Focae PIF 5 p)
= Y (DY 5[ Facoe(0F 5°50)
— 3F 1cps(0)F5c- PHONY5{ y) Y5 (1] - (22)
For the completely contracted term F2,_,( y) in (2) one finds
Flaly) = Flipep(0) — 4FACDE(O)FACDE’Y§(y)YBE'(y) .
(23)
Since %9 in (2) is constant, so must be (22) and (23). Requir-
ing that (22) and (23) must each separately be constant (clear-

ly a sufficient as well as a necessary condition) we can fulfill
this requirement by imposing the following condition on
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TABLE I. Table of holonomy groups of solutions.”

G/H c z z
Internal Holonomy Extension Centralizer
coset space group in SO(7) of the holonomy of the
group to SO(8)
5, = S08) ] 1 SO(8)
SO(7)
0  SO13)8SOB3) G, SO(7) 1
SO(3) @ SO(3)
SU(3) X SU(2) x SU(1) SO(7) SO(8) 1
SU,x U, xU,
p/g#1
SU, x8SU, XU, SU(3) SO(6) SO(2) ® SO(6)
SU,xU, XU,
p/g=1
SU, X SU, xSU, SO(7) SO(8) 1
U, XU,
PFgFEr
SU, X SU, X SU, SU(3) SO(6) S0(2)x80(6)
U, XU,

p=g=r=1

2The last two cases are treated in Ref. 9.

Fp5cp(0):
Fycpe(O)F P PE(0) = (8585 — 65'82) + h5S", (24)

where « is a constant and where A is antisymmetric in AB
and CC'. In that case the y-dependence drops out of the Ein-
stein equations and one is led to the following two algebraic
equations:

AL = —Ya —3a — 4{28a — 24¢*})8,;, , (25)
Rmie = — Y — 667 — L{28a — 24¢°})6,,,, . (26)

Due to the condition in (24), M, is an Einstein space and M
an anti-de Sitter space-time. The constant « is not arbitrary,
but must be fixed such that the &, satisfy the holonomy
condition, namely such that C_; in (14) have a nontrivial null
space. Hence, the radii of internal and external space are
fixed and universal.

To appease the anxieties of the reader that a tensor
F ,5cp(0) with the properties in (24) may not exist, we merely
give an example. Consider F 5, (0) = @I 4pcp 7, where 7 is
any constant Majorana—Weyl spinor in 8 dimensions with
71m = 1. Then, by Fierzing, one finds (24) with 4 equal to zero
and a = 124%. (The 8 X 8 matrix Iy is here equal to — i.)

This concludes our general treatment. We now give
three examples, see also Table L.

(i) Round S, with torsion: Since %4 is maximally sym-
metric, the holonomy group C is either SO(7) or the unit
group, depending on the value of the cosmological constant
A. By choosing A such that the SO(8) curvature vanishes,
C = 0. This value of A is indeed the one which follows from
the Maxwell equations. Since the null space is the whole
3211 J. Math. Phys., Vol. 25, No. 11, November 1984

space, there are no SO{8) generators which leave the null
space invariant. Hence also X = 0. It follows that the norma-
lizer of 2 in SO(8) coincides with SO(8): Z = SO(8). Hence, in
this case a general representation F depends on y as
F(y) = g( y)F(0), whereg( y)is any SO(8) matrix whose coeffi-
cients depend on y.°

(it} The squashed S, with torsion: In this case C equals G,
(recall, Cis a subgroup of SO(7) and representation indepen-
dent). From the explicit form of the Riemann curvatures, C
was identified as G,.> Hence, the subalgebra of SO(8) which
leaves, for example (recall that 3 is representation indepen-
dent), an SO(8) spinor invariant, is SO(7). The normalizer Z
of SO(7} in SO(8) is this SO(7) itself (see the example). Hence,
the spinor is invariant under Z, and thus the spinor is actual-
ly constant. Thus the solution is F,zcp(¥) = Fp5cp(0)

= I ,3cp M, Which is the dual of the associator of the octon-
ions.

(#) SU; X 8U, X U, /SU, X U; X U; with torsion: There
is actually an infinite class of these coset spaces, depending
on the choice of the U(1) subgroups.® The topology of these
coset spaces depends only on the ration p/q of two integers p
and g. If p#g¢, the holonomy group is SO(7) in which case
there is no sesquidual torsion and at least our method does
not provide a solution. If p = ¢, the holonomy group is SU,
[G, is the subgroup of spin (7) which leaves one spinor invar-
iant (8 spin = 7 + 1). The subgroup of G, which leaves an
element of this 7 invariant is SU,.] The subgroup of spin (8)
which leaves two spinors invariant is SO(6), thus 3 = SO(6).
[Indeed, SO(6)rspin(7) = SU;. Note also that spin (7)
nSO(7) = G,.] The normalizer of SO(6} in SO(8) equals
SO(6)XSO(2); see the example. Hence, g(y) lies in
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SO(6) < SO(2). Since SO(6) lies in 2, it acts trivially on F (0),
hence g(z)} depends on only one coordinate ¢:
gl y) = exp €(@)T (SO,). One may first compute all the com-
ponents of 2% and then explicitly solve (dy + 2g) F = 0.
The 2 *® connection is an algebraic expression in terms of
the vielbein and H-connection of the coset manifold. The
only O(2) generator which does not act trivially on F(y) is
multiplied by a linear combination of coset vielbeins and H-
connections. Hence, calling this combination ¥, we must
solve d exp €l@)T (SO,) + Vexp €(@)T (SO,) = 0.

Now we will argue that we can choose coordinates on
the coset manifold M, = G /H such that ¥ only depends on
@. The argument goes as follows: Since there are two covar-
iantly constant spinors (SUj, is the holonomy group), the su-
pergravity model will have an N = 2 supersymmetry. The
supergroup will be Osp(2/4)X S ', where S’ is a purely bo-
sonic group. Hence, in the bosonic sector, there will be an
SO(2) generator which commutes with all other bosonic gen-
erators [namely Sp(4) and .S']. Choosing the coordinate ¢
along the direction of this generator, V' = V(g ) is a well-de-
termined function of g, and one can solve the different equa-
tion for €(g).

We now change gears and come back to a property of
the torsion tensor on the round seven sphere. As we will now
derive using the formalism outlined above, its symmetry
group is SO(7) as first conjectured by Warner, and proven by
Castellani and Warner, and Englert ef al.® and not G,, as
initially advocated by several authors, the present authors
included.® We recall that

Fupco(0) = Y4 ()Y 5 (WFapcn(0), (27)

where Y4'(y) defines the coset elements at y. We recall the
definition of a Killing vector k 45 ( y). Let g be an arbitrary
group element of SO(8) near the identity, g =71 + €2/,
with constant €*2. Then [we use here the right cosets HY (z) of
SO(8)/S0(7)]

Y(yg=H(ygY(y), (28)

where y* = y* + e*®k ¥,(y), and H(y,g) is an element of
SO(7) subgroup given by H ( y,g) = 1 + €**W % (yW.,,. Thus
we find for the Lie derivative of the spherical harmonic
Y £( p) the following result:

e’ [lkABY?(J’) + WAB,CCI(y)Yg(y)] =Y2'(ylep®,
(29)

e L, Y2 =Y ep”. (30)

In particular, if we use the sweeping out matrix Y %( y) to
define vielbeins and connections by dYY ~', the rigid SO(8)
transformations cancel and these vielbeins and H-connec-
tions are invariant under the Lie derivative up to H-gauge
transformation with parameter W, ().

Returning to the problem of the invariance group of
F ,zcp(y), we must find which Killing vectors €*#k 5 leave
F,zcp( y)invariant up to a W5 SO(7) transformation. Clear-
ly, the sum of the action of a Killing vector and a (W ;)]
rotation of the index a of the harmonic ¥ 2( y) is equivalent to
an SO(8) rotation of the index B. Hence, the symmetry group
of F,,..( ) is the same as that of F,, ¢ (y) and is equal to the
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SO(8) subgroup which leaves F,z,(0) invariant. Since
F 5cp(0) is equal to B ,5-pn and the Dirac matrices are
SO(8) invariant tensors, the answer is the following: The in-
variance group of F,,,( y) is the stability group of a spinor in
spin (8). Now spin (8) are the same matrices as SO(8) in the
vector ( = defining) representation, and the subgroup of the
latter which leaves a given 8-component vector invariant, is
SO(7). Thus,

Foea )= Y (DY S (MY D[ Y (PFopca (0)

+ Y a())Fases (0] (31)

is physically invariant under a full SO(7). The G, subgroup
leaves each term separately invariant, but the remaining sev-
en generators leave only the sum invariant.

In (6) we introduced the notion of Killing vectors and
saw that there were as many of them as there are generators
in the group G. For the round seven sphere with G = SO(8)
there are thus 28 Killing vectors. One can use covariantly
constant spinors to give an explicit representation.” Actual-
ly, there are two sets of covariantly constant spinors which
can be written as®

7. (V) =1+ pE, p=pT, (@=17).(32)

There must be a relation between the two sets of Killing
vectors

Kyt =ng, (D05, (9)

and (33)
Ky~ =n, (3, (y).

Although it was clear to most that such a relation should

exist, its form was unknown. We now present it here.

Define £, = (0,0,...,1,0,...,0). Then,

Kot () =11=p1+y)7' T+ H)s (34)
Contract now with 8 x 8 matrices "5 where the 16X 16
SO(8) matrices I"“ are related to the SO(7) matrices " by
I'*=r°xr, F'*=71xr, sothat I'* =iI'” Since in a
trace one gets the same answers if one replaces " by — I'“
we have the identity

r ab F ab
K“'*( ) :—K“'*( ) . 35
I ir<,; v\ _;ra " (35)
Using the completeness relation
F?IBF;Q = 8(5JK51L - 51L51K) » (36)
we arrive at the desired relation
Kid (D =%Ks OWCRTE, + T3l e) - (37)

The last issue we want to address ourselves to is a group
theoretical aspect of the parallelizing torsion [i.e., of the in-
ternal photon 4, ( y) on the round S, (Ref. 7)]. Consider the
SU(8) Cartan—Maurer equation instead of the SO(8)
Maurer—Cartan equation. Decomposed with respect to
SO(7) they read

dB°® + BZ AB? + (2/'0)6_ab1b2b;c|CzcaBbll72b3 /\Bc,czcj =0, (38)

dB® + B AB® _p*B°AB®—T2B“‘AB’, =0, (39)

dB abc + 3B [cc’ /\B ab ¢’ + (p/6)6ﬂbcde]eze3Bd /\BelezeJ =0.
(40)
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We obtained these results in Ref. 6 by evaluating
dM + MAM=0 with M=g 'dg=1B*l,,
—(i/2)pB°l’, + B**I,,.. Suppose that we express these
SU(8) connections in terms of the SO(8) connections B {5, and
B, as follows:

B*=AB{,, B®*=Bjy +ad"™B?,

(41)
Babc=BBadeBg)), Fabcd= i(e/Z)ﬁF""‘dn,

where a, 5, and A are constants. Let us further assume that
By, B, and 4 “* constitute the solution of the round S,
with torsion. It is remarkable that in that case (41) satisfies
(38)—(40). One could rewrite (38)—(40) in a suggestive manner
as
R*%+ kB4"2RB 2, » =0 [k =constant],

(42)

D SO(S)BPQRS — 0 ,

where Bpygs is anti-self-dual and B,,.s = BF ;4B {5, Clear-
ly one can split B °® into the parallelizing connection B ¥ of
Englert plus a remainder AB ¥. In that case the structure
equations of SU(8) in (38) and (39) reduce to the structure
equations of the parallelized S,. Equation (40) is a differential
equation for the torsion field which, upon contraction of a
pair of indices, yields the Maxwell equations. Thus, the tor-
sion which flattens the seven sphere is one of the components
of a particular flat connection of SU(8). We conjecture that

3213 J. Math. Phys., Vol. 25, No. 11, Novernber 1984

the torsion of other solutions of d = 11 supergravity is also
one of the components of the flat connection of a group
which would be a “hidden symmetry” in the four-dimen-
sional theory.
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Stringlike solutions of the self-dual Yang-Mills equations (dimensionally reduced to R ?) are
sought. A multistring Ansatz results in the sinh-~Gordon and Liouville equations. According to a
general theorem, the solutions must be either real and singular and have infinite action, or
complex and nonsingular, with zero action. In the Liouville case, explicit arbitrarily separated n-
string solutions of both classes are given. The magnetic flux for these solutions is found to be the
Chern class of a Kaehler manifold, and it consequently assumes quantized values 4sn/e. The
axisymmetric version of the sinh—Gordon is solved by the third Painlevé transcendent P;, using
the results on P; by Wueral. [Phys. Rev. B13, 316 (1976)] and McCoy et al. [J. Math. Phys. 18, 10
(1977)). The axisymmetric case can be cast into the Ernst equation framework for the generation
of further solutions. In the Appendix, the Euclideanized Ernst equation is shown to give self-dual

Gibbons—Hawking gravitational instantons.

PACS numbers: 02.40.Ky, 11.15.Kc

1. INTRODUCTION

Self-dual Yang-Mills (SDYM) equations in four Eu-
clidean dimensions share many properties with totally inte-
grable systems in two dimensions. For example, Bianchi—
Backlund transformations, nonlocal conservation laws, an
associated linear problem, and a Kac—-Moody algebra have
been constructed' for SDYM fields.

Our aim in this paper is twofold: The first is to point out
that another feature of totally integrable systems, namely
that of reducibility of the field equations” under certain re-
strictions to ordinary differential equations of the Painlevé
type, also follows naturally from the SDYM equations when
stringlike solutions of the SDYM equations are sought.’
This, together with the fact that self-dual monopoles, i.e., the
once dimensionally reduced form of the theory, have also
been related to integrable systems,* further strengthens the
possibility that integrability is an inherent property of the
SDYM equations, rather than a property limited to specific
Ansitze.

Our second purpose is to present and examine these
stringlike solutions. The search for such solutions consti-
tutes a natural step in dimensional reduction: Just as mono-
poles solve the static SDYM equations, one may expect to
find Nielsen—Olesen strings® when the theory is further re-
duced to R % Indeed, this reduction results in two “Higgs
fields” (say 4 § and A 3 ), which is just what is needed to break
SU{2) completely. However, unlike with monopoles, here
there is a price to be paid: A general theorem dictates® that
these solutions have to be either real and singular, or com-
plex and nonsingular. The action per unit x,x, is then infinite
in the former case and zero in the latter. Nevertheless, we
believe there are good reasons to warrant an examination of
both classes of solutions, in addition to the obvious one that
they are there.

(i) Complex Yang-Mills solutions may play a physical
role, just as complex solutions of the anharmonic oscillator
represent the WK B approximation.’

(ii) The complex solutions, owing to their vanishing ac-
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tion, will have the same Boltzmann factor as the vacuum in
the functional integral.

(iii) The solutions exhibit flux quantization in multiples
of (27/e) as in the original Nielsen-Olesen model. The topo-
logical origins of the quantization is clearly seen in the Liou-
ville case, which also admits an explicit, arbitrarily separated
n-string solution with flux equal to (47/e)n.

(iv) General approaches to the SDYM equations such as
Yang’s equations,® the Atiyah-Ward method,” and Back-
lund transformations’ all involve a complexification of co-
ordinates and/or field quantities. Thus complex solutions
are a natural part of this general framework. Indeed, Burns'®
has recently given a class of complex nonsingular solutions
based on the Atiyah—-Ward Ansatz. In the following, we will
present a new set of explicit solutions, both in real and com-
plex forms.

Finally, it should be noted that real, nonsingular strings
also do not inherit all the attractive features of SDYM mono-
poles: First of all, they can only be obtained by going outside
the pure Yang-Mills system; second, their Bogomolny equa-
tions!! reduce to the Poisson-Boltzmann equation

@ +d3p=e*—1, (1)

which is believed!? to be nonintegrable. The pure Yang—
Mills strings, on the other hand, are described by the sinh—
Gordon or the Liouville equations, both of which are inte-
grable. The previously mentioned Painlevé equations are in
fact just the axisymmetric special cases of these partial dif-
ferential equations. Notice that (1), in contrast, does not re-
duce to any of the Painlevé equations.

The contents of the paper, in more detail, are as follows:
In Sec. II, we first reproduce the aforementioned theorem
due to Lohe.® We then present a general Ansarz depending
on two coordinates and show that self-duality results in a
single function satisfying either the sinh—-Gordon or the
Liouville equation. In Sec. III, we consider the axisymmetric
cases of these equations and thus obtain special Painlevé
transcendents of the third and fifth kinds, P, and Ps. We then
summarize the results found in a previous paper on a parti-
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cular P, solution. The same P, has been studied (see Ref. 13)
in the context of the Ising model. Some of these mathemat-
ical results are directly applicable here. We treat the Liou-
ville equation in Sec. IV and present its multistring solutions
in both real singular and complex nonsingular forms. The
flux is seen to be the integral of a Kaehler form and given by
(47 /e) times the number of strings. The axisymmetric solu-
tions are cast into the Ernst equation' formalism in Sec. V,
with a view to generating axisymmetric n-string solutions of
P, using the solution generating techniques associated with
the Ernst equation. After some concluding remarks in Sec.
VI, we return in the Appendix to the Ernst equation, this
time in Euclidean space-time, and point out that it, too, is
related to self-duality, but in a different context: Solutions of
this system are Gibbons—Hawking metrics' with self-dual
Riemann tensors.

Il. GENERAL PROPERTIES OF SDYM STRINGS
A. A no-go theorem

An appropriate starting point for seeing what can be
done with SDYM fields reduced to the plane is the following
argument of Lohe®: The action per unit time per unit length,
i.e., the tension, can be written as

T= fdx, dx,{}(F§ + ee; e YPp)

+ DY) F €5(Ds0 )
F(e/2F jesey’p” — ;D@ D))}, (2)
where i,j = 1,2; ¥ = A and ¢° = 4 3. For self-dual solu-

tions one is left with the last term. Using [ D;,D, | = eF;; on
it, one obtains

T= jdx, dx%, (0, D ) — S D)), ()

which, if converted to a line integral along a large closed
curve, would appear to go to zero, being proportional to the
covariant derivatives at infinity. As the original expression is
positive definite for real Yang-Mills fields, one is forced to
conclude that real, nonsingular self-dual solutions with as-
ymptotically vanishing covariant derivatives are pure gauge.

As mentioned earlier, one possible remedy is to add a
quartic Higgs potential by hand and thus abandon the pure
Yang-Mills case. The Bogomolny equations then result in
(1). However, if one decides to stay within the Yang-Mills
system, the price to be paid is either a singularity or a com-
plex solution: Singularities prohibit the conversion of (1) to a
line integral, while complex potentials can give zero action
without vanishing field strengths. A third possibility of a
doubly periodic solution, where the covariant derivatives do
not vanish at infinity, will be mentioned in Sec. VI.

B. A general Ansatz

We restrict ourselves to the group SU(2) throughout.
Let us first note an important difference between monopole
and vortex solutions: In the former, a massless U(1) field
A, = @A, survives, while in the latter the symmetry is com-
pletely broken, so that the magnetic field exponentially de-
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creases as we leave the center of the vortex. This broken
magnetic field is projected out by & |, = F,,*¢ X . Thus we
should seek an Ansatz where the “massive photon” A, and
the “Higgs fields” A,=, A, = ¢ are all nonparallel to each

other. We may therefore try
A, =ioyf, A,=liv.g, A;=iok, A,=ioh, (4)

where the 4, = 4 | ec °/2i depend on (x,, x,) only. Self-dua-
lity gives

g1 —fo = 2hk, (5a)
ki/h = h,/k = 2g, (5b)
ky/2h = hy/2%k = — 2f, (5¢)

where f, = df /9x,, etc. Rearranging, one gets

hh, — kk, =hh, — kk, =0, {6)
which of course implies

h?%— k?=const. (7)

The Ansatz thus corresponds to a hyperbola in (4, k)
space, admitting equivalent parametrizations for (4, k ) for a
given solution. If, however, the constant is set equal to zero,
the hyperbola degenerates to its asymptotes, and one obtains
a new and distinct solution. With a nonzero constant, we
may use the two equivalent parametrizations

h = a cosh(w/2), k= a sinh(w/2); (8a)

h=asecy, k=atany, (8b)
while for the degenerate case we may set

h=k=aexp{, 9)
where a is an integration constant with the dimensions of an
inverse length. Substituting (8) and (9) in (5) and using new
dimensionless coordinates (x, y) = 2a(x,, x,), the self-duality
equations reduce to

V2w = sinh o, (10a)

V% + (Vy )(Vy )tan y = tan y, (10b)
and

V2 = o, (11)

C. Field strengths and invariants

We shall not refer to (10b) any further, except for a brief
discussion showing the equivalence of a particular P; to a P;
in the next section. Below we give the potentials and field
strengths for (10a) and (11); the former in Eq. (12) and (13)
and the latter in (14) and (15):

A= —ioya/2w,, A,=ioya/2w,,

A; = io,a sinh(w/2), A, =ioa cosh(w/2), (12)
(13a)
F\3 = Fy, = id’(o,w, cosh(w/2) — 0w, sinh(w/2)),

(13b)
F\y = Fp;, = ia*(oyw, sinh(w/2) + 0,0, cosh(w/2)),
{13c)

F,, = F,, = ia’g, sinh o,
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and

A, = —ioal,, A, =i0saf,, A, =io,aéé, A, = io,ae;
(14)
F,, = Fy, = 2io,a%%, (15a)
Fi3=Fp,=2id’(0,5, — o5, )e5, (15b)
Fi = Fyy=2id%0,¢, + 0.8, )é. (15¢)

The tension T and the magnetic flux @ are also easily
calculated. From

1
r- L de dy(FyFp + FiyFps + FooFr) (16)

and

1 oA
o= — [[axay Fupxid, (17
we find for the sinh—Gordon case

2
T=% f f dx dy Ve(sinh wVo)
€
02
= —;jfdx dy V* cosh o, (18)
e

&= —ij-dxdyvzw= —1—J-J-dx dy sinh o, (19)
2e 2e

while for the Liouville we get

T= 4:;22 ”dx dy V4{eV¢)

2
= % J f dx dy V?e¥, (20)

o= %dexdy Vi — %ffdxdyezg. 21)

Since all quantities have now been expressed in terms of
o and ¢, it only remains to find explicit solutions of (10a) and
(11). In the following sections, an axisymmetric solution for
P, and a more general one for the Liouville equation will be
given.

Iil. PAINLEVE TRANSCENDENTS AND A SOLUTION OF
Ps

A. Painlevé equations

It has been shown that there are only 50 ordinary differ-
ential equations of the form

2
47u _ F(u, du ,z), (22)
dz? dz

where Fis a rational function of its arguments, and the struc-
ture of the equation fixes the positions of the essential singu-
larities and branch points regardless of the values of the inte-
gration constants.’® Forty-four of these define familiar
elementary functions including the elliptic ones, while six
give rise to new transcendental functions called the Painlevé
transcendents P, — P, (see Ref. 17). The interest of physicists
in these functions stems from the experience that they al-
ways appear in connection with integrable systems: P, and
the modified KdV equation, '® P; and the Regge—Lund string
model,'® P; and the Ernst equation,'® to name just a few.
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Furthermore, in integrable quantum theories, the P’s para-
metrize correlation functions. '>2°

In our problem, Painlevé equations follow directly from
(10) and (11) when axisymmetric special solutions are sought
and the transformations exp{w/2) = u, exp( — 2iy) = — w,
and exp { = v are made. Then, with r = yx% + 7, (10a) and
(10b) lead to, respectively,

u” + (1 = (/u)u' P + 4’ —u™"),
[ 1 1 ] + 2w(w + 1)

-— +
2w w—1 w—1

(23a)

w” + _1__ wr — (w:)z
r

{23b)
while the Liouville equation gives
v+ 1/ = (1/0)') + v (24)

In the notation of Ince,'” (23a)is a P, witha =8 =0,
y=—06=4023bjaPs;witha=F=y=0,5=2,and (24)
aspecial case of (23a) with 6 = 0. From the fact that (23a) and
{23b) come from the same constraint, it is clear that they
must represent the same equation; and one can indeed be
obtained from the other via the substitution cosh w/2
= sec y. This shows that for certain values of the param-
eters a, B3, 7, 8, Painlevé transcendents of different kinds can
become identical. Similarly, (24) with ¥ =1, § =0 can be
converted into a form with ¥ = 0, 8 = — 1 by inverting v.

B. A solution of P,

Equation (24) is known to be soluble in terms of rational
functions because of its special choice of coefficients. This, of
course, is a consequence of the general solution to (11) given
by Liouville.>' We shall therefore treat (24) in the next sec-
tion as a special case of the general equation. The P; of (23a),
on the other hand, has been studied in Ref. 13 by their deri-
vation of the correlation functions of the Ising model in the
scaling limit. These authors give a simple one-parameter
family of approximate solutions for > 1 and r<1, and a nu-
merical solution in between for a value of the parameter cor-
responding to the critical point. We summarize below some
of their pertinent results and those of an earlier paper.’

First, noting that @ = 0 is a solution of (10a), we can
look for an axisymmetric solution for which @ and ' —0 as
r— . This is needed to make the fields pure gauge at infin-
ity. Thus, neglecting nonlinear terms in (10a), we get

©" + (/M0 —w =0, (25)

which gives @—cK(r) as — o . The corresponding solution
of (23a) in Ref. 13 is

u(A,r)—1 — 2AKr). (26)

Thus 44 = —c.

In Ref. 13 the small-r behavior of u(4,r) is shown to
depend crucially on the value of the parameter 4, and explic-
it approximate solutions in terms of elementary functions
are given. The case studied in most detail, A = 1/7, which
represents the critical point in the Ising model, has also there
been numerically solved for intermediate values of 7, reveal-
ing a rapid monotonic increase to unity from zero at the
origin. The role of the parameter A is not clear in the Yang—
Mills problem, but the case A = 1/, being the least-singular
and best-examined one, will also be the only one treated here.
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The solutions for other values of A can, in principle, be
brought to the same degree of completion when numerical
work for intermediate 7 is extended to them. The A = 1/7
solution behaves at the origin as

(r/2)In(r/8) + y£) + O (r > In? »), (27)
where ¥z = 0.577 215 ... is the Euler—-Mascheroni constant.

To see what this behavior implies for the Yang—Mills
field, we first apply the gauge transformation
U = exp{ — i60,/2), where 6 = tan™' y/x as usual, on the
axisymmetric case of (12). The result is

A, =0, A, =iosalw'/2 + 1/7),

A =ioga sinh(w/2), A, = io,a cosh(w/2), (28)
with o, =(0,c0880 +0,sinf) and o, =(0,c080
— o, sin 0). This form of the potential with only an azi-
muthal component is clearly suited for describing strings

u(r)—+ —

along the x, axis. The asymptotic behavior ® — — 4K(r)/7

r—o

is now seen to give for the fields

|4 Z|r:> 1/eR — (4a/em)K (2aR ), (29a)
[b| = |4 flr_:(M/eﬂ)Ko(ZaR )s (29b)
ol = [45] — 2a/e, (29¢)
|F3,| — (8a*/em)K,(2aR ), (29d)

where clearly 2aR = r. Interpreting A, as a scalar field, (29a)
and (29c) are precisely the same asymptotic expressions
found in the original Nielsen—Olesen solution. On the other
hand, |{| vanishes at large 7, and this results in the break-
down of the usual Bogomolny proportionality between topo-
logical charge and the tension. At the origin, furthermore,
some field components diverge like 1/71n » unlike in the
Nielsen—Olesen case. This of course is the singularity needed
to circumvent the no-go theorem.
The flux can be found using (19), (26), and (27):

o= 2 [ rar (%)
r dr dr

T 27 ru'
= —-ra)’ 8° =
e

2
§=-=. (30)
e

e u

This is again exactly the Nielsen—Olesen value. The tension,
on the other hand, diverges as expected:

2
f dr——(rcosh =27T—f[rw’sinhw]5‘°
e

T= 2ma?

817(12 . 1
= lim . 31
e? r—o r2In?(r/2) B

IV. REAL AND COMPLEX SOLUTIONS BASED ON THE
LIOUVILLE EQUATION

A. The general solution

Liouville?! in 1853 expressed the most general solution
to the Minkowski version of (11) in terms of two arbitrary
functions F{x — y) and G (x + y). In Euclidean space, one of
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these becomes an analytic function of the variable z = x + iy
and the other a function of the variable z*. If we also require
that the solution be real (this will hold even for our complex
Yang-Mills solutions), then { must be the following sym-
metric combination of an analytic function g(z) and its conju-
gate g*:

(= —mla )] 32

2 dz| (1—g*)

It is immediately obvious that the solution is singular along a
curve defined by g*g = 1, in contrast to the singularity of P,
which was limited to the origin. A famous theorem, also by
Liouville, states that the singularity cannot be avoided un-
less g is trivial, i.e., a constant. We can, however, trade a real,
singular Yang-Mills solution for a complex, nonsingular
one simply by (4,k }—{ih,ik ). Interestingly, gauge-invariant
quantities such as the flux and the tension still remain real
under this transformation. The Liouville equation now takes
the form

V¢ = —e%, (33)
to which the solution is
dag |? 1 ]
= _—, 34
&= 2 [ dz | (14 g*g)? (34)

showing that the singularity has indeed disappeared. Note
g(2) and 1/g(z) correspond to the same solution &. The “mag-

netic field” & ,, is given by
~ 5 l6a*| dg|? 1
F 2 =F X = - ——, 35a
12 2@ XY 2 | dz | 1 +g%er (35a)
F 1, = (16a%/€%)d, 3,. In(1 + g*g). (35b)

Thus .% ,, is a Kaehler form,?? obtainable from a Kaehler
potential In(1 + g*g). The flux @ is the integral of this form:

¢=—15fdxdy?12

_ 1610 fd 1
(1+g"g)2
_ 2 ( dgAdg*
T e ) (14g%? 6)

This is recognized to be proportional to the surface area of a
sphere of unit diameter projected stereographically onto the
complex g-plane.

B. Particular solutions
1. Nonsingular complex axisymmetric solutions

n,ind

To obtain these, we must clearly set g =z" = r "¢’ so
that there is no angular dependence in (34). Furthermore, n
must be an integer since otherwise the analyticity require-
ment fails along the positive x axis of our xy plane and (34)
ceases to be a solution there. With this choice of g and the
gauge used in (28), we find from {14) and (34)

n—1
A, =0, 4, =i0'3a(—2—nr__ + l),
(14727 r
n—1 n—1
A, =io,a 21”; —» As=ig,a 2nr — (37)
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and
Fi, = —ioy(8a*n’r* ~2/(1 4+ r*)?}). (38)
One can now check explicitly from (36), (38), or (21) that
the flux @ is quantized in units of 477/e:
o _ 4mn J’“’ 2nr?"—'dr _ _ Amn '
o (14722 e

(39)
e
This, of course, agrees with the result found from the circuit-
al integral of 4, in (37), as long as one is careful to cancel the
contribution of the pure gauge n/r term along the circle at
infinity by that along a small circle around the origin. The
quantization evidently comes from the fact that we cover the
g(z) plane (and the spherical area it is projected into) # times
as we cover the xy plane once. Note that the basic value of
flux for the Liouville case is twice that in the sinh~Gordon
one.
The tension density is proportional to V%% by (20).
This latter quantity is easily found to be

V2e¥ = 4n?{[(2n — 2)*r > ~* + (8 — l6n?)r**—*
+ 4 2P L+ (40)

This is invariant under n— — 7 as expected. Here . |, and
the energy density (40) display increasingly sharp extrema
approaching » = 1 with increasing », and then rapidly di-
minish to vanishingly small positive values for 2 2. This
accumulation of the tension density and the fields near » = 1
for large n is reminiscent of the situation with axisymmetric
multimonopoles.?

2. Real singular axisymmetric solutions

The real versions of the above set of solutions can be
obtained by substituting g = z*, this time in (32). This results
in solutions which are singular on a ring 7 >* = 1 and the flux
integral becomes undefined. However, it is interesting that if
one wishes to give meaning to the divergent integral

@ 2n—1 @

12:[ Ly M (41)
o (— 1472 -1 u

via analytic regularization,** one finds

[ B “

which is again the result (39). More generally, this could be a
way of defining singular variants of integrals such as (36) for
noncompact Kaehlerian manifolds.

3. Nonaxisymmetric solutions

We have seen that g = 2" gives a solution of flux 47n/e
centered around the origin. The flux value clearly does not
change if one instead chooses

g=z—2))lz —2z))+(z — 2,). (43)

This is the case since g(2) still approaches z* at infinity for
finite separations between the string centers z, = x; + iy;.
Hence at infinity one reobtains the 4, in (37), whose circuital
integral along a very large circle yields 4mn/e.
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V. THE ERNST EQUATION AND AXISYMMETRIC
STRINGS

We have so far obtained a general n-string solution of
(11), but only a single axisymmetric solution of flux 27/e of
(10a). It would also clearly be desirable to find more general
solutions of this latter equation. Leaving aside for the mo-
ment the question of how separated n-string configurations
satisfying (10a) may be found, we address that of construct-
ing axisymmetric P, solutions with a multiple of the basic
flux. A successful strategy in the problem of axisymmetric
multimonopole solutions employs? the solution-generating
techniques® of the Ernst equation of general relativity by
first casting known simple solutions into the Yang—Ernst
formalism. Our aim here is to point out the applicability of
the method to the string problem by showing how the given
solutions fit into the Ernst framework, leaving the actual
generation of new ones to a future note.

In the Yang—Ernst formalism we must parametrize our
solutions in terms of two functions F (R, X;) and G (R, X;) (no-
tice 2aR = r and 2aX; = z) obeying the Ernst equations

FV*F = VE-VF — VGVG, (44a)
FV?*G =2VFVG, (44b)

which guarantee self-duality. Here, unlike in (10), V*=d?
+ d2% + d3. Potentials with self-dual field tensors are then
expressed in terms of solutions of (44) by

A, = (i/2F)(Fyo5 + G0, + G,0,), (45a)
A, = {(i/2F) — F,05 + G0, — G,0}), {45b)
A, = (i/2F G0, (45¢)
Ay = (i/2F \Fy0, + G30,). (45d)

The question here is what ¥ and G should be in order to
recover the solutions (28) and (37), and which, if any, gauge
transformations are needed. This has been dealt with expli-
citly in Ref. 19 regarding Ps; and it is not hard to find the P,
and the Liouville F’s and G ’s by following this example. For
P,, the result is

F = exp(2aX;)sech(w(2aR )/2),

G = exp(2aX;)tanh{w(2aR }/2). {46)
This is equivalent to (28) up to two gauge transformations:
first, one of the form

U, = explio,tan'(e*?)) (47)

followed by U, = exp( — i605/2).

Although the general Liouville solution has already
been given, we also write down the Fand G for the axisym-
metric solution (37) for completeness: One simply takes

F=exp{, G=2aX,, (48)

and no gauge transformation other than U, is needed.

V1. CONCLUDING REMARKS

‘We have so far examined two ways of avoiding the no-
go theorem of Sec. IT A: allowing singular or complex solu-
tions. Coupled with the two general multistring Ansdtze
based on the sinh—-Gordon and Liouville equations, there are
thus four classes of solutions to be studied. While both the
complex and the real string solutions of the Liouville case
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were presented, the only explicit solution of the sinh-Gor-
don case so far is the real, singular, axisymmetric P; one. It
would thus be of interest to (i) find a complex axisymmetric
and nonsingular version of Ps, (ii) search for axisymmetric
solutions of higher flux by generating new solutions of the
Ernst system set up in Sec. V, and (iii) look for separated
multistrings. We intend to return to these problems in a fu-
ture publication.

Should solutions of type (iii) exist, the no-go theorem
might be beaten in yet another way: Finite tension, real and
nonsingular Yang-Mills strings are not forbidden if the co-
variant derivatives do not go to zero at infinity. This would
happen if one had a doubly periodic arrangement of vortices
over the whole xy plane. The presence of a length scale (in the
form of a lattice spacing) would presumably set a scale for the
tension per string (the P, vortex might be reobtained by put-
ting the origin at one vortex and letting the spacing as well as
the tension go to infinity). Interestingly, this is exactly the
picture of the Copenhagen “spaghetti vacuum,”**° before the
spaghetti is “cooked” by quantum fluctuations and Lorentz
invariance recovered. Mathematically, such a vacuum con-
figuration would also be described by a doubly periodic func-
tion. On the other hand, Painlevé transcendents are known
to be asymptotically related to elliptic functions.!” The ap-
pearance of exactly the same P, in an intrinsically doubly
periodic problem, i.¢., the Ising model, is another hint in this
direction. In principle, one only needs to find a doubly peri-
odic solution of {10a) and check whether these expectations
are borne out.

Regarding the question of integrability the emergence
of integrable equations and Painlevé transcendents in both
the twice dimensionally reduced SDYM equations consid-
ered here, and in the radial equations for a self-dual Yang-
Mills monopole,* strengthens the likelihood that integrabi-
lity is an inherent property of the SDYM system. In fact, the
particular equations found, i.e., the sinh~Gordon and the
Liouville, have to do with a specific integrable system, the
so-called Toda field theory, as do the radial equations for a
self-dual monopole. As the Toda system of equations also
naturally gives rise to the Dodd-Bullough equation,?’ it is
very likely that a Yang—Mills Ansatz leading to this equation
also exists. It is possible that the class of solutions found by
Burns'? are related to the Dodd-Bullough equation.

Finally, there remains an interesting mathematical
problem to be investigated. Nahm?® has recently shown how
to adapt the ADHM formalism® to the multimonopole
problem. It should similarly be possible to incorporate the
Painlevé solutions found here into the ADHM framework.
This would not only reveal an unexpected connection
between the theory of differential equations and the ADHM
construction, but could possibly lead to a generalization of
the Painlevé transcendents by using groups larger than
SU(2).
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APPENDIX: THE EUCLIDEAN ERNST EQUATION AND
SELF-DUAL RIEMANN TENSOR

The functions F and G in Eq. (44) parametrize a station-
ary axially symmetric metric®® of Minkowskian signature:

ds’= — F(dt—2dbV
+ (1/F)[e*(dR*+dZ* + R*d6?]. (A1)
Here G is hidden in the function (2, related to it through

Gr =(FY/R)2,;, Gy = —(F/R)2,. (A2)

In going to Euclidean space, the metric (A1) must remain
real after #—it; thus we must also have (2,G }—{(if2,iG ). The
vacuum Einstein equations, to which (44a) and (44b) also
belong, now become

FV?F = VFVF + VG-VG, (A3a)
F VG =2VFVG, (A3b)
V2y = (1/F%(G? — F}), (Ada)
2y, = (R/F*)FpFz — Gz Gy), (A4b)
Qr =(R/2F?Fy —F5 —G; +G%), (Adc)

where {A3) is obviously the Euclideanized Ernst equation.
A remarkable simplification occurs if one looks for so-
lutions with

F=G. (AS)
Equations (A4b) and (A4c) then imply ¥ can at most be a

constant, which we set to zero for convenience. Further-
more, the single resulting equation

FV?F =2VFVF (A6)

simply means that ¥ = F ~' is harmonic:
vy =0. (A7)

Introducing the vector = £2é,/R we can now write
the Euclideanized metric with ¥ ! = F= G and y = O as

ds? = V ~Vdt — Qpedx)? + V dxedx. (A8)

On the other hand, using the freedom in the sign of G turns
{A2) into

VW= +VxQ,, (A9)

which is also consistent with (A7).

The metric (A8), subject to the condition (A9), was first
written down by Gibbons and Hawking,'®* who gave a class
of metrics with self-dual Riemann tensors. In their work,
self-duality is guaranteed by (A9). Among all possible solu-
tions of (A7) and (A9), the special case, where V'is a superpo-
sition of “Newtonian mass point potentials” and £2,, a su-
perposition of corresponding “magnetic mass vector
potentials,” gives Taub—NUT or gravitational instanton me-
trics. But this special restriction is built into our metric: £,
is already in the azimuthal direction, so that with an axisym-
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metric V of the form

y m

“ [R2+(Z—Zi)2]l/2 4
Q,; would indeed be a sum of Dirac monopole potentials.
Here e = 0and € = 1 represent collinear N — 1 gravitational
instanton and N-center Taub—NUT metrics, respectively. A
single m is necessary in order to avoid string singularities.

One might wonder at what point self-duality has been
introduced into the standard Ernst framework defined by
(A1)-(A4). The answer is in Eq. (A5), which is an extra condi-
tion singling out the self-dual solutions to (A3) and (A4).
Thus the Minkowski form of the Ernst equations corre-
sponds to self-duality for Yang-Mills fields, while a particu-
larly simple special case of the Euclidean version produces
metrics with self-dual Riemann tensors.

V=€+

(A10)
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First integrals via polynomial canonical transformations
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Mabharatna, Dutt, and Chattarji [J. Math. Phys. 20, 2221 (1979)] discussed the use of time-
dependent canonical transformations for the determination of first integrals for time-dependent
Hamiltonian systems. One particular proposal that successive time-dependent polynomial
canonical transformations will enable first integrals to be found for a wider variety of time-
dependent polynomial Hamiltonians than can be obtained using time-dependent linear canonical
transformations is shown to be not true for the paradigm which they selected. It is suggested that

their ansatz is ill-founded in general.

PACS numbers: 03.20. + i

I. INTRODUCTION

In a paper, which appeared in 1979, Maharatna, Dutt,
and Chattarji' (hereinafter referred to as MDC) discussed
some applications of time-dependent canonical transforma-
tions to nonlinear nonconservative systems. Their aim was
to determine first integrals for such systems.

In the first instance they applied the method of time-
dependent linear canonical transformations? to a one-di-
mensional time-dependent nonlinear Hamiltonian. To facili-
tate the discussion a Hamiltonian system with the lowest
order of nonlinearity (i.e., terms cubic in the canonical varia-
bles ¢ and p were added to a quadratic Hamiltonian) was
treated. It was shown that only when the time-dependent
coefficient in the Hamiltonian had specific forms of time
dependence could a first integral be found by this method.
Even with this limitation the result was a useful addition to
the then state of the art. The same method was applied to a
linear damped system and a first integral was obtained with-
out restriction on the nature of the time dependence.

Taking as a paradigm the Hamiltonian of a damped
Duffing oscillator, they showed that it was possible to reduce
the degree of nonlinearity by means of a time-dependent
quadratic canonical transformation. This resulted in the de-
gree of the Hamiltonian being reduced from 4 to 3. The coef-
ficients of the transformed Hamiltonian were still time-de-
pendent.

They then proposed that it may be possible to remove
the explicit time dependence of a nonlinear Hamiltonian sys-
tem by means of a succession of nonlinear canonical trans-
formations. In the particular instance of the Hamiltonian of
the Duffing oscillator which is a polynomial in the canoni-
cally conjugate variables ¢ and p, the nonlinear canonical
transformations were to be quadratic polynomials in g and p.
The suggested procedure was to apply a canonical transfor-
mation of the form

2 2—j

2 2 a;;(t)gp,

S byl (1)

“MN ||

where q’ and p’ are the new variables and ¢ and p the old
variables, to a time-dependent polynomial Hamiltonian so
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that the degree of the transformed Hamiltonian was one less
than that of the original transformation. This process was to
be repeated until a quadratic Hamiltonian with time-depen-
dent coefficients was obtained. The time-dependence of this
Hamiltonian would then be removed by means of a time-
dependent linear transformation as has been described else-
where (Leach?).

The calculations for this procedure published in MDC
were not complete and further work along their lines does
not seem to have appeared in the literature. The aim of this
note is to examine two questions raised by this part of the
work of MDC. The first is whether a class of time-dependent
systems wider than that which can be treated by time-depen-
dent linear transformations can be treated successfully by
means of time-dependent polynomial transformations. The
second is whether in fact such polynomial transformations
exist in a canonical context.

Il. STRUCTURE OF THE FIRST INTEGRAL OF MDC

As a paradigm for their method, MDC used the Hamil-
tonian of the damped Duffing oscillator

H(q,p,t)—1p2 ~2w+1w2q2e27: leq“ 27/1 (21)
We propose to use a slightly more general paradigm, viz.
Higpt)=1p"+1q +iA(t)" (2.2)

We explain how the Hamiltonian (2.2) is more general below.
Given a Hamiltonian

Hig, pt)=1lalt}p* +1b(t)g" + Jclt)g*, (2:3)

the function a(¢ ) may be removed by means of the change of
time variable

t—t'it' = fl a(u) du, (2.4)

giving an equivalent description of the same system by the
Hamiltonian

H'(g,pt" ) =1p* +1b'(t")g" + i'(t g*, (2.5)
where
b[t't)] =0b(t)/alt), c'[¢'(t)]=clt)/alt). (2.6)

The function b (¢ ') is then removed by the time-dependent
linear canonical transformation
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(¢ P)HOP: Q=q/p, P=pp—pq) (2.7)
where p(t ) (the overdot denotes d /dt’) is a solution of the
differential equation

ptbp=p>. (2.8)
The transformed Hamiltonian is
H'(QPt)=p 2} P2 +1 0%+ Icp°0%}. (2.9)

The further change of time variable

t'=>T"T= Jl p2(u) du (2.10)
gives the equivalent Hamiltonian

HQPT)=1P*+10*+1A(T)Q%, {2.11)
where

AT =c(t")p5¢) (2.12)

The Hamiltonian (2.11) has the form given in (2.2). The re-
duction of (2.3) to (2.2) by the method outlined above enables
us to use the point transformation of (2.7) rather than a more
general linear transformation which would introduce higher
powers of the momentum.

The method proposed in MDC was to apply (i) a time-
dependent quadratic canonical transformation of the type
(1.1} to reduce (2.1) to a time-dependent Hamiltonian cubic
in ¢’ and p’; (i1) a second quadratic canonical transformation
of the same form, viz.

0'=3S z' ¢t )'s",

101

Z Z d,lt)g'p

j=0i=

(2.13)

to reduce the cubic Hamiltonian to a time-dependent qua-
dratic Hamiltonian; and finally (iii) a time-dependent linear
canonical transformation

0= 3 3 esfri0"P",
P= 3 S1,00P"

j=0i=
to convert the time-dependent quadratic Hamiltonian to a
time-independent form. The resulting Hamiltonian is a first
integral of the system it describes and so of the original Ha-
miltonian system.

The suggestion in MDC is that, by the method outlined
above, first integrals may be found for a wider class of time-
dependent systems than the class which may be treated by
time-dependent linear canonical transformations. Their po-
sited first integral is quadratic in the final set of canonical
variables, @ and P, hence quadraticin Q 'and P’, quarticing’
and p’, and so octic in ¢ and p. Before we examine the exis-
tence of an octic integral for a Hamiltonain of the type (2.2},
we shall determine the conditions under which (2.2) has a
first integral in terms of a linear canonical transformation.

(2.14)

lII. A FIRST INTEGRAL FOR A HAMILTONIAN OF TYPE
(2.2)

First integrals for Hamiltonians of the form

Hig,pt)=14p*+ Vigt), (3.1)
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which are polynomials in p have been treated recently by
Gascon, Ramos, and Aguirre-Dabon® and Lewis and
Leach.* The approach was quite direct in that a first integral
of the form

I(g,pt)= > xilqt)p' (3.2)
i=0
was assumed and the Liouville equation
ol
—+[LH],, = (3.3)
or
solved.

For the case n = 2 it was found that when

Vigt)=p~* (5 Llbg — b~ 'F — 6 + " + 2ba)

+Ggp~! +pr‘3dt)) + glt), (3.4)

the first integral was

1 . -
g pt)=—lop ~pg)’ + G(qp : +fbp 3dt)
(3.5)
wherep(t ), b (¢}, and g(¢ ) are arbitrary functions of time and G
is an arbitrary function of its argument subject to obvious

restrictions of differentiability.> Matching (3.4) to the Ha-
miltonian (2.2) for which

Vigt) =14+ 1A (t)g", (3.6)
we find that

Ilg,pt)=4pp—pa +Yap 'V +3K(gp™ '), (3.7)

Alt)=Kp~(t), (3.8)
and that p(t) is a solution of the differential equation

ptp=p7 (3.9)
ie,

pi(t)=A,+ A, sin 2t 4 A4, cos 2t, (3.10)
where

A2 4% 42 =1. (3.11)

[Note: It is conventional to make the coefficient of p~* in
(3.9) as unity. Any nonzero constant will suffice and this
could be used to subsume the K of {3.7) and (3.8}, but there is
no gain in generality. A zero coefficient of p ~* will cause p(¢ )
to have periodic zeros and so limit the domain in time of the
problem.]

The first integral (3.7) may obtained from the Hamil-
tonian (2.2) by means of the linear canonical transformation

(. PQ, P:Q=qp~", P=pp—pg), (3.12)
which produces the transformed Hamiltonian
H[Q(g:2)Plgpt)t)=p ?Iigpt). (3.13)

IV. AN OCTIC FIRST INTEGRAL FOR A HAMILTONIAN
OF TYPE (2.2)

For the case n > 3, the solution of (3.3) cannot be ob-
tained explicitly for a general ¥ (g,t } (sec both Refs. 3 and 4).
However, in this case for which the form of the potential is
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given as a simple polynomial in g [cf. (3.6)], it is feasible to
assume the form of the first integral in (3.2) for general n. In
particular we may take the first integral to have the form
implied in MDC, i.e., one which is octic in g and p by assum-
ing a first integral for the Hamiltonian (2.2) to be

8

Ig,pt)= Y xlat)p', (4.1)

i=0
where x; (g,¢) is a polynomial in ¢ of degree 8 — i with time-
dependent coefficients.
Substitution of (2.2) and (4.1) into the Liouville equation
(3.3) and separation by equating coefficients of powers of p to
zero gives rise to the ten equations

Jx

s _ 0,
dq
dxg  Ox,
P L P71,
ot + dq
(4.2)
ox;, Ox,_,
Ll i ), —A¢), i=1,.,1,
E E» (i biia1lg q)
Ix,

o _ AgY).
E xq +1q)

Given that each x,(g,? ) is a polynomial in g of degree 8 — i we
define

8

xolgpt)= Y atlg’, xigt)= g b(t)g’,

xz(q,t) = Z Cj(t )qj’ X3(q,t) = Z dj(t )qj ’

(4.3)

4

xA(q’t) = z ej(t )qj»

j=o

xs(qJ ) = Zof] (t )qj ’

*dgt) = 3 glelgs xdgt) =3 hlrla’,
xg(g,t ) = kot ).

The expressions in (4.3) are then substituted in Egs. {4.2) and
separated by equating coefficients of powers of g to zero. the
resulting equations simplify considerably. For those func-
tions of time which are not identically zero (with one excep-
tion) the following set of equations remains to be solved:

e +d =0, (4.42)
dy + 2¢, = de,, (4.4b)
to+b,=0, (4.4c)
¢+ 3by=3d,, (4.4d)
¢y + Sbs + 3Ad,, (4.4¢)
by + 2a, = 20, (4.40)
by + 4ay = 2¢; + 2cy, (4.4g)
bs + 6ag = 2¢c, + 2dc,, (4.4h)
a, = b, (4.4i)
ay=by + Ab,, (4.4j)
ag = bs + Abs, (4.4K)
ag = Abs, (4.41)
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c, = Aeg, (4.4m)

4a, = Ac,. (4.4n)
The only function which is identically zero not included in
(4.4)is a,(t) which is an arbitrary constant 4. As fand ] + 4
have the same meaning, it is of no import.

Using Eqs. (4.4a), (4.4b), (4.4d), (4.4¢), (4.4m), and (4.4n)
we may express d,, ¢,, bs, ¢4, and ag in terms of e, and A and
their derivatives. Equation (4.41) becomes a consistency con-
dition on A and ¢, and reduces to

2e, + 34e, = 0. (4.5)
Integrating (4.5),

A %e} = const. (4.6)
If we let

Alt)=p~°t), (4.7)
we then have by back substitution

e, = ap®, (4.8a)

d,= — 4ap’, (4.8b)

¢, = 2a(p* + 20%" + p'h) (4.80)

by = —2a/3(100° + 6pp* + 9p°pp + p%p),  (4.8d)

bs= —2ap p, (4.8¢)

ca=ap~? (4.81)

ag=}ap~?, (4.8g)

where a is an arbitrary constant. Returning to Eq. (4.4),
(4.4h) yields
_4 . 2

as=alp > +p %" +p7p) (4.9)
and (4.4k) becomes a consistency condition on p(t), viz.,

P+ 3% + 4p% = 0. (4.10)
Integration of (4.10) gives

ptp=p> (@.11)
in which the constant of integration has been taken as unity.

Equations (4.4c), (4.4f), and (4.4i) may be solved inde-
pendently of the others to yield

¢y = By, — B, sin 2t + B, cos 2t,
b, = — 2B, cos 2t + 2B, sin 2¢,
a, =By, — B, sin 2t — B, cos 2t.
From (4.4g) and uvsing (4.8d) and (4.11) we find that
a,=4p %B,+ B, sin 2t + B, cos 2t)
+a(p?+p 7 (4.13)
Finally (4.4) produces the consistency requirement
p*(— 2B, cos 2t + 2B, sin 2t)

(4.12)

~+ 20p(B, + B, sin 2t + B, cos 2t) = 0, (4.14)
from which it follows that
B, + B, sin 2t + B, cos 2t = Bp?, (4.15)

where £ is an arbitrary constant. This is consistent with

(4.11) which has the solution
pt)=Ay+ A, sin 2t + A, cos 2t, (4.16)

where
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A2 — A2 — 42 =1. (4.17)

We may now write down the first integral by substitut-
ing the various coefficients which have been determined
above into (4.3) and thence (4.2). In doing this any second
and third derivatives of p are replaced by expressions in p
and p by using (4.11). We find that

Ig,pt)=PBI+al?, (4.18)
where

Lig,pt)=(pp—paf +lgp~ 'V +iap™ "), (419
is a first integral for

Higpt)=4p"+1q" +1qp " (4.20)

This is essentially the first integral given by (3.7), i.e., the
extension of the p dependence of the first integral to higher
powers has not given rise to a first integral other than the one
already calculated nor has it extended the nature of the per-
mitted time dependence in the potential beyond that which
was already permitted.

V. THE EXISTENCE OF A QUARTIC CANONICAL
TRANSFORMATION

For a paradigm of the type in MDC we have seen that
there has been no advance over the result which would have
been obtained using only a time-dependent linear canoncial
transformation. In this case, the first question raised in the
Introduction must be answered in the negative. However, it
has been possible to obtain a first integral which is quadratic
in a variable /,, which is quartic polynomial in g and p.

It is possible then that the second question can be an-
swered in the affirmative? Let us recall our argument of Sec.
I1. The combination of two successive quadratic transforma-
tions followed by a linear transformation is to produce a first
integral quadratic in the new variables and so octic in the
original variables., The composition of the series of three
transformations is a transformation quartic in the original
variables. So the argument was that a quartic transformation
implies an octic first integral. However, the existence of an
octic first integral, which was demonstrated in Sec. III for a
limited type of time dependence in the potential, does not
necessarily imply the existence of the proposed quartic
transformation. We now turn to an examination of the sec-

ond question.
It has been suggested in MDC that a Hamiltonian of the

form
Hig,pt)=p"+1¢° + 14" (5.1)

can be transformed by a canonical transformation of the type

Qlg,pt)=a+bp+cp’+dp’ +ep,
(5.2)

Plg,pt)=f+gp + hp’ + kp® + mp*,
in which the coefficients @ to m are polynomials in g of de-
gree 4 — i, where / is the power of p multiplying the coeffi-
cient, to a Hamiltonian which is quadratic in Q and P. We
are at liberty to set the form of the quadratic. The reason for
this is as follows. Suppose that a quartic transformation to
some quadratic Hamiltonian exists. This quadratic Hamil-
tonian may then be transformed by a linear canonical trans-
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formation to any other quadratic Hamiltonian as was shown
in Ref. 2. As the composition of a quartic and a linear trans-
formation is itself quartic, it follows that we can select the
final quadratic Hamiltonian at will. We select

H=1P2 (5.3)

We could attempt to match these Hamiltonians {(5.1)
and (5.3)] by using the generating function approach in
which for a generating function of the form F,(g, p,t),°

ok, _,_p92

g dq '

o _ _pdQ

Ip ap

H=H4+pPX=4¢ 5.4
+ ot + ot (5.4)

where all functions are expressed in terms of ¢, p, and ¢.
However, this produces equations for the coefficients of p in
Q(q, p,t) and P g, p,t) which are nonlinear. To avoid such
equations we adopt a different procedure here. We require
(cf. Refs. 1 and 2) that the equations of motion derived from
H and H be the same when expressed in terms of g and p and
then impose the canonical requirement

ery,, =1 {5.5)
Hamilton’s equations for H and H are
Q=P, g=p, P=0, p=—lg+ig).  (56)

Substituting for Q and P from (5.2) and using the expressions
for g and p in (5.6), we separate the equations Q = P and

P =0 by equating coefficients of powers of p to zero to ob-
tain

0= ﬁ y (5.7a)
dq
m=24  de (5.7b)
dq Jt
k=251 % _4eq 1 ag), (5.7)
dq ot
h=2L 1% a4 aq), (5.7d)
dq ot
g=2219 _ ag4ag, (5.7¢)
dq at
=9 g+ ag), (5.70
at
and
0=9m (5.8a)
oq
ok  dm (5.8b)
dq at
0=9% L 9K _ 4mig+ i), (5.8¢)
dq at
0= % _ spig+id), (5.8d)
dq at
O=i+@—zh(q+iq3), (5.8¢)
dqg ot
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0=

9 _ 3 5.8
o glg + g%, (5.8)

respectively. [Note: The equations (5.7a) and (5.8a) were an-
ticipated from the definition of the transformation in (5.2).]
The first of (5.7) and (5.8) give

m =, (5.9)

where a and B are arbitrary functions of time, subject to any
later differentiability requirements, as will be any other
Greek letter below. From (5.7b), (5.8b), and (5.9),

e=aq,

d=(B—dlq+v, k= —Bg+8. (5.10)
The next pair of equations becomes
a 5o .
3;—=4a(q+zq3)—(ﬁ—a)q—y—ﬂqw,
(5.11)

i”—=4ﬁ(q+iq3)+ﬁq—5-
dq

Since ¢ and / are to be at most quadratic in g and 4 #0,

a=0, B=0, (5.12)
so that

c=06—7g+e h= —8q+0. (5.13)
The next pair [(5.7d) and (5.8d)] becomes

%=37(q+1q3)—(5—%)q—é—5q+o,

(5.14)

% 36l +Ag) + Bg— &

dq
As b and g are at most cubic in g,

y=0, §=0, (5.15)
and so

b=(c—€éq+p, g=—-09+7. (5.16)
Integrating (5.7¢} and (5.8¢) we obtain

a=ielg* +i2e-20+ 8¢ +(m—plg+v,

f=40Ag" + 20— )¢ — g + €. (5.17)

The remaining equations (5.7f) and (5.8f) impose consis-
tency requirements. Separating them by equating coeffi-
cients of powers of ¢ to zero we have from (5.7f)

3éA +ed =304, (5.18a)
ud =0, (5.18b)
€+ 4é =40 + 37, (5.18¢)
ji+u=27y, (5.18d)
§=v, (5.18¢)
and from (5.8f)
364 +04 =0, (5.19a)
74 =0, (5.19b)
G+40=0, (5.19¢)
#4+7=0, (5.19d)
E=0. (5.19)

Since 1540, (5.18b) and (5.19b) give
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7=0, u=0, (5.20)

and (5.18d) and (5.19d) are satisfied identically. From (5.19)
we obtain

oft)=A4A,+ A, sin 2t + A, cos 2t . (5.21)
From (5.19a) and (5.18a)

A=Bo™3 e=({+ D)o, (5.22)
respectively, and from (5.19¢) and (5.18¢)

£t=C, v=Ct+E, (5.23)

where A4 through E are constants. The one remaining equa-
tion (5.18c) is satisfied identically.
The coefficients in (5.2) are

¢=0, d=0, c=(t+D)s, b= —(t+Dg
a=(t+D){iodg" +}20+ )¢+ C}

+E—CD, (5.24)
m=0, k=0, h=o0, g= —og,

f=10A¢* +i20+ )¢+ C,
from which it is evident that
Qlg.pt)=(t+D)Plg,pt)+E—-CD. (5.25)

Thus Q and P are not canonically conjugate and so the sec-
ond question raised in the context of the work in MDC also
must be answered in the negative.

VI. DISCUSSION

In one sense the results obtained above are negative.
For a polynomial Hamltonian of type (2.2) there has been no
advance in the nature of the permitted time dependence in
the potential over and above that which can be treated using
linear canonical transformations. Increasing the degree in p
and q of the polynomial first integral in the context of the
proposal in MDC has not yet yielded any further results, just
a lot of hard work. The assumption that polynomial canoni-
cal transformations, which are of equal degree (greater than
1), exist also has been shown to be false in this context.

Indeed it was more from a wish to follow the spirit of the
work of Maharatna, Dutt, and Chattarji that the calcula-
tions in Sec. V were made. We would not expect a result such
as they proposed on more fundamental grounds. We may
illustrate this point easily. We may without loss of generality
[as discussed in Sec. V in the lines preceeding (5.3)] select as P
the invariant I, (4.19) obtained in Sec. IV, i.e., take

Plg,pt)=(pp—pgl +lap~") +ilap™ ).  (6.1)
To simplify the following discussion we interpose the linear
canonical transformation

9d=qp”', pP=pp—py, (6.2)
so that
Plg,pt)=p"+q*+1q". (6.3)

A Q(q, p',t) canonically conjugate to P (¢’, p',t ) satisfies the
linear partial differential equation

s op_ 39 o _, 64
apl aql ’ *

the characteristics for which are found from
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dg__ _—dp _d9 (6.5)
aP/dp" IP/dq 1
The two characteristics are
oP

”
u="~P v= ——f
Q Ey

where in the integrand p’ has been replaced by a function of
u, q', and t by inversion of the first characteristic. With P as
in (6.3), to within an additive function of P,

.
Q=f Yu—n*—1n*""dy,

which is an elliptic integral of the first kind. [Alternatively
we could take as characteristics

(w,t)"tdy, (6.6)

(6.7)

-
u=P, V=Q+J’ é’—P(u,'ly,t)"‘a'n, (6.6")
aq’
for which the analog to (6.7) is
p,
Q0= —J =1+ [T +2P—297])'/2
X{142P—29% ~"2dy. (6.7')

This also is an elliptic integral of the first kind.] Consequent-
lyitis notsurprising tht Q (¢', p',¢ ) is not a quartic polynomial
ing’ and p’ and hence Q (g, p,t ) not a quartic polynomial in g
and p.

We must emphasize the restriction that both Pand Q be
polynomials. Sense can be made of the proposal in MDC if
we take P, say, to be a polynomial and allow Q to be an
infinite series. From (6.7), for example, we see that
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Q(q',p',t)=3j?§o(;1),.‘—)i( )

.
Xf (7° + 19" dny,

[T

(6.8)

_1
where ( . 2) is the binomial coefficient. However, this
1

seems to be a cumbersome approach to a problem which can
be solved more easily by other methods. When applied to a
Hamiltonian with a general potential V' (g, ) it is difficult to
see how satisfactory progress could be made.

We may conclude on a more positive note. It would
appear that the results pertaining to the permitted nature of
the time dependence in a potential V (g,¢ ) are going to be the
same whether a linear canonical transformation is used or
something more complicated as suggested above in the com-
bination (6.3) and (6.8). If we wish to expand the nature of the
permitted time dependence, some other approach is neces-
sary. Two such approaches are found in Refs. 7 and 8.
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The recursion operator for the infinitesimal transformations about solutions of the coupled KdV
equation is a 2 X 2 matrix whose elements are of the fourth order. This formidable looking
operator is written as the product of four 2 X2 matrix operators whose elements are of the first
order. Auxiliary functions introduced to factorize the recursion operator lead to the scattering
equation for the equation. The factorization of the recursion operator for the sine—~Gordon

equation is also presented.

PACS numbers: 03.40.Kf, 02.90. 4+ p

I. INTRODUCTION

The existence of a recursion operator which generates
an infinity of infinitesimal transformations (IT) about an ar-
bitrary solution of a nonlinear evolution equation (NLEE)

u,(x,t) = K (u) (1.1)

is a necessary condition for the integrability of (1.1)."> A
simple derivation of the recursion operator is also presented
in these papers. Many properties of these operators have
been studied in Refs. 3-5. The eigenfunctions of these opera-
tors have been shown, in many cases, to form a complete set
and used to study near-integrable systems by perturba-
tion.®° The soliton solutions can be written as a linear com-
bination of the discrete eigenfunctions of the recursion oper-
ators.>® Finally the recursion operator and the operator
determining the time evolution of the IT form a Lax pair.'”
These properties of the recursion operator suggests their
study in their own right. However, more often, the recursion
operators are more complicated than the scattering operator
which, on the other hand, might be more difficult to obtain.
Simplification of the recursion operators might therefore
prove useful.

In this paper we simplify the 2 X 2 matrix recursion op-
erators for the coupled KdV equation and the sine-Gordon
(SG) equation by factorizing them. Factorization of opera-
tors associated with integrable NLEE was first done by
Fordy and Gibbons.'>'! They factorized the third-order
scattering operators associated with two fifth-order KdV-
like equations and were able to relate the equations to a sin-
gle modified equation.

The recursion operator for the coupled-KdV equa-

tion'?14
u, =£u3x + 3uux - 6¢¢x ’
P = — ¢, — 3up, (1.2)

is a 22 matrix whose elements are fourth-order opera-
tors.'> We show that this operator can be written as a pro-
duct of four 2X2 matrices whose elements are of the first
order. New dependent variables introduced to factorize the
recursion operator lead to the scattering operator for
(1.2)."*!* We also show that the inverse of the fourth-order
recursion operator cannot be obtained in a closed form.
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In Sec. I we obtain the factors. In Sec. IIT we discuss
the inverse. In Sec. IV the scattering operators are derived.
In Sec. V the factors of the scalar recursion operator of the
SG equation are derived and the inverse of the recursion
operator obtained.

Il. FACTORIZATION OF THE RECURSION OPERATOR
OF THE COUPLED KdV EQUATION

The recursion operator T (u,¢ ) is of the form'
T(ug = (T;;(u)), i,j=12, (2.1)
where
Thu¢)=3D*+2uD?+3u,D+ 2u,,
+ 3wy, D' + 4w’ + 3uu, D!
+u,D"'u—4¢°—644,.D ",
Tyué)= —44.D ¢, —5¢D* —2u, D ~'¢ — dug,
Ioug)= —¢3.D - 3¢, —3 8D
— 3¢ uD" '+ D 'y,
Tlup)= —D*—4¢*>—-246.D ¢ —4uD*—2u D,
(2.2)
where D =d/dx and D ~! is the inverse operator [* _ dx,.
We first write T (14,4 ) as a product of two second-order

operators because one could make a reasonable guess for the
form of these second-operator operators:

T(u¢)=Tiu¢) Toud),

where
Tl(u’¢ ) = (tij(uy¢ ))y 1,] - 1,2,
and
tlj(u’¢) =a,jD2+qu +C,quD_l

+d,;6,.D7 " +e,p ij=12. (2.3)

Thea,;,b,,, etc., are constants to be determined, and T,(u,é )
is a matrix of the same form with different constants. The
forms for T'(u,¢ ) and T,(u,d ) are chosen so that acting on
(u,,¢.) they will give the most general third-order terms of
the form that appear on the rhs of (1.2). Next we find the
product T')(u,¢)T,(u,¢ ) and compare the coefficients with
(2.2) to find the constants in (2.3) and in T(u,¢ ). The large
number of equations are not difficult to solve and we get
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T\(u,g)
(m02 +4mu + 2mu, D ="'  4nd + 2n¢. D'
4m¢ +2m¢p D'  nD?+4nu+ 2nu, D "‘)
(2.4a)
1, 1 1 1
—4——D +——u+5—uxD _i¢
m m m
Tyup)= | m
~—¢-14 D 1)
n n
n
(2.4b)

where m and n are arbitrary nonzero constants. The product
T,T,is independent of m,n. It is interesting to note that with
m=4n= —1,

Tx(u¢)( )

is just the rhs of (1.2). This means that, though there is no
recursion operator connecting (u,,$, ) and (4,.é,) [ («,,8,) is
the rhs of (1.2)], the operator connecting these two is a factor
of the recursion operator. We have observed a similar result
for the fifth-order Sawada—Kotera equation

u, = us, + Suus, + Su,u,, + 5u’u,

whose sixth-order recursion operator'® does not connect u,
and u, but the fourth-order operator connecting them is a
factor of the recursion operator.

Now T',(u,¢ ) and T,(u,¢ ) can be written as products of
first-order operators. For T(u,¢ ) the factors are easily ob-
tained. Consider the following two operators:

T, =D’ +4u+¢)+2u, +¢,)D". (2.5)
Now 7';(u,¢ ) with m = n = 1 can be written as (this choice of
m,n is not necessary, i.e., one can proceed with arbitrary
m,n)

T T_T,-T_
Tws)=+ (7 T 1- 1T
2\, —-T_ T, +T_

1 (D+2fx/f D+2./g )
2\D+2f/f —(D+2g./8)

(D(D—fo/f)D"‘ DD —2f./f\D ! )

D 1)

(D—2g,./8)D~" —D(D—2¢g,/g)D
(2.6)

In writing (2.6) we have made use of the resuit
=D+2f/\DID-2f./f)D ",

=(D+2,/8)D(D—2g./8) D", (2.7)
where
utd=—f./f, (2.8a)
u—¢=—g,./8. (2.8b)
To factorize 7>(u,é ) (we put m = n = 1), let

B aD+fii a,D+f,
Tud) = (D @D +f3) D" D(ayD + ;) D ”‘)

(g(an‘*‘gn)D—l b12D+g12)
(62,0 +85)) D' by D+ gy,
2.9

Constants a,; and b,; and functions f;(x,) and g;;(x,?) are
to be determined. This form for the product matrices was
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suggested by the following observations. The (1,2) element of
Tyu,d)is — ¢ (x,t). This can be written as

—$lt)= —1{D?+u+4—D7—(u—9))
= —4{D+ £/D — f/f)
— (D +8./8)D—8./8)} .
(2.10)
The (2,1) element of To(u,¢ ) is
— (@ (x,t) + ¢.lxt)D )= —Dg(x,t) D", (2.11)

that is, obtained by a similarity transformation of (2.10). The
(1,1) element of T,{u,¢ ) is the same as the (1,1) element of
T)(u,¢ ) and can be written as the sum of T, and T_. The
factors of these are given in (2.7). Thus from (2.7), (2.10), and
(2.11) the forms of the products are fixed and these lead to the
form of the elements in (2.9). Taking the product (2.9) and
comparing it with (2.4b) we got two sets of factors for T5(u,4 ).
The first factor is

Tyu.é)
(D 3F—-1G —F
T4 \D(D4+3F—3G)D -D(D—F+G)D")
( \D(D—F+3G)D~! —2D+F—G)
\D(D+3F—G)D~' 2D—3F+3G
(2.12)
where
F,—QF—G)G=u+d=— f. /f, (2.13a)
G, —Gl=u—¢p=—g./g. (2.13b)

This gives G = — g,/g. We obtain F by solving (2.13a):

1\ (F & x,
F=—(——)f [( )+gil]dx, (2.14)
g/l f ‘
where F(x,t) has a rather complex form.
The other factor is
Ty(u,¢)
(D D—1G—3F )
"4\ Dp+G-F)D~! —DID—3G+3F)D"!
(%D(D—G+3F)D'1 —2D—36+3?)
I\DD+3G—F)D™' 2D+G-F /'
(2.15)
where
ax _62=u+¢= _f;:x/f’ (2'163']
F.—(2F-G)G=u—¢= —g,.,/8. (2.16b)

The forms are very similar to (2.13a) and (2.13b) with (z + ¢ )
and (u — ¢ ) interchanged. In (2.16) it is u + ¢ that obeys a
simple Riccati equation.

Combining (2.6) and (2.12) or (2.15) we have the recur-
sion operator T (u,¢) as a product of four 2X2 matrices
whose elements are of first order involving new dependent
variables f(x,t) g(x,t) defined by (2.8).

We wish to remark that all the elements of T',(«,¢ ) and
T,(u,$ ) given by (2.4) except the (2,2) element of T»(u,¢ ) can
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be written as a sum or difference of the following operators as
can be seen from (2.6), (2.7), (2.10), and {2.11}):

D*+4u+d)+2u, £4)D7", (2.17a)
D*+(ut¢) (2.17v)
D> +(ut¢)+(u, +6,)D'=DD*+u+g)D "

(2.17¢)

These are the only operators, of all the operators of the form
D’t+au+¢)+Blu, £6:,)D7'

that can be factorized using the substitutions (2.8).
The scattering operator L (u,¢ ) for (1.2)'*" can also be

simply factorized using (2.8). Thus
|

f'zfiwdxlfz f_zjimdxlf2
§ g—zjjwdxlgz ~g—2j;dx1g2

Theinverse of T,(u,¢ ) could not be obtained in a closed form.
To obtain the inverse of a matrix operator of the form.

a,D+ £, @D+ fi, )
(@D +/n)D ™' DlayD+f,) D!

appearing in (2.9), in a simple closed form we found that the
condition

Su/a, = fi/a, (3.4)

has to be satisfied. Similar conditions should hold for other
fi; and g, ;. It is seen from (2.12) or from (2.15) that the ele-
ments in (2.12) and (2.15) do not satisfy (3.4). In deriving
(2.12) we had fixed g;; and b, in (2.9) early in the calcula-
tions. Leaving these constants undetermined until the end to
see if the constants could be adjusted to give the desired
relation for f;; and g;; did not help. Another alternative was
to see if the factors could have a different form from the one
assumed in (2.9). We wrote

T2(“!¢)=r's’

where r and s are 2 X 2 matrices whose elements are of the
form

r;=a;D+ f:’j(x’t) »
s;; =D(b;;D+g;lx,t)D - 0j=1.2,

where the constants g, ; and b, ; and the functions f;; (x,t ) and
gi;(x,z) are to be determined. This did not give consistent
solutions for f; and g;;. However one can write each of the
factors in (2.12) or in (2.15) as a sum of matrices which have
simple inverses. But this would lead to an infinite series for
the inverses of the matrices in (2.12) or in (2.15) and hence not
of interest.

(3.3)
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Lug)=D*+u+4)D>+u—¢)
=D +2£/)DD—2f./f)D "

X(D +2g,/g) D(D—2g,/g)D~". (2.18)

lil. INVERSE OF THE RECURSION OPERATOR 7{u,4)

The inverse of T',(u,é ) is simply obtained because of the
symmetry of the matrix. One needs to know only the inverse
of each of the elements. Since

(D—l_-2fx/f}‘1=f7”2J.i dx frix,t), (3.1)

we get

(] o o] )

o(ef wr)o-

(3.2)

~
IV. SCATTERING EQUATIONS

By differentiating (2.8b) twice with respect to x we get
L(ug)glxt)={D*+2uD? 4+ 2(u, —¢,)D
+ e — bux) + (17 — 8%} glx,2) =0
{4.1)
It is easy to see by expanding L (ud)
=D*+u+¢)D*+ u — ¢)in(2.18) that it is the same as
the rhs of (4.1).
Differentiating (2.8a) twice with respect to x gives the
adjoint of L {u,¢ ).

V. SINE-GORDON EQUATION

The polynomial recursion operator for the SG equation

¢ =sin @ (5.1)
isl7

2 ) d
T(¢)=D"+4, dx; @, ——- (5.2)
— Ix,

We write

T (¢)=(D +p)D (D4 q)D. (5.3)
Equating this to (5.2) we get

pP=—q=cb,, = -1, (5.4)
and

T,(¢)=(D +ip,) D ~'(D—i$,)D
=(D—i¢ \D " D+ip.\D. (5.5)
The ordering of D + ig, is of no consequenceasc = + 7. No

new dependent variables are needed to factorize T, (¢ ).
Since the inverse (D + i¢.) ™' of D + i, is
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D)t e [ gx e (s

one immediately obtains

Ts_ 1(¢ ) — % { f dx, e@("p')f dxz e i (x,1)

X xl
— i 't e ,
+J' dx, e 4% )f dx, ewww)]’

the result derived in Ref. 17, after considerable algebra.

Vi. CONCLUSION

Recursion operators for the IT about solutions of inte-
grable NLEE can be found directly from the given NLEE.
The eigenfunctions of these operators have interesting prop-
erties and it will be useful to study the recursion operators
directly. Hoping that factorization of these operators would
be a step in this direction we have shown that the 2 X 2 recur-
sion operator of the coupled KdV equation with fourth-or-
der elements can be written as a product of four 2 X 2 matri-
ces whose elements are of the first order. We have been able
to show from these factors that the inverse of these recursion
operators cannot be written in a closed form. The auxiliary
functions introduced to factorize the recursion operator lead
to the scattering equations for the NLEE. We have also fac-
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torized the polynomial recursion operator of the SG equa-
tion and very simply obtained its inverse.
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An algorithm is given for finding the density and bulk modulus (refraction coefficient) of an
inhomogeneity from the knowledge of the scattered field on the surface of the earth for all
positions of the source and receiver on this surface and for two arbitrary fixed frequencies in the
Born approximation. An alternative inversion method using the low-frequency data is also given.

PACS numbers: 03.40.Kf, 91.90. + p

i. INTRODUCTION AND BASIC FORMULAS
Consider the reduced wave equation describing the
acoustic wave propagation in the three-dimensional space

2
96 v.lve= —sx—y) 1)
K (x) p
where x, y € R, K (x) is the bulk modulus and p(x) is the den-
sity. Let us assume that
1 ey i:i_m, 2)
Kx) K, P PP Pr
where K, and p, are positive constants, a,(x) and a,(x) are
smooth functions with compact support, i.e.,a;, = a, = Ofor
|x| > R, where R >0 is an arbitrary large fixed number.
Equation (1) can be written as
(V2 + 0*/c*)G — 0%a,(x)G — V(a,(x)VG ) = —p,b(x — y),
(3)
where ¢>=K, p,~ . For simplicity let us choose the units in
which
p=1, c=1. @
This is possible: if one sets x = ax’, v = fo’, y = ay’,
where a and 3 are constants then Eq. (3) takes the form
(a—2V12 + ( ﬁZ/CZ)wQ)G _ B 2w:2alG — a—ZV'-(GZV’G )
= —p,a”8(x — ). (5)
One can choose a =p,, 8= c/p,, and define @} = c%a,, a;
= a,. Then (3) takes the form
(V?+ 0?6~ 0%a|G—V-a,VG= —8x' —y'). (6)
Therefore, one can study Eq. (3) under assumption (4):
(V? + 0)G — 0%a,(x)G — V-{a,(x)VG) = — 8(x — y).
(7)
This equation can be written as (§ = fgs, dz = dz, dz, dz,)

G (xy) = glry) — o fg(x,z)a,(zm (z)dz

- f 202V, a2V, G (z.))dz, ®)
_ explio|x —y|)
T Tarx—y ®)

In the operator form (8) can be written as
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G =g — wga,G — gV-a,VG =g — gVG, (10)
where
V=o0a,+ Va,V. (11)

Notice that G = g — GVg, so that GVg = gVG. Let us define
the T-matrix:

T=V-—VGV. (12)
It is obvious (and well known) that T satisfies the equation

T=V-—VgT (13)
and

Tg=VG. (14)

An equivalent definition of T'is 7= VGg~"'. The operator
(11) in the wavenumber representation is an integral opera-
tor with the kernel (277) 3V (k,p), where

Vkp) = f dx dy V(xyJexplilk-x — p-y)],

so that
Vikp)=aw’d,(k — p) — k:pa,k — p),
(15)
ak)= f explik-x)a(x)dx.
The quantity G — g = G, is the scattered ficld,
G, = —glVG= —gTyg. (16)
The last equality follows from (14). Let us keep the x and y
variables (the position of the geophone and the source) on the

plane x; = 0 and Fourier transform (16) in % = (x,,x,) and
P = (1y2) Then (k-=kx, 4 kx,)

G, (k) = f expli-% — )G, (39,02 &

- - fexp[f(fc-fc _ p9)eTe ds &y

—_ ff dzl dzll T(Z',Z")

XJ‘exp(tw[z — | + ik-%) ds

4|z’ — X|
v f explio|z :J’|A" PI) 45
4r|z" — P|
- QJ dz dz" T(z'.z")
G T CANI TN )Y 17)
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where [see Appendix A and Ref. 1, formula (8.6.21)]

i exp[ilz;|(@® — |k |92

2 (0)2—|k|2)1/2 w>| |
ALk = 1 exp[ — |z1(1k |* —o?)'"?] i
N
%, w=lk|
(18)
Let us define
@ — k)2 k<o,
3= Vg2 211/2 z (19)
{lk]* =)' k>0,
and p, in the same way. Then
k| +k3 =0 B +p} =" (20

Vectors lAc,fJ are real valued but k; and p; may be complex
numbers. If V' has compact support (and this was our as-
sumption) then T has compact support as follows from (12).
Therefore, the Fourier transform of 7 makes sense for com-
plex k; and p,. From (17) and (19) one obtains

G, = % f f dz dz" Tz .z")

X[k +klzi )] exp — 2" — palet)]

ks P3
(21)
Let us assume that the support of ¥ belongs to the half-space
23 <0.Then |z;| = — z; and (21) takes the form
G, = (1/4k, py)T (k' p), k| =|p| =,
k'=lk, — ki), |K'| = k], (22)
where
T (k,p)= f dz' dz" T(z',z")e'™* =7, (23)

The basic problem can be formulated as follows. Given
the scattering data G (X,x; = 0, J, y; = O,w) for all X,  and
small  find a,(x) and a,(x). This problem is discussed in the
next section. In Ref. 2 the case a, = 0 was treated. Our meth-
od uses some ideas from Refs. 2 and 3 but the presentation is
self-contained. Formulas (12}, (15), and (22) are basic for our
first inversion scheme presented in Sec. II. In Ref. 2 the in-
version scheme was considered for »—0 in which case the
Born approximation reduces to the exact solution. In the
present paper the inversion scheme is given in the Born ap-
proximation for arbitrary @ > 0. The scheme can be general-
ized to include the dissipative terms corresponding to first
derivative in time with a coefficient depending on x but not
on t. The reason why we cannot handle the inversion within
the exact theory (as in Ref. 2) rather than in the Born approx-
imation is that the perturbation we consider does not become
small as @0 (unlike in the case @, = 0 considered in Ref. 2).
An alternative inversion scheme similar to the one given in
Ref. 2 is described in Sec. III. The scheme in Ref. 2 can be
carried through for any @ > O in the Born approximation.

Il. BASIC INVERSION SCHEME
Formulas (12) and (15) show that under the assumption
k| =|p| = (24)
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[which means that the 7-matrix in (22) is known “on shell”’]
the potential ¥is

Vikp)=a’W, W=a,k—p)—k°pa,k—p), (25)

where k ® = k /|k |, p® = p/|p| are unit vectors which do not
depend on w. Since the functions @, and a, have compact
support, the functions &, and a, are entire functions of the
three complex variables k,,k,,k;. These functions decay at
infinity in the real space R>.

In the Born approximation T = V [see (14})] and (22)
becomes in this approximation

G, = (1/4k; p)V (k', p) = (0*/4kp)W (k'p).  (26)
Thus

4G kypy/w® = W (k', p). (27)
Let

kI—P=q’ kl‘*‘P:S’ (28)

k'=(s+4q)/2, p=I(s—q)/2. (29)
Then

k'p={(s]*—|q|°)/4, 5q=0, (30)

k"p° = (Is|]* — |q]%)/4e?, (31)

lg|* = 20%(1 — k"%p°),

(32)
|S|2=|k’|2+|p]2+2k'-p=2a)2(1+k’0-p°), w>o’
Is|* — |q|* = 40 — 2|q|?, (33)

thus
Wik’ p)=W=alg) — aq)l|s|* — |q]*)/4’
=a,(q) — a,(1 — |¢]*/20%), @>0. (34)

Let us take two arbitrary frequencies w, and w,7#®, and
solve the two equations

W, =a\lq) — a)q)l — |g°/207), (35)
W, =a,(q) — a)q)l — |q°/20}), (36)
for a, and a,. The result is

A

2

wjw;

) (37)
4 @3 -

20} w} (1 el ) (38)
(@3 — o)lg|? 20}

Taking the inverse Fourier transform one obtains a,(x) and
a,(x). An important point is that one cannot find both func-
tions a, and a, if the data are given at a fixed frequency.
Indeed, from (34) it follows that for a fixed frequency the
data depends on g only and there is no parameter to vary in
order to find both &, and &,. This conclusion is not at all
obvious: at first glance one can think that the two conditions
|k | = |p| = wleave four degrees of freedomin the six-dimen-
sional space R; X R ), which should be enough to determine
two functions @, and a, of three variables. This argument
however does not work as one saw above. The reason is that
the function W (k ’,p) has a very special structure as a function
of two vectors k£’ and p. One more remark: Egs. (37) and (38)
determine the Fourier transforms of a, and a, for real-valued
vectors ¢ in the ball |¢| < 2w only. Since a, and a, vanish
outside of a compact domain by assumption, their Fourier

él: W|+(W1_ Wz)
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transforms are entire analytic functions. Therefore, if their
Fourier transforms are known in the ball |¢| < 2 they are
uniquely defined everywhere. From the numerical point of
view, if w is large one can Fourier invert the functions g;(g)
which are set to be zero for |¢| > 2w. A more elaborate nu-
merical inversion and a study of the stability of the Fourier
inversion of entire functions measured in a ball of finite radi-
us is given in Ref. 2b.

I1l. AN ALTERNATIVE INVERSION SCHEME
If w—0 the limit of Eq. (8) is
G (x.9) = goly) — f 2oV, a2V, G (z)dz,

8 = 1/(4m|x —y|). (39)

Consider the scattered field in the Born approximation on
the plane x; = 0:

G,(X9)=G,(x.pw = 0)

T 16772f|

This equation can be solved analytically by the method given
in Ref. 2. Let us take the Fourier transform in X and j:

Ve, a0
|z — |

P = - 2 sor” [ as ap explivi + 916,69

_ 1 Jexp(u-z— 4] |z)
(27) 141
ezl
XV, a,2)V,e** —— dz

||

= G ) e
W explid2 + A lzsaizlis + lles)

X explip + |p|z;)dz
= Wfdz a,(z) expli(A + pu)2z
+(lel + 4] —pd + 1A el) (41

Here we used the formulas

1 J explid-X) di = explidz — |A | |z4]) ,
2#PJ |-z 27|A |

— |zl =2z (42)
The second formula (42) holds since we assume that a,(z) = 0
if z; > 0. From (41) it follows that the scattering data G,(%,p)
determines the function

R el
Ap)= —
e Y T
- f dz a(2explith + )2 + (i + 1A Jzs].

(43)

Let A +pu=p=(pyp)s Al=ps |u|=ps
g = p3 + p4. (Do not confuse these p and ¢ with p and ¢ in
Sec. I1.) Then ¢, defined in these variables, can be written as
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'// = F(pls D2 D3 P4),
F{pu po b ps) = f dz ayjz)expl ip + gz3).

Let us set p; = p, = q/2. Then
F(p:, p1,4/2,4/2)

=hy(p1s P29) = h (D9

- f f ds expli p3) f " dg expl — gt )aslt, — £ ).
e ’ (44)

From the data 4 { p,g) one finds a,(z) = a,(2, — £ ) by taking
the two-dimensional inverse Fourier transform and then the
inverse Laplace transform. If a,(z) is found then Eq. (8) in the
Born approximation can be rewritten as (x = X,y = j)

—Q _ a,(z)dz

o’ % —2| [p ~ 2|

— 167 lim G (45)
w—0
where Q in (45) is defined to be the third term in the right-
hand side of (8) with g substituted in place of G. If a, is found
then Q is known so that the left-hand side of (45) is known.
Let us denote this known function by 4,(%,).
Equation (45) which can be written as

a;(z)dz
| —z] [y —2|

= h,(%.9) (46)

was solved in Ref. 2. Thus, the alternative inversion scheme
which requires the knowledge of the scattered field
G, = G — g on the plane x; = 0 for all positions X and § of
the receiver and source and for small w is as follows. First,
find a, from Eq. (44). Secondly, find a, from Eq. {46).

V. BIBLIOGRAPHICAL SKETCH

Born (1926)* first used the approximate linear data-per-
turbation relationship in atomic scattering calculations.
This approximation was applied to an inverse acoustic scat-
tering problem, with 7-matrix data, by Wolf (1969).> Cohen
and Bleistein (1979)° applied this approximation to the con-
stant density acoustic equation for coincident source receiv-
er data on the z; = O plane. The Born inversion of the vari-
able density acoustic equation was addressed in Raz (1981),”
Clayton and Stolt (1981),°> and Wilcox (1983).% These works
require, for a single determination of bulk modulus and den-
sity variations, sources and receivers everywhere on the sur-
face of the earth and all temporal frequencies. In contrast,
the techniques presented in this paper require reflection data
at either a single, very small temporal frequency or two arbi-
trary frequencies. Coen, Cheney, and Weglein (1984)° pres-
ent an exact, two-dimensional, two-temporal-frequency,
acoustic inversion method which requires transmission as
well as reflection data. A two-temporal-frequency Born in-
version method which also requires transmission and reflec-
tion data is given in Devaney (1983).1°
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APPENDIX A: DERIVATION OF EQ. (18)

Here the details of the computation of integral (18) are given. One has

J' exp( — ik-% + iw|% — z) ds
4r|% — 2|

X—2=1

=e

ﬂ-:;.sJ' exp[ — ik | |i|cos ¢ + io(|2|? + 2)"/?] o
b}
am(faf +22)

e~ i|fc {rcos ¢ d¢

4r

ik 1 Jw drrexp[iw(,l +Z§)]/2] 2
0

Tk A
where [Ref. 1, formula (8.6.21)]
i(1r|23| )'/2 N H'Y o (lzsNew? — (k)
y) (0)2— ’kl2)1/4
(2|23|)1/2 Ik 112 Ky ol|zsV]k |2 — w?)
T

(1K [? — )7

>

where

, w<IIA<I,

Pk
e *t 1 f dr\r explio(r’ + ) " Wrlk| , o o0, e~
2aly(|k |r)= ——— ¥, Al
o (r2+z§)1/2 77-0(] Ir) 2|k I/ZX ( )
> k|,
(A2)
(A3)

HY\ ,(2) = (2/m2)' ", K, plz) = (w/22)" %",
From (A1)—-(A3) formula (18} follows.

APPENDIX B: SUFFICIENT CONDITIONS FOR
CONVERGENCE OF THE BORN SERIES IN
ACOUSTICAL PROBLEMS

Let

u=g+ o’ fgalu dz + J.gV-aZVu dz

=g + o’Tyu + Tu, fzJ. .
R3

Leta, = a, = 0if |x| > R. By ¢ we denote various constants.
The Born series =&_,(w?T, + T,)"f converges in some
space H if ||w*T|| + |T3|| < 1, where ||T|| is the norm of a
linear operator T acting on this space. Let us take as the
space H the Sobolev space H % of the functions defined in the
ball B, = {x:|x|<R }. Notice that since @, and a, have sup-
port in this ball the values of f outside this ball do not influ-
ence the values of T} £, j = 1,2. The following estimate is well
known:

“ngZ,R <CR”f||0,R’ (B1)
where
Ve = | 3 10rPas
|x|<R j=0

Df denotes an arbitrary derivative of order j. Since we are
going to let w—0 it is sufficient to give conditions under
which || 7| <¢, || T3|| < 1. Wehave [using the inequality (B1}]

|7, fll2,z <cgr a1 fllox
<Cg max"leV-”O,R (B2)

<cg max|a,|-||f ||,z
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Thus, ||T,||<const if max|a,| < «. Furthermore,

|72 f |l <cr |V-a,9f ||, 2
<cg max|a,| ||V llor + cx max|Va,| [V |lox

<cglaylelfllors  182] = max|a,| + max|Va,|.
(B3)

Therefore, ||T,|| <1 if cg|a,| < 1. The following result is
proved.
Theorem: Let a, and a, have support in the ball B . If
max|a,| <c,, max|a,| + max|Va,| <c,, and g=wc,cx
+ ¢,cg < 1 then the Born series converges in H % and is ma-
jorized by the geometrical series with ratio ¢, i.e.,
[@*T, + To)" [|[<g", 0<g < 1.
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Electrodynamics of memory-dependent nonlocal elastic continua
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Balance laws and constitutive equations are given for elastic continua with memory of past
motions and electromagnetic fields. Nonlinear, finite-linear, and linear constitutive equations are
obtained and restricted by the second law of thermodynamics. Memory-dependent nonlocal
piezoelectricity, piezomagnetism, heat and electric conduction, viscoelasticity, and other allied
physical phenomena are in the domain of the general theory. The theory is applied to discuss
infrared dispersion and lattice vibrations, natural optical activity, anomalous skin effect, and
superconductivity, indicating the power and the potential of the nonlocal theory.

PACS numbers: 03.50.De

I. INTRODUCTION

In a previous paper,’ I presented a nonlocal continuum
theory of elastic solids subject to electromagnetic (EM) inter-
actions. The electric and heat conductions were not included
in the theory and the memory dependence was not consid-
ered. In order to discuss the absorption and damping of
waves at all frequencies, one needs to take into account the
effect of strain and EM field histories in the constitutive
equations. Moreover, the heat and electric conduction can-
not be discussed without the development of constitutive
equations for the heat and current vectors generalizing clas-
sical Fourier and Ohm’s laws. The raison d ’étre of the pres-
ent paper is the development of a rather general continuum
theory which includes these effects. The power and potential
of the theory is then demonstrated by treating certain prob-
lems which fall clearly outside of the domain of classical
(local) continuum theory.

There exist many interesting physical phenomena for
which classical field theories are not applicable without
proper modifications. The failure of classical theories stems
from the fact that they do not possess a natural internal char-
acteristic length and a characteristic time. Yet all physical
phenomena depend, to some extent, on such characteristic
scales because of the discrete (atomic) nature of materials
and the relaxation time. In order to explain such physical
phenomena, classical theories are modified, often in an ad
hoc fashion, without reference to fundamental laws. For ex-
ample, anomalous skin effects and superconductivity re-
quire approaches not entirely within the realm of Maxwell’s
theory of electromagnetism. Yet, these can be shown to be
part of the nonlocal continuum theory (Secs. XI , XII),
which also include Maxwell’s theory as a special case. Much
of the nonquantum aspects of the electron theory can be
explained by means of the nonlocal theory, e.g., interaction
of electrons with lattice vibrations, scattering of excitons
near the boundaries of the Brillouin zone, infrared disper-
sion, absorption of waves, phase transition, nonlinear optics,
streaming birefringence, piezoelectricity, etc. Some of these
problems are treated here (cf. Secs. VIII-XII).

There exist a large number of references and texts on
each of these topics with approaches based on semiclassical,
atomic, and quantum mechanical ideas (to cite a few, cf.
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Refs. 2-7). Wave-number-dependent dielectrics are exam-
ples of nonlocality® which are relevant to semiconductor de-
vices. However, quantum and statistical mechanical ap-
proaches are difficult and cannot be carried out, except in
simple situations. Nonlinear, nonlocal problems which are
especially relevant to phase transition pose insurmountable
difficulties on microscopic grounds.

A macroscopic field theory of rigid-body electrody-
namics, based on Fourier formalism, exists as surveyed by
Rukhadze and Silin.® However, this approach is entirely for-
mal treating only the linear theory and thermodynamical
restrictions are not considered. In other fields, e.g., nonlocal
elasticity,'®'" fluid dynamics,'*"? liquid crystals,'* and elec-
tromagnetic theory,'>™'” nonlocal theory, have registered
significant advances and resolved some long standing con-
troversy. %49

Motivated with this progress, I develop here a general
theory of memory-dependent nonlocal electromagnetic elas-
tic solids. Balance laws and the second law of thermodynam-
ics are given in Secs. IT and III. In Secs. IV and V, I develop
general constitutive equations and thermodynamics for the
nonlinear theory.

Section VI contains an account of the finite-linear con-
stitutive equations which are useful for materials with weak
memory, but large fields. In Sec. VII, I give the linear consti-
tutive equations for anisotropic heat and electric conducting
electro-magneto-elastic solids. Section VIII presents a dis-
cussion of elastic dielectrics. With Sec. IX, applications of
the theory begin to infrared dispersion and lattice vibrations.
Natural optical activity is discussed in Sec. X; anomalous
skin effect in Sec. XI and superconductivity in Sec. XII. Re-
sults obtained are in conformity with other approaches
based on semiclassical formalisms or electron theory. They
are unified under one theory and contain other possibilities
for the treatment of more general and nonlinear problems.

Il. BALANCE LAWS

The body at the natural state occupies a region V — %,
the volume V excluding a discontinuity surface X. The mo-
tion carries a material point X € ¥ — 3 to a spatial place
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xe€ 7" — o, where 7" — o is the image of V' — J at time .
The motion is a bijective mapping expressed by

x=x(X t)}>X=X(x1) (2.1)
We employ a rectangular frame of reference so that rectan-
gular coordinates of x and X are denoted by x, and X,
respectively (k, K = 1,2,3). Since (2.1) is bijective, the Jacobi-
an must be positive

J =det(x, x)>0. (2.2)
Henceforth, we employ a comma to denote partial derivative

and a dot to express the material derivative. The usual sum-
mation convention on repeated indices is also assumed, e.g.,

d. a
X, gk = xk’ xk= al =Uk(x’t)’
' Xy ar Ix
(2.3)
v,

ak = i)k = 32"— + vk’,l),.

Balance laws of nonlocal electromechanical continua were
given in Ref. 15. Here we are concerned with inert bodies
consisting of single substance, i.e., mixtures and chemical
reactions are excluded. Moreover, we assume that the ba-
lance laws are valid for a macroscopic volume element large
enough to contain large number material points (atoms, mol-
ecules), but small enough so that the body contains a large
number of these elements. This situation is reminiscent of
statistical mechanical ensembles. Under these conditions,
nonlocal residuals (action at a distance} appearing in the ba-
lance laws can be neglected as compared to fields at a refer-
ence point X in the body. Of course, the fields at a reference
point are still influenced by the nonlocal intermolecular at-
tractions. For example, the stress and electric polarization at
X depend on the strain and the electric field at all other
points of the body, but gravitational variations with distance
is unimportant. Under these conditions, Maxwell’s equa-
tions remain valid in 7" — 0.

V.D =g, (2.4)

VxE4+ L9B o (2.5)
c Ot

V.B =0, (2.6)

vxH_19D_14 (2.7)
c Ot c

dq

94 Lvg=o, (2.8)

ot

where D, E, B, H, J, and ¢ are, respectively, the electric
displacement vector, electric vector, magnetic induction
vector, magnetic field vector, current density vector, and the
charge density. ¢ is the speed of light in vacuum.

Maxwell’s equations are supplemented with the me-
chanical balance laws, valid in 7~ — o (cf. Ref. 20, Sec. 10.9)

po/p = det x, 2.9
tax o =0 )+ mf1 =0, (2.10)
ty +P&, + M\ B =ty + P&, + M B=gty,

(2.11)
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PE— Ly
— G —Ph—p& - (P/p) + M -B— ¢ -&=0,

(2.12)

where p, is the mass density in V—2% and p,

tasf1, Ui € qi, B are, respectively, the mass density,

stress tensor, body force density, velocity vector, internal

energy density, heat vector, and the heat source in 7" — g.

&, M, and F are the electric vector, magnetization vector,

and current vector in the proper (comoving) frame, as defined
by

& =E+(1/cvyXB, M =M+ (/cvxP, £ =J—gv.
(2.13)

Here M and P are, respectively, the magnetization and po-
larization vectors in the fixed frame so that

D=E+P, B=H+M. 2.14)
The EM body force ,,f is given by (Ref. 19, Sec. 10.6)
Mf=qE+iJXB+(VE)-P+(VB)-M
¢
1 149
+—[(PXB, ], +——PXB). (2.15)
c c ot

Accompanying Maxwell’s equations and mechanical ba-
lance laws, we have the jump conditions across o. These con-
ditions give boundary conditions when ¢ is made to coincide
with the surface of the body. For brevity, we do not list these
conditions here. They can be found in Ref. 20, Sec. 10.17.

lil. SECOND LAW OF THERMODYNAMICS

The second law of thermodynamics is a statement about
the dissipative process expressing the physical fact that the
total dissipation in a body is non-negative. The localized
form of the second law used in classical field theories places
severe restrictions on thermodynamic behavior of materials.
For the nonlocal theory, the local form of the entropy ine-
quality is given by'®!":?°

pi1—V - (a/0)— (ph/0)— p3>0, (3.1)
where 7 is the entropy density, 8 > 0 is the absolute tempera-
ture, and § is the nonlocal entropy residual resulting from

entropy exchanges between the reference point and the rest
of the body. It is subject to the restriction

f p§dv =0. (3.2)
,

If we eliminate 4 between (3.1) and (2.12) and employ the
following expressions:

J = po/p; CKL = (Vs + Uk Xi kX1 L (3.3)
V=9 —p; &g —e—0n—p, &k, (3.4)
Ty =JIXg o Xp ity @Ok =Xk kGxs
Iy = JXg Py, My =JXg Mk,
Ckr =Xk Xk L> Ex =& Xk (3.5)
Ok = 61Xk x> B, =B, %, «

/k =JXK, k/k,

we obtain
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—pol ¥+ 00) + 3£ Ty Crp. + (1/0)Qx 0 — I & ¢
— M By + F & x — pot5>0. (3.6)

By means of (3.3) to (3.5), the equation of energy (2.12) can be
written in the material form

Pow/'*' o9 + 977) — 3k TKLCKL — Ok, x — Poh

+”KgK +MKBK _/KgK =0, (3.7)
Eq. (3.7) serves as the equation of heat conduction. The ine-
quality (3.6) will be employed to place restrictions on the
constitutive equations.

After dividing (3.6) with the positive quantity 8, we inte-
grate it over the volume ¥ — %, to obtain

1 . ; 1 p 1
f —‘[ —pol¥ +10) + —pTx, Cxr +—QxbOx
v_z 0 2 g

— & — My By + 7 €| dV>0. (3.8)

Itis posited that Eq. (3.8) must not be violated for all thermo-
dynamic processes that are physically admissible.

IV. CONSTITUTIVE EQUATIONS

According to the axiom of causality,?**! all physical
processes that take place in a body are the result of motions
(deformations) in the past up to and including the present
time. When the intrinsic deformations of sub-bodies in a vol-
ume element are considered, this implies the history of cen-
troidal motions of the volume element and the memory of
temperature, temperature gradients, polarizations, and
magnetizations. This is equivalent to the selection of the in-
dependent constitutive variables:

¢={x,0',0%, &, By}, (4.1)

where a prime is used to denote the values of functions at
(X', t—1T1)eg,

X' =x(X,1—7), By=B(X,t1—7),
X'eV—23 0<r'<w. (4.2)

Values of these functions at ( X, ¢} will be denoted without a
prime, e.g., x =x(X, t), By = Bg( X, t).

Constitutive equations express the functional depen-
dence of the set

Z_—_—{Wy M £ Txe, g, Mg, Qx, /K}
at ( X, ¢} on the set (4.1), e.g.,
V(X t)=F[x,0,0%, &% Bx]. (4.4)

They also depend on X for inhomogeneous materials.

The response functionals, such as %, must be form in-
variant under arbitrary spatial translations and rotations.
This implies that ¥ will depend on x’ and x only through the
distance |x" — x|. Since the distance can be expressed as a
functional® of C,, it proves to be convenient to replace x’
in (4.4)by Ci, =Crr (X', t — 7).

For the discussion of thermodynamic restrictions, we
distinguish each of the set of dependent variables into two
categories, e.g.,

(4.3)

when X'#X, 0<7'< o

4.5
when X'=X, O<7< o (43)

C=C(X,t—7) {
C=C|(X, t).
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For brevity, we abbreviate the following collections by
G'=[{C,07,0%, &% Bk},
G={C, 0,0y, &g, B},
G'={G,G}={C,0',0%, &, By}

We assume that members of G’ are continuously differentia-

ble with respect to their arguments. In order to introduce a

topology to the space of function G", we define the inner
product of two such sets by

{4.6)

(G:,G;)H=f dff H(X —X,7\G} -G} dV",
0 V-
4.7)
where
G’ - Gi=tr(C,C;) + 6567
407 <05k + Bl Frx + BixBic. (4.8)

The influence function H is a positive decreasing function of
its argument such that the integrals in (4.7) converge and

H(0,0)=1. (4.9)

This function emphasizes the dependence on deformations,
temperature, temperature gradients, and EM field near the
reference point X at the present time ¢ over their past histor-
ies and distant points X’ from X. This is in accordance with
the attenuating neighborhood and fading memory hypothe-
sis,2?! based on the nature of intermolecular forces. There
exist many choices for the influence functions. As an exam-
ple, we mention

HX',7)=exp{ —a|X'| -B7), a,B>0. (4.10)
Physically, more realistic forms of these functions can be
selected approximating the interatomic force potential.>*~**
The space of functions G is a Hilbert space /#° with a finite
norm defined by

|G| =(G", G (4.11)

In a Hilbert space, any continuous, linear, real-valued func-
tion f(F) has the unique Riez-Fréchet representation (cf.
Ref. 26, p. 421)

SIF)=(F, Gy (4.12)
valid for all G". )

It is now possible to calculate ¥. Let

po¥ =F, (4.13)
then

p0¢/=g—gc+5F(G'|G', G), (4.14)

where 6F is the Fréchet derivative of F with respectto G". It
is alinear functional of G ". Consequently, it can be expressed
in the form

6F=J dr'f OF Gray.
o v-36G”
Theoperator & ( )/8( ) represents the Fréchet partial deriva-
tive.

Substituting (4.14) into the entropy inequality (3.8), we
obtain

(4.15)
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! aF)
1 9F\,
fy_za[ (P°”+ao

1 IF

|, T, —2-Z )¢

+ 2(E KL aCkL) KL

9F \, OF \ ; IF
% — (M, + B, — -2 ¢

ang) K (K aBK) K o0, ¢

_(]]K+

+ %QKQK 4 — 6F] dVs0. (4.16)
This inequality is linear in the rates 6, Cxy, € x, By, and
6 . For arbitrary and independent variations of these quan-
tities throughout ¥ — 2, the inequality cannot be maintained
unless

po 30 po 36
OF IF
T =2 =22 4.18
E+ KL aCkL 8CkL ( )
aF oF
o = — =9 4.19
K 9%« A%, (.19
M = -9 _ _OF (4.20)
9By 3By
_OF _9F (4.21)
96, 96,
J ( Ok + F & —6F> dV>0. (4.22)
V— 20

On the right-hand sides of (4.17)—{4.21), we also give alterna-
tive forms of constitutive equations in terms of gradients of
F. These forms are useful in the construction of special con-
stitutive equations. From these equations, it is clear that %,
eTxe, ly,and M, are determined in terms of the free-ener-
gy functional alone.?” Equation (4.21) indicates that F cannot
depend on the present value of 8 ; at X. In general, nothing
can be said on the dependence of F on
07x=0,(X,t—7),X #X, " #t. For the present treat-
ment, we shall assume that F'is independent of the history of
the temperature gradients of other points as well.

To complete the theory, separate constitutive equations
will have to be written for Q. and 7 .

Spatial forms of constitutive equations follow from
(3.5):

1 aF
= — ;; 55—, (4.23)
. etkt = (P/Po)e Tk X1, kX1, 1> (4.24)
P, = (p/pollIxx, ks (4.25)
M = (p/po)Mgxy k> (4.26)
qi = (p/Po)QxXr, k> (4.27)
Z« =(p/Po)f k¥ k- (4.28)

We conclude this section by representation of the free-
energy functional by means of Stone—Weirstrass theorem.
According to this theorem, a real, continuous, scalar-valued
functional of G ' may be represented uniformly by a polyno-
mial in a set of real continuous, linear, scalar-valued func-
tionals of G'. Accordingly, we may write
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N N N
pOWH=17= }SIL'+ :S }:F;Fb’

a=1 a=1p8=1

(4.29)

where F is a linear functional in G’, which, in accordance
with the Reisz representation theorem, may be expressed as

F, =f%X)G(X, r)+f £ X, 0, X)G (X', )V’

f J 8f(X’,7— ; X)

XG (X, t—7)dV'. (4.30)
Note that in (4.30), the first terms give an explicit display of
the dependence upon the current state at the present time.

Alternatively, through integration by parts, (4.30) may be
expressed as

F. =f2(XIG(X,1)
+ ft dT' fol Xt -7 X)

IG (X, ) dv'
ar'

Carrying (4.31) into (4.29), we obtain a formal represen-
tation of the free energy in terms of the members of G’ listed
in the third equation of (4.6). In this way, nonlinear, nonlocal
constitutive equations are constructed. Explicit expressions
are too lengthy to list here.

(4.31)

V. ADDITIVE FUNCTIONALS

For the additive functionals, Friedman and Katz?® gave
a representation theorem according to which

pop=F= JdTL S(G", G, X, X, r)dV', (5.1)

where an underline is used to indicate that the lists of func-
tions G” and G exclude the temperature gradients. Since only
the symmetric part of S in X and X' contributes to the total
free energy of the body, we may select S as a symmetric
function of its argument functions at X and X'. This can be
done by decomposing G " as

G'={G*,G', G*"}, (5.2)
where
=G (X', 1), X'#X,
=G(X,t—7), O<7 <o, (5.3)

G'=G(X,t—7), X#X, 0<7< .
If we let a superposed asterisk represent interchange of
X and X', i.e,,

A(XX)=4(X,X), (5.4)
then clearly,
§=6, 6°'=6, ¢'=6", G =0,

(5.5)
3(G,G* G, G X, X, 7)=5(G*,G,G", G", X, X, ).
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Introducing {5.1) into (4.17) to (4.20), we obtain

_LJ' J ——-dV' (5.6)
Po V-
Ter =2j d’r'f av’, (5.7)
(4] V—= CKL
_ r’ dT'J ‘93 dV’, (5.8)
0 V—z
(5.9)

= — —_dV,
MK f J; EaBK

We also write constitutive equations for Qx and # ¢

Qx/6% = f de K (G, G, X', X, r)dV’, (5.10)

/K/a_f drj Li(G", G, X, X, 7)dV’. (5.11)
V—

Polynomial constitutive equations of various degree, may be
derived from (5.6) to (5.11) by expressing S, Ky, and L, as
polynomials in the vector and tensor variables.

The set of constitutive equations (5.1), (5.6)—(5.11) rep-
resents an alternative set to those obtained in Sec. IV. This
set is more limited in one sense, namely, they are expressed in
terms of single space-time integral while those of Sec. IV
contain multifold integrals in space-time. Here the kernel
functions are nonlinear functions, whereas in Sec. IV they
consist of polynomials. In most nonlinear cases, the present
representation should be adequate for possible calculations.

VI. FINITE-LINEAR CONSTITUTIVE EQUATIONS

For a large class of materials, the memory dependence
on the past history of fields may be taken linear, yet the effect
of local fields at the present time may be large. In this case,
constitutive equations are called finite linear and they are
obtained by taking

§S=S°4+24Ci +Z%E + 2Bk, (6.1)

where S°X)%,, 3%, and X% are functions of
C, &,B, 6, X, X',and 7. Upon substituting (6.1) into (5.6) to

(5.9), and dropping nonlinear terms in G * arising from 3 , We

obtain
el (G T
o y_x a0 Che
82 a3
20 Er + %0 K)dV', (6.2)
as° 32 n
Ty, =2 C
EORE f f (acKL 9Ce, "
3 2 23
+ 2 —M e+ 2 M) dv’, (6.3)
Cx; HCKL
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f f ( 3s° 82}.,NC,
MN
v-zx 0% ¢

2 23
92 u 2 MB,’”)dV’, (6.4)
0% & 0% g
f 4 f (as° 3% v
= — T
v—x 3By My
3
azM & 52"3,1,) av’. (6.5)
8BK OBy

For the heat and electric conduction in Egs. (5.10)and (5.11),
we put

KK =K?< +K;(LMC£M

K%, +K3 B} + K507, (6.6)
LK =L9< +L}<LM01:M
L3 &+ LBy +L%.0, (6.7)

where K* and L are functions of C, &, B, 6,0 «, X, X', and
7'. As usual, Eqgs. (5.10) and (5.11) are subject to the entropy
inequality (4.22).

We observe that first terms under the integral sign in
these equations can be taken out of the integral by integrat-
ingS% K %,and L & over the volume and time since the argu-
ment fields C, &, B, and 8 are independent of X' and 7.

The finite-linear theory should be useful in discussing
problems related to nonlinear optics, magnetism, phase tran-
sition, and nonlinear piezoelectricity of materials with weak
absorptions.

VIL. LINEAR CONSTITUTIVE EQUATIONS

Linear constitutive equations are obtained by writing a
second-degree polynomial for the free energy. To avoid
lengthy expressions, we introduce abbreviation G, for some
members of G and 7, for some members of Z:

G =—-T G,=Ey, Gy=-—8,
T\ =pen, I,=gTyx, Ts=

G4 = —Bl(a
I, T, = M.
(7.1)

In the spirit of the linear theory, we replace the finite strain
measure Cy, by the linear strain measure Ex,; and consider
small temperature changes T from an ambient temperature
T, i.e.,

Ey = %(CKL - 5KL)2%(UK.L + UL,K)) (7.2)

6=T,+T, |T|<T,, T,>0, (7.3)
where Uy is the displacement vector.

Employing (4.29) and (4.31), a second-degree functional
for the free energy may be expressed as
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1
p0W=F =ngP + zfququ

+f ar[ paxiem
— o |

aG (X', r
X_P(_Tl dv
ar

+G, f dT'J f:,q( X,t—17)
— oo V—-z

, T)dv’

ar
1 14 , 't
+—f dTJ- dr;f f
2 J_ o - v—-xzJv_=x

XL Xt — 73X}, t —71)
G, (X', ') 3G,(X], 1)
ar’ ar;
xdV'; dv, (7. 4)

where G,=G, (X, t) constitutive moduli f ¢ P pa Jos pq,
and f,, are also functions of X. As discussed in Sec. IV,

G,( X', 7') is assumed to belong to a Hilbert space with an
influence function. Consequently,

lim f, =0,

oo

hm qu = 11mf =0.

1 (7.5)
Moreover, it is clear from (7.4) that f 5, and f,, may be con-
sidered to possess the symmetry regulations
2q = gq’ qu( X', T,;X; B T;) =fqp( X; » T ;X0 T,)'
(7.6)
If we now calculate the time rate of (7.4) and use (4.17)
to (4.20), we obtain

4 1
fhm S e =0,
—r 0

A aG S+ S

! JG,
+f dr %o gy, (1)
— V—

Pq
z ar’

t 82
6F=f ar| % av' 16,
— o | )

' #G
xf ar'|  fl——tav’

v_x ar?

+f dr’f [ X' 1 —75X1,0)
— V-XJV-X

3G 3G, (X;,t
% (x ) ( )

+—1-J d’f’j dr;

aG, 9G

dv'dv;

7 —L 4y’ dv;, 7.8
J-V ZJ-V 29 ar} 7.5

where, by means of by part integrations, we combined two

integrals involving £, and f }, and used (7.6).
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An alternative form for (7.7) would result by writing?®
[r (Xt —7)=f (X, t—7)
+f 9% (X)5( X' — X), (7.9)
where 8 { X' — X) is the Dirac delta measure
e L 0G (X', 7)
Tp=fg+f qu(x,t—T)———ETdV
The quantity /' ) represents the fields at the natural state of
the body. If the body is free of fields and underformed at the

natural state, then /' 0 = 0.
The explicit forms of {7.10) may now be written as

(7.10)

JE
7= 770+f d¢J (A'aT, + B K
V-X po a 3
_ 9%, dBy
+ ok + Iy —)av’, (7.11)
ar ar'
! =, dT , JE
gl = 1ok +f_wd7j V_Z(_'BKL¥+2KLMN 3‘:”
3% JB
—E k1 _g’_HquL 1:{) dv’, (7.12)
or
R _, 8T —, OE
IIK =H0K +J‘ d’l'f ((0;( —,+E1’(LM———LIA{
w v_x ar ar
a% JB
+ x&i aT'L +Ak é,Tf)dV', (7.13)
' , =, 0T =, OE
My =My, +f dTJ (r;( T+ Hppp—2
— V-3 ar or
— 0% JB
+ A —+yiE f)dV'. (7.14)
or' or

The total free energy of the body is obtained by integrating
(7.4) over the volume ¥ — 3. In this expression, the double
volume integral containing f ,, can be integrated by part
with respect to 7/, resulting in two separate integrals. From
one of these integrals containing f ,_( X', 0, X), with the use
of (7.9) and an interchange of X' and X, we deduce that

fL(X,0,X) =1 1(X,0,X)=f",. (7.15)
No such general expression can be obtained for
S (X', t — 7'; X), however, unless we invoke Onsager rela-
tions. This assumption is often used in classical (local) theory
of viscoelastic solids. If we assume that it is also valid for the
nonlocal theory, we will have

A'=A4", By, =Bl , i=0y Iy=I}
=4, kL =D rx » @ =0k, k=1 ks

*
’ — ’ ’ — 2
ZKLMN - ZMNKL ’ EKLM - EMKL H

Hipe = Hoxrs (7.16)

& * —_— *
tE __  /FE +B __ B ’ . ’
XKL =Xik>» Xkr =Xix» Ak =41k

Because of the symmetry of T, and E,, , we also note the
symmetry regulations
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r ’ R R’
TOKL = TOLK’ BKL "BLK’ BKL —Buo

(7.17)

Zkimn = 2 ikmn = 2 kivm H g = H
E \vixr = E ik Hiypr = H jpx-

For homogeneous materials, constitutive equations
must be invariant under translations of the material frame of
reference. This implies that the constitutive moduli shall de-
pend on X’ and X only through X' — X, i.e,,

fo=const, f,=f (XX, t-7) {7.18)
fio=fil X =X, 1—7),
fog =L X' =X, t =7 X] =X, 1 —7])

In terms of the specific moduli appearing in (7.11) to {7.14),
we have for example,

By =By, (X -X,t—7),
Sy =2 kv X =X, 1 = 7),
A=A (X =Xt =7

Constitutive equations for heat and electric conduction
may be expressed as

¥
f drf (KKL L KK 'L
y—x ar

Toxr = const, (7.19)

3B JE
+ K + G jpp——r “’)dV' (7.20)
ar' ar'
T, A%
Lef wf (saFresu:
9B, JE
+3XB LT LM)dV’, 7.21
KL= + 1 gim 3 ( )

where the conduction moduli %, ,....I" krar are functions of
X', X, and ¢ — 7. For homogeneous materials, they depend
on X' — X and ¢t — 7". Various moduli appearing in (7.20)
represent the heat conduction and those in (7.21) represent
the electric conduction due to various fields. Some of these
moduli may vanish or be severely restricted due to the sec-
ond law of thermodynamics.

The second law of thermodynamics (4.22) places re-
strictions on the constitutive moduli

J'V K (—QKB + iy — 5F) dvs0.  (1.22)

In the special case of no conduction, we must have

_ J L sFavso. (7.23)
y_x6

This means that the total dissipation in the body must be
non-negative. Employing (7.8), we see that the first two inte-
gralsinvolvingf, andf ,, arelinearindG,/dr"*so that they
must vanish, i.e.,

(oo f L) dV =0.

V—-=
The third integral in (7.23) involves f, (X', — 7'; X, 0}.
This integral is also linear in dG,( X', 7')/d7" except for
7' = . Hence it must vanish. When f,, does not depend on
7', we would have

(7.24)
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f f Lo X, X1, 0, X)
vozJv_zJv_s

XG, (X', t)G, (X}, t)dV'dV ] dV>0. (7.25)
For the general case, however, we have
t t
A of ol ]
2J- v_zJv_3xJv—_=
4G, dG
X—2 —2.4V'dV| dV>0. (7.26)
ar' I

Both of these inequalities can be made non-negative under
the symmetry conditions (7.6) for f,,. For example, a non-
negative definite form for f ,, , will provide a sufficient condi-
tion for (7.25) and (7.26). Thus, if (7.23) is made non-negative,
then all we need is to see that

f (%TK —I—/stx)dbo.

From this and {7.20} and {7.21), it is clear that for fixed
T (X, t)and & (X, t), the functionals Qx and ,# x canbe
varied arbitrarily over the past histories, consequently the
conduction moduli must not depend on time. In this case,
the integration on 7' can be carried out leading to

(7.27)

Ok f
—_— = ki T +6EE
Tg V—z( ke d L L
+KKLBL +GirmErn)dV, (7.28)
Lx =[ EET+rLE +DEs,
To V—2z
+ L gimErn) dV'. (7.29)

If these are substituted into {7.27), we see that the resulting
expression contains terms which are linearin B; and E 7,,
Integrals containing these terms must vanish for T = Oor
& x = 0. Hence,

f f K2 (X, X)T (X)B,(X)dV' dV =0,  (7.30)

[ [ =axxsdxsxarav=o, 13

V—3JV-Xx

j G X, X)T ( ( X)E o, ( X')AV' dV =0, (7.32)
V_2JV-2

J I i X, X)E g X)Epp(X')dV' dV = 0,(7.33)
V-ZJV-=x

J’L;J‘V‘z [Kie ( X, X)T o ( X) T, ( X')

+ 2 (X, X)E (X)F (X))
+ iz (X, X)T x( X) L(X)

(X, X)E((X)T L (X')]dV' dV>0. (7.34)

It may happen that (7.30)~(7.33) can be satisfied identi-
cally, because of the symmetry regulations valid for
ki sl kiar (and/or because of some of the fields being
absent), without these moduli vanishing point-wise, unlike in
the case of local theory.?°

Furthermore, (7.34) will not be violated when functions
Kk, 2 k1. ki:, and I ;T constitute a non-negative, definite
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set. In local theory certainly, this is the case.”° For & ; = 0if
Kk is a non-negative form throughout ¥ — %, (7.34) will not
be violated.

A similar condition is valid for X , inthe case Ty =0.
These conditions are, however, sufficient but not necessary.
Much less restricted conditions can be found for the conduc-
tivity moduli appearing in (7.34), irrespective of values of &
and Ty through ¥ — Z. We also note that only the symmet-
ric parts of these moduli contribute to the double integral, so
that we take

Kk (X', X) =14 (X, X)),
k(X X) =2 (X, X)),

ki (X, X)+ 2 k(X X')
=Kk X, X)+ 2L (X, X).

(7.35)

Of course, the material symmetry imposes further restric-
tions on the conduction moduli.
The spatial forms of constitutive equations are obtained
by using (3.5) and
Exr =exxixX, 1, Rgp =ruXe xX, 1,
(7.36)

po/p=1—e,, Xix=0px + Enx + Ry )0pux,

where §,,, is the Kronecker delta when the spatial and mate-
rial frames are coincident and ¢,; and r,; are, respectively,
the linear strain and rotation measures which are defined in
terms of the spatial components u, of the displacement vec-
tor by

ext = Ytpr + U ih T =Y — U ) (7.37)
We also introduce spatial material moduli by
O =21 851 Bpp5Ais = Ak OxiLi (7.38)

in (7.11) to (7.14), and drop nonlinear terms leading to

4 ( +ﬂ de,
7="1o+ f TL .Po =y

OB
i . )dv ,

+ @ —— + 7k (7.39)

ar' ar'
el =1 — e, Yoy + fomil€on + Tim) + Lokm{€m + Tim)

¢ aemn
+ J dr 'J ( B kl + O ltomn=—"7—
— v— oar

3 B
& J ) av, (7.40)

—hmkl

__e:"
o ar
t
P, =(1—e,)mo + moilen +ry) + J dr’'

_, oT 9%, , Oey, 3%,
xf ( L +Xk1 — + €lum al, +A4u o )dv,

(7.41)
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M =(1—e, )mo +myley +ry)+ f dr'

T 9B, de,,,
X + Xk B itm———
J (Yka, Xkla, + 7 g I
%€
+/1,’k—,i)dv’.
or

Equations of heat and electric conduction may be expressed
as

(1.42)

9k '—’J (KT, + K7€, +’Q’:‘1§Bl + 8him€im AV,
V—o
(7.43)

F i =J (0T, +0uE + 0B + Vime,,)dv',
V—o
(7.44)

where the conduction moduli «,,...,7im are functions of x’
and x and they are subject to the spatial forms of (7.30) to
(7.34), i.e.,

L_J KT, (X)B,(X')dv' dv =0 (7.45)
J‘VWL ol & (X)B(x')dv’ dv =0 (.46
fy_ Jy_agilm T ( X)e ( X')dv’ dv =0, (7.47)
LV.,JV_]ifmffk(x)ezm(x')du' dv =0, (.48

fh L_ [l Ta(XTA(X) + 00 & (X)E 1 X)

+ kg T (X)& (X} + 017 X)T x')]dv’' dv>0
(7.49)

with the symmetry regulations

Kl X', X) = K (%, X),  of{ X, x) = o3 (X, X'), (7.50)

ki X, X) + o7l( X, X') = kp (%, X') + o4]( X', X).

For homogeneous materials, conduction moduli are func-
tions of x' — x.

In the special case of memory-independent materials,
the material moduli appearing in (7.39) to (7.42) do not de-
pend on 7. In this case, the integrals on 7’ can be carried out
leading to constitutive equations of nonlocal piezoelectricity
obtained before.”’

The physical meanings of various material moduli are
the same as in local theory, except that here they are volume
densities:

Mo entropy at the natural state
Lowi the stress at the natural state
A’ heat capacity
ot polarization at the natural state
m} magnetization at the natural state

" thermal stress moduli
Ohimn viscoelastic moduli
et piezoelectric moduli

ki piezomagnetic moduli

A. Cemal Eringen 3242



@), pyroelectric polarizability
YiE dielectric susceptibility

ki magnetic polarizability
Yk pyromagnetic moduli
Xi magnetic susceptibility
Ky heat conduction moduli
Oy electric conduction moduli
KiE Peltier moduli
o7 Seebeck moduli.

In the absence of a better terminology, we christen
the following four moduli as:

KP thermomagnetic conductivity
gim thermoelastic conductivity
o magnetoelectric conductivity
Ykim electroelastic conductivity

assuming that they exist.

The material moduli are Dirac-delta function sequence,
so that in the limit when nonlocality in space-time vanishes,
these equations revert to classical (local) forms. Note that the
material moduli are densities in space-time. Consequently,
they depend on a length scale a and a time scale 7 so that
when a—0 constitutive equations must revert to classical
equations for memory-dependent materials and when 7—0,
they revert to equations of nonlocal elasticity. When both
a—0 and 7—0, we obtain classical theory EM elastic solids.

The internal characteristic length can be taken as the
lattice parameter, granular distance, pore size, etc. The char-
acteristic time could be considered as the relaxation time.

If the material possess certain symmetry represented by
a group of orthogonal transformations {S}, then the materi-
al moduli must obey the following types of functional rela-
tions:

Skpsqufq('(» ) =XfI(SK, '),
SkpSIqurepqr(K ’T') = €rim (SK, Tl);
SioS1qSmrSns T pgrs (Ks 8) = T4, (SK, 7'),
SipSiX e (6, 7) = y5(Sk, 7') det S

(7.51)

for all members of the group {S}, where k =x' —x. As a
consequence of these, the material moduli will be restricted
in their dependence on x’ — x. For example, for the isotropic
dielectrics, these imply that

X = Xt8u + X5KiK1
Ckim = €1K1 01 + €K1 + K, 01) + €3K1 K 1K,
Oktmn = A10118mn + 141(61mO1n + 81cnO1m)

+ oyl

(7.52)
K, 81 + KK B )

+ ool K, 8y, + KK, B,y

+ KK Oy + KK O ) + O3 K K Ky

Similar expressions are valid for other moduli. Coefficients
X X3 €1-..,03 are functions of |x’ — x| and 7, e.g.,

X =xilx —x|, ), o, =(x —x|,7) (7.53)

The appearance of the material moduli y }, e, , and o, indi-
cates that even for isotropic solids, interatomic orientations
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cause piezoelectric effects which are missing in classical (lo-
cal) field theories.

Finally, as noted before, the material moduli depend on
characteristic length and time scales, e.g.,

A=A[(x —x)/a, /7], (7.54)
so that

lim A=A, (7/7)6(x' — x),

a—0

lim A =A,[(x' — x)/ald(t — 1), (7.55)

T—0

limA,, =lim 4, =A4,,
—0 a—0
where A, is a local material constant.

If we also recall the attenuating neighborhood hypothe-
sis as formalized by an influence function, we may employ
such forms as

A=Aexp[ — (k%/a%)(x 17/,

(7.56)

where k, /, and A4 are constants, subject to the normalization

f d‘r’f Adv = A,
4] Vo

When the body extends to infinity in all directions in N-space
dimensions, this gives

A=g= N2k 10V (2] /7). (7.58)
Of course, other possibilities exist. We may, for example,
determine A’ by comparing the dispersion and absorption

curves obtained in lattice dynamics with those calculated by
means of nonlocal theory.??-2530

—x)(x —x)—

(7.57)

VIIl. DIELECTRICS

Most dielectrics are nonmagnetizable and all are non-
conductors. Thus, the effect of B-field and conductions are
ignored. Equations (7.40} and (7.41) are then the only rel-
evant equations to consider. If the natural state is field-free,
then we have

%,
Etu = f dTJ (Uklmn " I )dv', (8.1)
V—o (97'

a 9%,
Pk—J- drj (ek,m e,,:, X'Ea )dv

For rigid dielectric, the dependence on the strain tensor is
ignored and we have the only constitutive equation

t g ’ ;
P, = J. dT’J Y x —x,t— T')ﬂ"’_ﬂ
— V—o a’/"'

For unbounded solids, the Fourier transform of (8.1)
and (8.2) are useful.

E;kl = — 0[O yin (& ©),,, (E, 0) — E,1(E, ‘U)?m(g’ w)],
(8.4)

(8.2)

dv'.(8.3)

P, = — i0[E (& 08, (E 0) + Y5 0)F (€ 0)],

where a superposed bar indicates the Fourier transform, e.g.,
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Fgw = [Ta[” {7 [

X F(x,t)e'® *+ot) dy3, (8.5)
Note that the Fourier transform with respect to time is one
sided.
Sometimes it is useful to replace y% by the dielectric
moduli €,; defined by
€ =8 + X (8.6)

From D, = &,(&, w)E, and (8.5)it follows that the real E will
cause real D if

Eull o) =Eu(— & — o), (8.7)

where an asterisk denotes the complex conjugate. If § and @
are real, writing €,, = €;, + i €;; this leads to
Ekl( - gy - (L)) = ellcl(§9 w)’
€al—§ —ow)= — € ),
Ekl( - g: - a)) = El’cl (§, w) - lzl,c'l (§’ w)
Similar identities are valid for g,,,,, and &,,,,.
When the memory dependence is negligible then the

material moduli do not depend on 7’ and (8.1) and (8.2) be-
come

(8.7a)

EtkI = f [aklmn( X — X)emn( X', t)
V—o

- emkl( x' — x)gm( x', t)]dl)’, (88)
Po= [ Teun(x —xen(x.1)
+ XX —0)&,(x', t)]dv". (8.9)

These are identical to those obtained in our previous work.?’

Isotropic dielectrics

Frequently, the analysis in the Fourier domain is used
for analytical and experimental purposes. The material mod-
uliin the (§, ®) domain can be expressed by merely replacing
k in (7.52) by &, specifically,

€y = (5k1 - §£§1 )67(5 % 0) + g—g_ézlﬁ &2 o),
Eim =& " Vi€iBim + Vo 1Bim + V2EmOi)
+ 7€ TEilns

(8.10)

(8.11)

Frmn = 48118 mn + Fl8imOin + 811 01)
+ A€ THEmEnSis + ExbiOmn)
+ Ao THerEmOin + ExbnBim
+ £16mOin + £1£06im)
+ As€ T61bibmbns (8.12)

where €, and €, are the transverse and longitudinal dielec-
tricmoduli. ¥, A, i, and A, arefunctions of £ = § - §andw
only. These expressions are identical to the forms given be-
fore?’ except that here the material moduli depend on @ as
well.
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The dependence of €,, on the wave vector £ indicates
the space dispersion and w the presence of the longitudinal
optical modes. In fact, as conjectured in our previous work,
the dispersion reiation for the longitudinal optical modes are
given by

(€% w)=0 (8.13)

so that the phase velocity v = w/£ and the index of refraction
n = ¢/v depends on the wave length 27/£ indicating disper-
sion, which is particularly strong for high frequencies or
short wavelengths.

From {8.4), it is also clear that isotropic solids may ex-
hibit stress-optic effects since e, ,,, #0. This is particularly
true, again in the short-wavelength region, i.e., near the
boundaries of the Brillouin zone. Thus, isotropic solids at
these boundaries can be spatially active and/or gyrotropic.
Such effects are, of course, ruled out in classical theories.
Equation (8.4) indicate Brillouin scattering from an exciton
which have been observed.

For anisotropic dielectrics material functions €., ¢,,,,,,
and Gy,,,, acquire other forms compatible with their group
symmetry. For example, for an uniaxial crystal with axis i,
€,,(E, w) is of the form?’

€ = (5k1 - %)ET + g—gélfL + €063, 63;

+ €z§ ~1(§k631 + £:63)s (8.14)

where €, €, , €,, and €5 are functions of £, w, and T.
When the spatial dispersion is weak £a<1, €, may be
approximated by a power series expansion of the form

Z-kl(g! a)) = E(I)d (60) + i;’klm (w)é‘m + &klmn (w)é’m §n ’ (8‘ 15)

similar expansions being valid for 2,,,, and 7,,,,,. In a space-
time domain this is equivalent to the operator

J a a

) = €4(t) = Vetm [ oo = Q) or ——

Ekl(x ) €kl( ) Yt ( )axm ki) ( )axm Ix"
(8.16)

Other approximate forms have been suggested,”' e.g.,

Eull ) =€, +8u/[w— o, _F(g)]’ (8.17)

where €3, 84;, @, are constant and F (§)is a suitable function
of £, which may be approximated by a polynomial in .

Rigid gyrotropic crystals possess no center of symmetry
so that for these crystals one can neglect quadratic terms in
powers of § also. The presence of linear terms in &, near the
absorption lines, give rise to a new type of wave which is
absent in classical theories.?!

The complex frequency dependence of the material
moduli can be used to study absorption of waves. In the case
of electric conduction, the nonlocality and memory effects
are very important and they lead to highly damped EM
waves and the anomalous skin effect. Thus, we can employ
the nonlocal theory to predict various results associated with
electronic conduction in a lattice.

Eventually, by means of statistical mechanics, it should
be possible to calculate the nonlocal moduli in terms of
atomic parameters and force laws. Thus far, this has been
possible only for very simple cases. Of course, experimental
results can be used to find approximate expressions.
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IX. INFRA-RED DISPERSION AND LATTICE
VIBRATIONS

Here, we consider the interaction of electromagnetic
waves with lattice vibrations. It is well known that acoustic
branches of lattice vibrations are identical to those of elastic
waves in the long-wavelength limit. However, the optical
branches of lattice vibrations are not included in classical
elasticity. It will be shown that both acoustic and optical
branches are included in the nonlocal theory. Therefore, it
should be possible to study the interactions of EM waves
with acoustic and optical branches. Consequently, infrared
dispersion and the retardation effect on lattice vibrations can
be accounted for in the range of infrared frequencies. More-
over, when the memory dependence is considered, the
damping of waves and the energy dissipation can be calculat-
ed. The dissipative effects are important, especially in the
neighborhood of resonance frequencies. Initially, we assume
that the memory dependence is absent. The magnetization,
conductions, and body forces will be assumed to be negligi-
ble.

Fourier transforms of Maxwell’s equations and equa-
tions of motion are given by

E-D=0, (9.1)
EXE + (@/c) H=0, (9.2)
E-H=0, (9.3)
ExXH — (w/c)D =0, (9.4)
i€, gty — po*l; = 0. (9.5)

Constitutive equations for .#,, and D, follow from (8.8) to
(8.12)

gtu = — i [(Z + A1)6k
+ETH A+ U + A ] E
+( + A& T, + 1)} + & T [AE i + Ek)
+ & E(¥18u + v:€ 6.1

(9.6)
D, = €rE, + (€, —€r)f "*6,E-§
— &+ 7.+ 75
XE &+ vof Uy ], (9.7)

where a superposed bar represents the Fourier transform.
Substituting these into (9.1) and (9.5), we have

EEE—if(y,+7,+y)u-E=0, (9.8)
[P“)z — (B +4,)E%17,
~A+E+2, 43, + 4050 (9.9)

— i T VEE + (Vi + 2+ V) E- §]=0.
Scalar product of (9.9) with £ gives
— iy, +27’2+7’3)E'§

+ [sz—-(z'i'zﬁ +24; + 44, 4+ A3)6%la-E=0.

(9.10)

Equations (9.8) and (9.10) may have nonvanishing solutions
for E - § and i - § if the determinant of their coefficients van-
ishes, i.e.,
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P =P[el —(w/EP] 7, 10
where
& = (A + 20+ 24, + 44, + 4,)/p, (9.12)

Y=%+1t212+7s
Equation (9.11) is the dispersion relations for waves which
possess longitudinal components E + £ and @ « . In the clas-
sical limit, €, = 0 and ¥7#0, we have the dispersion relations
of the irrotational modes of elastic waves.

If on the other hand, E + § = 0, then it follows from (9.8)
that, for ¥, + ¥, + 7570, u+ £ = 0. In this case, we have
transverse waves only, and (9.6), (9.7), and (9.9) reduce to

etu = — i+ )l + £8) + £ T 'VAE Lk + EL£))
(9.13)

D, = €,E, — i v,£,, (9.14)
[p® — (@ + A6 217, — i £7,E, = 0. (9.15)
Eliminating u between (9.14) and (9.15), we have

D =¢E,, (9.16)
where

e=er —p ' PEULE+AWPIE> —0?) ' (9.17)

This relation indicates clearly the frequency dependence of
the dielectric constant, consequently, the dependence of the
refraction of monochromatic wave on its frequency (the dis-
persion).

Comparison of this result with the classical treatment of
photon—phonon interaction®? shows that

€, =€r, €—€,=—V/E+A)

wp = [{@ +A,)/p] £2.
In the classical treatment € _ , €,, and »? are considered con-
stants. Here they are functions of £ ? so that the space disper-
sion is included. Of course, in some region of infrared fre-
quencies, £-dependence is negligible and we may consider
them contants in that region. With the identification (9.18),
the nonlocal material moduli are determined since classical
values of €, €,, and w} are measured for various materials
(e.g., alkali-halides).

Cross product of (9.4) with , using (9.2) and (9.7), leads

(9.18)

to
[er(@?/c?) — £*1H + i pyfw/c)E (EXT) =0.  (9.19)
Cross product of (9.9) with &, with the use (9.2), gives
iv{/cfH + [po — (B + A,)E21EXT=0.  (9.20)

If(9.19) and (9.20) are to possess nonzero solutions for H and
Ex i, we must have

w4__(c_2+/7+/12_ 6 )§2w2+ﬁ+'12i§4=0.

€r P PEr P €r
(9.21)
This is the dispersion relations for optical modes which pos-
sess transverse components §Xi, EXE = — wH/c. They

are also valid when §-E =& - ii = 0.
Note that the optical modes are brought into play
through the presence of the space gradients of the displace-
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ment vector, indicated by the presence of the operators £, in
the constitutive equation (9.6) and (9.7). In this way, terms
involving A, and y, give rise to higher-order space gradients
of the displacement and electric vectors since in the physical
space, &, corresponds to — id/dx, . Thus, for example, if we
set ¥, =4, = 0in (9.21), we can factor this equation leading
to (w® — ¢*/er) (w* — fi/p) = 0, which give classical disper-
sion relations of EM and irrotational elastic waves in the
long wave limit (when ¢?/€, and fZ/p are independent of §
and w).
If we use (9.18), Eq. (9.21) can be expressed as

§2c2 _ € —€,, 5
= €, +w§ e Wy, (9.22)

which is identical in form to the classical result.*

If H = 0, then from (9.19) it follows that £ Xii = 0 and
the waves will be longitudinal only. In this case, we have the
dispersion relations {9.11).

In dispersion relations (9.11), (9.17) and (9.21) and
(9.22), constitutive moduli are functions of £, when the
memory dependence is neglected. When the memory depen-
dence is included, the foregoing equations are modified by
multiplying all material moduli by — iw. This factor arises
from the time rates of e,;, and &, in (8.1) and (8.2). In this
case, the material moduli are functions of £ 2 and  so that we
will have complex roots for w = &(£ ), indicating dispersion
with absorption. Thus, the so-called polariton dispersion
with absorption is fully accounted for.

X. NATURAL OPTICAL ACTIVITY

The dependence of the dielectric moduli €,, on the wave
vector can give rise to optical activity. For this to occur, the
crystal must not possess a center of symmetry.

The nonlocal constitutive equation for rigid anisotropic
dielectrics is given by

P (x,1)
t aE 1, !
=J dflj rTE(xX —x,t—17) %ﬂdv( x’').
—w ¥ 7
(10.1)

The total free energy, in the absence of other fields, is of the
form

f _ _dr JVPk( x, 7) aff% dv| ).

If we carry (10.1) into (10.2), interchange k and / and the
order of the integrals on ( x, 7) and ( X', 7'), we see that we
must have [see also (7.16)]

(10.2)

(X —x, 7 —7)=xE(x—x, 7 — 7). {(10.3)

In terms of dielectric moduli, this is equivalent to

€ulX —x, 71 —7T=¢€p{x—x, 7" — 7). (10.4)

The Fourier transform of €, is of the form

€6 w) =€y (—§& —w). (10.5)
But from (8.7) we also have

Eull o) =8u(—E —d). (10.6)
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If we expand (10.5) and (10.6) into power series about E=0
and é = 0 and retain only the first two terms, we will have
€ulé, ©) = €4(0, ) + €, (0, W),

= €40, —w)— €m0, — )&,

x i
=0, &) —Fynl0, &) (107)
Consequently,
€u(0, 0) =&, (0, — ) = §,(0, — o),
€m0 @) = — €y (0, — o). (10.8)
This approximation is equivalent to
JE,
Dy = €u(IE, + Yuml@l—, (10.9)
where "
€lw) = €u(0, ), Vimlw)= 1€, (0, w) (10.10)
with the symmetry relations
€(0) = €5~ o) = &)(— &),
* E 3
yklm(w) = _V[km( _a)) = y}clm( —(0). (1011)

Equation (10.9) is identical to the classical expression of
the constitutive equation leading to natural optical activity if
the memory dependence is ignored, i.e., @ = 0 {cf. Landau
and Lifschitz, Ref. 2, p. 338).

For memory-dependent materials, using (10.11), the in-
verse Fourier transform of (10.9) with respect to w will show
that the dielectric displacement D will depend on the mem-
ory of past electric fields. In this case, the crystal will exhibit
absorption as well.

Xl. ANOMALOUS SKIN EFFECT

Anomalous skin effect arises when a highly nonuniform
field is established in a conductor. In this case the electric
field varies rapidly within the skin depth and the nonlocal
effects become important.

Consider a semi-infinite isotropic rigid conductor occu-
pying the space |x,|< o0 |X,| < 00, 0<x,. We assume that the
displacement current, magnetization and, temperature gra-
dient are negligible. In this case the Fourier transforms of
Maxwell’s equation reduces to

EXE + (w/cH =0, &ExXH=(i/c)J, (11.1)
where J is given by the constitutive equation (7.44), i.e.,
J, =04 E,. (11.2)

The Fourier transform of the conduction moduli oy,, for
isotropic solids, are of the form

O =00 + 01§ ”2§k§l’ £°=E-§, (11.3)
where 0, and o, are functions of § 2 and w. Eliminating H and
J among (11.1) and (11.2) we obtain

(Ex&) — E%81 + llo/M)T 1 )E, = 0. (11.4)

For the semi-infinite conductor under consideration,
we take the applied E-field in x,-direction and assume that
EM fields are independent of x,-coordinate. Consequently
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§k =§35k3’ E, =E15k19 (11.5)
H, =H26k2! Ji =-715kn

with this (11.4) gives
i@/, (€3, 0) - £3 =0. (11.6)

When the memory effect is absent then &,, = 7,,(£3) is a
function of £% only. From (11.6) it is clear that the penetra-
tion depth depends on the frequency. This result can be used
to determine o,; by comparing (11.6) with atomic calcula-
tions, or surface impedance measurements.

The integro-differential equation for E, corresponding
to the case (11.5) is given by

2 - o
1%: ~Z 1 o — x5, 0B (x3)dx;. (11.7)
dx; cJos

Comparing this with the Reuter and Sondheimer’s result,>*
for the case of specular surface reflexion, we see that

ol x, ) = op{ Ei, [(1 — iw7)]x]]

— Ei[(1 — iw7)|x[1}, (11.8)
where 0, and 7 are constants and
Ei,,(x):J s~ "e T ds. (11.9)
1

In this way we establish a definite connection with the elec-
tron theory.

Finally note that when &, is independent of £, and w,
{11.6) gives the classical skin depth.

XIl. SUPERCONDUCTIVITY

Below a critical temperature ranging from less than
1 ° K to 18 °K large numbers of metals and alloys are super-
conductors. At this stage there is no resistance to the electric
field inside of the metal. Here we show that the superconduc-
tivity is included in the nonlocal theory.

Two surviving Maxwell’s equations have the form

VxH=J/c, V-H=0. (12.1)

Of course H and J are interpreted as the microscopic
fields. For simplicity, we consider a rigid superconductor at
a constant temperature and ignore the memory effects.
From (7.44) it then follows that

Jy =f o X' —x, T)H,( x')dv( x'), (12.2)
7V —o
where we wrote 05,=a,,. Since E, =0, it is clear that the
entropy inequality will not be violated. However, J is a polar
vector, while H is an axial vector. Consequently o, must be
an axial tensor. This is possible since o, depends on the
vector x’ — x. For an isotropic solid o,; has the form (Ref.
20, Appendix Bj

Okt = Oo€icmi(Xm — X, ),

(12.3)

where oy is a function of |x — x'| and 7. Consequently for
isotropic materials (12.2) reads

J= f ool|x" — x|, TH x’ — x)XH{x')dv(x'). (12.4)
¥ —0
Carrying (12.4) into (12.1) we have
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cVXH = J' ooR, TIRXH' dv',
.

(3

(12.5)

where we wrote R = x’ — x. This equation together with the
second equation in (12.1) and the boundary conditions
H-n=0, [HXn]=0, 97 (12.6)

are adequate to determine H when the kernel oy(R, T) is
known.

We now show that (12.5), in a special case, gives Lon-
don’s equation of superconductivity. In fact, we calculate
curl of J:

(VXJ); = J;/eijkeklm (ooR));H ,, AV

= J;/[(UORi),['Hj' - (UoRj)JH,{]dU'.

In the first term of the integrand we wrote @ /dx; = — dx; so
that

OoR,); = — (R H ), + OoRH,.
Here the second term vanishes on account of (12.1) and the

first term can be converted to a surface integral by means of
the Green—Gauss theorem. Hence,

VxJ = — f ooRH' < da’ — f H'V - (o,R)dv'.
a7 ¥

The integrand in the surface integral on d7” vanishes be-
cause of (12.6) and we obtain

VXJ = —J ¥R, TH' dv', (12.7)
ra
where
YR, T)=V+(o,R). {12.8)
Combining (12.7) and (12.1), we obtain
VXVXH + —l—f YR, TH(x')dv' = 0. (12.9)
cJr

This integro-differential equation reverts to London’s equa-
tion in the classical limit when the ¥(R, T') becomes a Dirac
delta measure. This is in perfect accord with the conditions
(7.55) set on nonlocal kernels namely that they must be a
Dirac delta sequence. Consequently, y—¥,(T)6{|x’ — x|) in
the limit when the internal characteristic length approaches
zero, and (12.9) converts to

VXVXH + (yo/cH=0, (12.10)

which is the London’s equation with y, appropriately identi-
fied.”
We now introduce vector potential A by

H=VXA, V-A=0. {12.11)

With this the second equation in (12.1) is satisfied and (12.4)
may be written as

Ji =f O rimEmrsR1A 5, AV’
>

= J;/[(o'oeklm 6-mrsRIA.s' ),r’ - (eklm €mps aORI),HA ; ]dv"

By means of the Green—Gauss theorem the first part of the
volume integral is converted to a surface integral so that
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J= aro(R +A'da’ —R.da’ A’
o, , o ,
g (e s
(12.12)

Clearly the functions o, must be such that at large distance
(large R = |x’ — x|) from x the surface integral vanishes or is
negligibly small. To assure this we take

0,=(C/2R%Ye "%, R<&, (12.13)
where C and &, are constants. With this (12.12) reduces to

Jo CJ[(A'-R)R

+ oV R (14 %)A'He"“j;;j;)

For large &, the second term may be neglected, resulting in
the expression first given by Pippard®
(A"*R)R _re, dv'.

R4

J=C
5
Coefficient C is determined by considering that A varies
slowly over a distance &, so that it can be taken out of the
integral. If we employ (12.13) in (12.8) we obtain

R, T)=(C/2R?(1 — R /Epe R/,
which is valid for RS £,and y =0 for R > &,.

It is clear that the origin of the superconductivity can be
traced to the nonlocal theory. In fact, for an isotropic solid
we can simply carry (12.4)into (12.1), resulting in an integro-
partial differential equation for H. For anisotropic solid it is
necessary to determine the properly invariant form of oy,.

(12.15)

(12.16)

Uniaxial crystal
For a uniaxial crystal with axis in x, direction we take
o, =0u(R, i3)H,, (12.17)

o is an isotropic function of two vectors R, i; and a skew-
symmetric tensor H,, = €,,,,H,, (equivalent to H); linear in
H. Hence, it has the general form {Ref. 20, Appendix B)

o =aR, +a,H,.R,, (12.18)
where a, and a, are functions of the invariants
R% R, H* (R-H)P, RXH);, H’R,— (H:-R)H,. (12.19)
From (12.17) it follows that

R=x' —x.

c?ak
Oy =
3H1 H=0
Hence,
Oy = 0o€i R, + €,,43(0164,, + 02R,, 6,3 + OR(R,,),

(12.20)

where o,,, @ = 0,1,2,3 depend on R * and R,. Consequently
(12.2) for uniaxial solids read

J=J [ocRXH' + oH Xi,
> —0o
+ (RXH') (0515 + o3R)]dv'. (12.21)
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Itis possible to construct appropriate kernels o, similar
to that of Pippard, but the scope of the present work does not
include such an investigation. It is rather to indicate how the
superconductivity can be brought into the domain of field
theories once the nonlocality is incorporated properly.

Thus far, we have ignored the possibility of heat con-
duction under constant temperature. This question may be
raised since the constitutive equation (7.43) for the heat ac-
quires the form

KylxX' —x, T)H | dv'.

P =f
Y —0o

Similar to (12.4) for isotropic solids we have

(12.22)

q= LA ool |X — x|, T)(x' — x)XH(x)dv’.  (12.23)

From this it follows that
V-q=0.
Hence, no super heat conduction is possible.
Finally, we remark that the superconductivity of the
second kind can be treated by means of the present theory. In

this case we need the nonlinear theory with no memory ef-
fect. Such an investigation is left to a future study.

(12.24)

XIll. PASSAGE TO LATTICE STRUCTURE

At the atomic scale, materials are inhomogeneous since
the lattice nodes are not equivalent to other points in the
body. This situation is also true near the surface of a body.
Nonlocal continuum theory can still provide the appropriate
tool for the discussion of the atomic scale phenomena by
taking nonlocal kernels as functions of two points x and x/,

e.g.,

€y =€yl X, Xt —17) (13.1)

rather than a function of x — x’. Of course, similar func-
tional relations are assumed to be valid for the other moduli.
The Fourier transforms are then taken with respect to x, x',
and 7’ leading to

€ = €ulk, €, 0). (13.2)
For homogeneous medium €x, x,t—17)
= €(x — X/, ¢ — 7') and the transform with respect to x and
x' give €€, w)8(E — &') and we get back €,,(§ ,0).

In an infinite crystal €,; remains unchanged when x and
x' are given a translation by a lattice vector a, i.e.,

€ X, X, t—7)=€y(x+a,x +ar—17) (13.3)
Such a periodic function can be expressed as
€u( X, X, 1 —7) =Yg (x — X', £ — 7') exp( — 2mib - X),
b
(13.4)

where b = n,b;. Here n; are integers and b, are three base
vectors of the reciprocal lattice, exp(2mia+b) = 1. Conse-
quently,?!

€l § 0)= gdl(é, w)6(§' — § — 2mh),

where €2, is given by

(13.5)
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enlE o) = fgb (R, wle = ™" * dv(R) (13.6)

and R=x —x’.

From (13.5), it is clear that €,,(§, @) can be used in the
electrodynamics of crystals if only the first term in (13.5) is
adequate. This situation prevails if

|§| €27|b| R 27/a.
This problem is discussed further in Ref. 31.

This result is valid for other piezoelectric and piezo-
magnetic moduli.

(13.7)
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Proof of Regge analyticity for power law potentials
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The /-plane analyticity of Schrodinger energy levels E, (/) for power law potentials ¥ (r) = r~, for
a > 2 has been proved by using the Kato—Rellich perturbation theory for linear operators.

PACS numbers: 03.65 — w, 02.30. + g

I. INTRODUCTION

Grosse and Martin (GM)' recently initiated the study of
the /-plane analyticity of Schrodinger energy levels E, for
pure-power potentials

Vir)=r" (1.1)
They proved the analyticity of E, in the physical half-plane
Re /> — } only for potentials with @<2. The proof for a > 2
does not, however, follow from the argument. The reason
may be summarized as follows. The GM technique rests on
the characterization of the energy level £, by the number of
zeros of the corresponding square-integrable solution «,,(r)
and to show that this representation remains valid even for
complex / with Re /> —} within a sector [e.g., |¢| <7/
(2 + a)] in the complex z(=r) plane, where ¢ is the argument
of z. One can then easily eliminate the existence of a branch
point of E, (/) in the physical half-plane by showing that the
same square-integrable solution u,, may be retrieved by trav-
eling along any closed contour in the half-plane Re /> — 4,
starting from and returning back to the same point on the /-
plane. It should be remarked at this point that the other
singularities of E, (/) may be discarded by the use of general
theorems such as the Herglotz theorem. Now, the integral
which plays an important role in discarding branch points is

3
Im uu* =f dt"|u, |2( I;I},;{ +¢t"%sin(2 + a)p
0

~ |E, sin2$ +arg E,)],
z=te? A=1(I+1), (1.2)

where a prime denotes the derivative with respect to z and
u*, the complex conjugate wave function. This integral is
used to show the constancy of the number of zeros of u,, in
the sector |¢ | < 7/(2 + a) (for @ > 2). The square-integrabi-
lity of u,(z) in the sector |¢ | < 7/(2 + a) follows from the
asymptotic behavior

za/2 +1
a/2+11"
which guarantees as well the exponential vanishing of
Im(u,u*)in |¢ | <7/(2 + a) as |z|— . For a > 2, it follows
from Eq. (1.3) that u, is still square-integrable on the rays
|¢ | = 7/(2 + a). However, the square-integrability, in this
case, is very delicate (|u, |~z ~ /%) and this does not ensure
the vanishing of Im(u/, u*) for {z]— . In fact, one can verify
that Im(u’ u*)~ O (1). Now, in the GM technique one vital
step is to show that &, has no zero on ¢ = n/(2 + a) for

—a/d

(1.3)

u,~z

exp{ -
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a>2, where Im A > 0, which follows only if the left-hand
side of Eq. (1.2) vanishes as 7— oo . It transpires that this is not
the case.

In Refs. 2 and 3, we have developed a method based on
Kato—Rellich perturbation theory on a Hilbert space by
which one can prove the analyticity of E, (/ ) for the superpo-
sition of potentials of the form

Vin=r+krf, a>0, 0<f<a, kreal (1.4)

We have stated this result in the earlier paper.® Here we shall
supply a proof for the same. It will be shown that a proof for
the required analyticity [also for pure power potential (1.1)
with @ > 2] will follow naturally from the argument.

Ii. THE PROOF

First we note that by following the GM technique
which has been outlined in the introduction one can easily
prove the analyticity of E, (/} in Re /> — 1for the potential
(1.4) with k > 0. For clarity, we further remark that the meth-
od makes use of the asymptotic behavior of #,, which, in the
present case, assumes the form

Za/2+1 k zB—a/2+1
a/2+1 2 B—a/2+1

un ~Z—a/4 exp l _

+ lower-order terms] . (2.1)

This shows that u,, is square-integrable in the sector |¢ | <7/
(2 + @), when k> 0. One can then use the integral (1.2) to
show that u, has n zeros with |¢ |<#/(2 + a) for any [ with
Re /> — 1. For details we refer to Ref. 2.

Let us now consider the Hilbert space L *0,c0) of
square-integrable functions. We choose the potential

V(r)=r"+«Br’, k real, a>0, 0<f<a (2.2)

for convenience. The corresponding well-defined Schro-
dinger operator is given by

d? A
= =2 _ 4L L e, A=1{+1),
H{pA) —5 + 5+t kB 7+1
(2.3)
D(H) = {ulu,u’ absolutely continuous |u,u'eL *|u(0)
= 0|HueL *} . (2.4)

For / in the half-plane Re /> — 1,4 belongs to the complex
plane cut along the real axis form - 1to — co. Weshall now
state several lemmas.

Lemma 2.1: For each fixed A in the cut plane, the mini-
mal operator H (0,4 ), defined on the space of infinitely differ-

© 1984 American Institute of Physics 3250



entiable functions with compact support C§ is a densely
defined sectorial operator.
Remark: H (0,4 ) defined on D (H ) is then a closed (m-
sectorial) extension of H (0,4 ) for compacts of the A cut plane.
Lemma 2.2: Let ueD (H ). Then for any compact set in
the A cut plane we must have

[l x*ull<|\H (0. Ju]l- (2.5)

Lemma 2.3: The maximal multiplication operator
r’(0<B <a)in L? is H(0,4 )-bounded with relative bound
Zero.

The proof of these lemmas can be obtained by exactly
following the proofs of the corresponding lemmas of Ref. 3.
Collecting the results stated in the lemmas we can now write
down the following theorem.

Theorem 2.1: For each fixed A in the cut plane, H (3,4 )is
a holomorphic family of type A in 8 (0 < 8 < ) for each fixed
real k and in k for each fixed f in the given interval, with
compact resolvents.

We shall now consider the convergence of H (8,4 ) to
H(0A), when kB—0". We denote the resolvent
[H(BA)—z]" "' of H(B,A )by R (B,z) and the corresponding
resolvent set by p(H ( B4 ).

Theorem 2.2: Let 2ep(H (0,4 )). Then zep(H (B,A )) for kB
sufficiently small and R (8,z) converges to R (0,z) in norm as
kB—0*:

lim ||R(B.z) — R (0,2)| =0. (2.6)

s
The convergence is uniform on compacts in the A cut plane.

Proof: Since

R(Bz)=R Bz X [1 + (20 — 2R (B,z5)] ",
it is sufficient to prove the result for one z,ep(H (0,4 )). For a
compact subset I" in the A cut plane, the union U of the nu-
merical ranges [ie, the set of values of

(w,H(BA)u), |u||=1]for H(B,A)over all AcI"is not the
whole complex plane. Hence, we can choose z, so that

dist(z,U) =d > 0.
Then we have*
IR (B.zo)l|<d ~'.
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Next it follows that
R (B,zo) — R (0,2)

= — kB [rP7’R (B2))] X [P7*R (0,2,)]. 2.7)
By Lemma 2.3 we can find positive constants @, b such that

I#72ul|<al| [H(BA) — Zolull + (b + alzo)l|ul|  (2.8)
for all Ael" and 0<B < a. Thus we have

IR (B.zo)|<a +d ~(b + alzo|) = m (2.9)
and also

IP72I|R (0,20)<a + d (b + alzo]) = m.

Hence, from Eq. (2.7) it follows that

IR (B.25) — R (0,20)|| < |kB |m*—0 as kB—0™.

(2.10)

According to Theorem 2.2, it follows that an eigenvalue
E,(BA) of H(BA )foreach fixed A in the cut plane, tends to
the eigenvalue E, (0,4 ) of H (0,4 ) as kB—07, at least asymp-
totically.

We shall now prove the analyticity of E,{/) in
Re /> — iforthe potential (1.1) whena > 2. Since E,, (8,4 ) is
asymptotic to E, (0,4 ) on compacts of A, we must have

E,pA)=E,01)+ O(KB). (2.11)

Now for &k > 0, the potential (2.2) is exactly identical to the
case discussed in the first paragraph of this section and hence
E, (B )is analyticin the A cut plane. Since by Eq. (2.11), any
singularity of E, (0,4 ) must be a singularity of E, (8,4 ) the
analyticity of E, (0,4 ) in the A cut plane is established.

The analyticity of E, (8,4 ) for real k now follows direct-
Iy from the general arguments of Ref. 2.
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Functions analytic on the half-plane as quantum mechanical states
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A transform between the state space of one-dimensional quantum mechanical systems and a

direct sum of two spaces of square integrable functions analytic on the open upper half-plane is
constructed. It gives a representation of usual quantum mechanics on which the free evolution is
trivial and the representation of canonical transformation very simple. Generalizations to higher

dimensions are also discussed.

PACS numbers: 03.65. — w,02.20 + b

I. INTRODUCTION

Though all irreducible representations of the canonical
commutation relations

[QP]=i (1.1)
are equivalent, other representations than the usual Schro-
dinger one have been helpful in quantum mechanics: Barg-
mann’? used a space of entire functions, Itzykson used func-
tions analytic on the disk,® and van Winter used functions
analytic on sectors.*

In this paper we formulate nonrelativistic quantum me-
chanics of one degree of freedom (generalizations to higher
dimension are also described) in the direct sum
K =,8H _,, of two spaces of analytic functions on
the upper half-plane. The #°, ,,, are the spaces of functions
f(b + ia) analytic on the upper half-plane @ > 0 and square
integrable with respect to the measure a * '/? da db.

Some operators used in quantum mechanics are very
transparent in this representation.

(i) The free Hamiltonian is just the operator of differen-
tiation (times — J): — #(d /3z); so the free evolution consists
of a translation of the variable along the real axis.

(i) The usual dilation operator D(Ja), acting on
L *R,dp) by

(D (Ja)g)( p) = a'/*¢(Jap),
actson ¥, ,,, by
(D (Va) f)z) = d’fla™"2)
(withA = —jfor# _,, and
A= —3forH#_,,).

(iii) The “time operator” (P ~!Q + QP ~!)/2 has also a
simple expression.

Furthermore, as in the Bargmann space, the variable
has a “classical” meaning which is here

q i

z~1 + —, for¥_
p i
and
q 3
z~; + 257 for 27 _ ),

So this representation consists of writing ordinary quantum
mechanics in terms of the variable “g/p +id /p*” (A =1}

or 3).

These spaces allow us also to bring the representation of
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linear canonical transformations into a simple form. It
should be noticed that the analytic functions used here do
not reduce to the analytic functions in other formulations:
they are analytic only on the half-plane (as contrasted to the
entire functions in the Bargmann space) and they are square
integrable with respect to a two-dimensional measure (in
contrast to the Hardy functions studied by van Winter).

The transform from L *(R,d p) on the two spaces % 5
and J7°_,,, is given by

1 + oo .
fia= | R e
-+ oo
fod = = | pe k.

Let us now quickly indicate how we are led to this trans-
form: from (1.1} it is easy to deduce that

2 2
[M,L] Y o (1.2)
4 2 2

We recognize the Lie algebra of the affine group,® which can
be identified with the upper half-plane. This group is nonuni-
modular but we know from the theory of square integrable
representation of nonunimodular groups (see Refs. 6-9) the
following facts.

(i) Let G be a locally compact nonunimodular group
with left Haar measure du(g) and U (g) be a representation of
G in a Hilbert space 5% with scalar product (-,-)

(ii) Let @ be an element of 777 if § {(U (), )|* dulg) <
(admissibility condition) we write

¢, = HUElee) dulg)

@)
Then, for each ¢ € 7, the function f(g) is defined by

fle)=Co"(Uglp,¥)
and is square integrable with respect to du(g) and

fﬁﬂw¢m=mw

We will see that in the case of the affine group such a trans-
form, with a suitable choice of @, gives us square integrable
analytic functions on the half-plane.

In Sec. IT we given elementary properties of the affine
group; in Sec. III we construct the transform and prove its
unitarity. Section IV is devoted to the study of a generaliza-
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tion of the spaces %, ,,,. We give some application of this
transform in quantum mechanics in Sec. IV. Different gen-
eralizations are described in Sec. VL.

Il. THE “ax + b” (AFFINE) GROUP”"*°

The affine group G is the set of couples

{a,b}, a>0, beR,
with the law

{a',b'}{a,b} ={d'aa’b+b'}.
It is a locally compact nonunimodular group with right
Haar measure dug (a,b) = da db /a and left Haar measure
du, (a,b)=dadb /a*.

The Lie algebra is given by

[4,B] =B,
and it has been proved'"!? that G admits only two irreduci-
ble inequivalent representations, one with B > 0 and the oth-
er with B <0.

Here we consider the (reducible) representation on
L }(R,dp) with generators given by 4 = (PQ + QP /4) and
B = P?/2, where Pand Q are the usual Heisenberg operators
satisfying [Q,P] = i; the representation is given by

2
bP ) exp (l. LNa PQ+ QP),
2 2 2

U(a,b):exp(—i
which acts on L *(R,dp) by
(U (a,bp1( p) = a'/*e = y(\ap).

This representation permits to identify G as the group of
upper triangular real matrices of determinant 1 [quotient of
SL(2,R ) by SO(2,R }] with the restriction of the metaplectic
representation of SL(2,R ) to G.

The identification is made by

wief® 49)

The representation U'is a continuous, unitary representation
of G, irreducible on even (L %(R,dp)) and odd (L %(R,dp)) parts
of L *(R,dp):

L}(R,dp) = {¢, functions on R with ¥( — p) = ¥(p)

wd [ iwpPdp=2 [ IWAPdp< + o),
L?(Rdp) = {¢, functions on R with #{ — p) = — ¥{p)

wd [ lpldo=2 " Wipl dp< + o).

Now we compute the admissibility condition intro-
duced in the Introduction. That is,

dadb
[1wabppir 2 <+ o,
and
o = S|(Ua,b)p,@)|*(da/db /a?)
? e 112
for g € L*(R,dp), @ even or odd.
3253 J. Math. Phys., Vol. 25, No. 11, November 1984

An easy computation gives
“+ oo 2
f P gy 4 o
0 p

and

+ w 2
c¢,=817'J; |—¢[(;;)|—dp.

HI. THE TRANSFORM
A. Definition

According to the general theory described in the Intro-
duction, we take two elements of L?R,dp), one ¢° in
L2(R,dp) and one ¢° in L %(R,dp), which satisfy the admissi-
bility condition. Two candidates which will give us analytic
functions are

@°(p)=pe~"",
3.1

@ (p)=pe 7", .

Let us write
+ oo 0, 2
c, = Sﬂ.J' |‘P (2P)I — 417.3/2’
0 p

(3.2)

© e, 2
¢, = STTJ- eI 4 — 22,
0 pz

We will associate to every ¥ € L 2(R,dp) [resp. L 2(R,dp)] an
analytic function in the following way: we know that the
transform

%€ L2(R,dp) [resp. L*R,dp)]— —— (U(ab )
CO

[resp. (1/\/Z ) (Ula,b)p)] is an isometry between
L%(R,dp) and L *(G,du, (g)), which is

L*(IT,da dp/a?),
where
IT = {ze C/Im(z) > 0}.

Here and in what follows we shall write

z=b+ia.
But
1 a3/4 + o,
L (Uablpy) = f e P pldp,

(resp. _\/lc: (Ulab o ¥)

s e o
= f P e““’”’rﬁ(p)dp)-

JC

This suggests we consider the two following transforms:

obie = = [ oot i,
for ¢ € L2(R,dp), (3.3)
A 1 T 2
e = =2 [ e i,
for ¢ € L2(R,dp). (3.4)
Thierry Paul 3253



B. Properties

Before we give the main result of this section we intro-
duce the following spaces.

Definition: 77 . , , is the space of analytic functions de-
fined on /7 (Poincaré half-plane), square integrable with re-
spect to the measure [Im(z)] "> d Rezd Im z.

A deeper study of such spaces will be made in the fol-
lowing section; let us just mention that they are Hilbert
spaces (see the Appendix), equipped with the scalar product

(851 = f Ttz 1 (2)

where
du ., (2)=a*"*dadb. (3.5)

Theorem: A4, (resp. 4,) is a unitary transform between
L2(R,dp) [resp. L2(R,dp)] and % _,,, (resp. ;) and the
inverse transform is given by

A, Np) = EyIy ggllf R0 PE i p/2E
Yoo l/y<Imz)<y
Xf(z)a="*dadb, forfe_,, (3.6)
and
_1 lim J 2o —ilp P2z
Mol = — ol manc P
xf (Z)a”2 da db. (3.7)

Proof of the Theorem: The functions (4,v) [resp.
(4o¥)(z)] are clearly analytic in z. We just need to prove the
isometry and surjectivity.

Proof of isometry: We have

1 T
o) = —= [ ot i
so, with ¢,¢ € L 2(R,dp),
Aot 4@ ) 112

Fo + o + o +o
173/4[ dpJ dpf daf db pp’
xeso[ o (52 [ e | o P42

X@ (pW(p)

2\/_[ 5(17 p) n 5(pL:|p’)]

Xexp[—a(‘p -|2—p )]:p(p’)a(_p_) dadpdp'.

Now, since ¢ and ¢ are odd we obtain
Aot 4o@)—1)2

e f_ —ap? Y —I/2d d
zﬁjme o1 p) Wpla~"" da dp

f W?’ (P)p = (@ )L 2r,ap)-

The calculation for 4, is exactly the same.
Proof of surjectivity: First of all we prove the inversion
formula.

3254 J. Math. Phys., Vol. 25, No. 11, November 1984

Consider the map W

(WS fNp) = ———27713,4 f re <o P2 )

y>Im(z)>1/y

xa~"?da db.

Now (W2*f)(p) is clearly the scalar product in L %17,
a~"?da db) of fand the function 42 defined by

o7, given by fe #°_,,,

— i p/2z
’

277 ¢

h? (2= if |Re(z)| < o,1/¥ > Im(z) > 7,
0, if |Re(z)] >0 or 1/y <Im(z)
or Im(z) <7,

h% e L*lLa='?dadb)so (WJ" f) p)is defined for every
peRando>0.

One can see that W97 feL2(Rdp) and that, if
Sf=Aw, lim,__ ||W,f — || =0, where || || is the norm
in L }(R,dp), so we can write

(A" f)p)= lim p j ~#52f (g da db,

[Re(z)| <o
1/y<Im(z) <y

Y
where the limit is understood in the L 2 sense.
We prove now that, for every f€ % _, ,,

45 fIP = (S S) e

From (3.5) we have

IR

— 1 ffj+ * dpp2ei(p2/2)[z—2']
e )

Xdp_pz)dp _o(2')

1 [z—2\"%¥
- [L(EE) Trevr@
Xdp _ 112" )dp _1/,(2)

_ J porilz =2V () f@)

Xdp_ypA2')ap _y 12(2),
where p_,,, is the reproducing kernel of #°_,,, (see the
Appendix) so

| s nppde= [ @R it < +

and the surjectivity is proved. The same calculation is possi-
ble for 4, ! and the result is the same. The theorem is
proved.

Remarks: (1) Every function in L %(R,dp) can be decom-
posed in even and odd parts ¥v=¢, + ¢, with ¥,
e L%(R,dp), ¥, € L }(R,dp). We have

+ oo + o
J pe7 My, (p)dp = f pe 7y, (pdp =0

—

SO
(o o)) = ﬂm f e p)dp
and
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ERATES

N A
7 n—’“j P """ p)dp.

So we can consider the map A:

L*R,dp)\—~ 128K 13

+ oo
Ji; — J pre™ 7Y pdp

. (fe (Z))
Vol2) _2_1:377 f _: pe Py p\dP

The inverse transform is given by

¥ | (3.8)

Il

1 . 2 32
W p) = lim f Pe= . s )
/4 gee ) |Reldl <o
\/iﬂ3 4 Yoo 1/y<Im(z) <y

1 : — Zp*/2
* 2 Jm ftRe(z]l <o P¢ fol@ldps -1 ol2):
— 1/y <Im(z) <
Y Y v (3.9)

(2) Because of the fast decrease of the kernels pe#”/?
and p®¢™”*/?, the transform A can be extended to the space of
tempered distributions on R, as is the case for the Bargmann
transform. The transform of a tempered distribution gives
also an analytic function on /7, but of course, in general, it is
non-square-integrable. This study will be made in a forth-
coming paper.

IV. THE FAMILY OF SPACES 7,

With a view towards studying the spaces 7, ,,, we
define the more general family of spaces #°, and present
some of their properties. Technical points are given in the
Appendix.

A. Definition
For a> - 1 we define 77, as the space of analytic

a

functions defined on the open upper half-plane and square
integrable with respect to the measure

( z—2Z )”’ dzNdz
2i 20
It is a Hilbert space with scalar product
- —z\*dzA\dz
(r9)= [ i) (252) EAZ
2i 2
= [ Feteku.to

=du,2).

- f " Foetzie” da b, (4.1)
b

= — wova=0
with z = b + ia (see the Appendix). As other spaces of ana-
lytic functions, it possesses a reproducing kernel, i.e., an ele-
ment p,(z — Z )57, such that

Ve o [ pule—ZV(ZNu.2) =10
P. is given by the formula (see the Appendix)

Palz—Z)=c,lz—Z)/2i]] =+,
wherec, €R, ¢, = (@ + 1)/4m, and

{4.2)
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z—Z|—le+2
2

X exp [ — ila + 2)arg (%)]

(0_2)—(a+2)
2 B

and

_ T g [2—7] T
2 2i 2’

Directly from the definition, we see that
Pz —Z) =pa(Z -3

From now we will note |Z,a > € #°,, given by
|Z’a) =pa(' - 2),

and in general |f') each element of %°,.
With this notation, the reproducing property is written

(Zalf) =f(Z).
Ifthere is no danger of confusion, we will abbreviate |Z,a) to
|1Z).

For each fin 7, the following estimate holds:

IF2)|<|If Ve + 1/4/7){Im(z)} — 2",

where Im(z) is the imaginary part of z and

I = f T (@ ).

(4.3)

B. Representation of SL(2,A); |Z)> as coherent states

In this section we will see that the vectors |Z ) are just,
up toa normalization constant, coherent states of SL(2,R ) (in
the Perelomov sense'?).

In 5, we have the following irreducible unitary repre-
sentation U of SL{2,R }:

ifg e SL(2,R ) withg—' = (" b),
¢ d
(4.4)

(UgYf)z) = (cz +d)~*"fllaz + b)/(cz + d)].

The unitarity is easily shown by direct computation and the
irreducibility has been proved by Berezin'* [for the represen-
tation of SU(1,1) on analytic functions on the disk which is
equivalent to this one (see Appendix)].

Fora integer (> — 1) we have atrue representation and
for a half-integer we have a projective representation with
multiplier + 1.

It is well known that each element

5= 2

of SL(2,R ) can be decomposed in the form

(a b) B (\/; x/\/f) (cos 6 —siné )
= ) (4.5)
c d 0 1/Jp/ \siné cos 0
with
X +iy=\(ai +b)/(ci+d)=Si
and
6 =arglci +d) — 7 <0< + m).
Now, denoting
Thierry Paul 3255



cosd sin6

o= (20 2°)

©) —sinf cosd

an element of SO(2,R ) we have
(Z|U(R (@)D

=¢,(sin 6Z + cos §)~* 2

[( cos Z — sin 8 ) A
2i(sin 6Z + cos 8) 2i
e (cos¢9Z—sin6’—+—z'sint9Z+icos0)—"—2
¢ 2
=(cos @ +isin@)”* "%, [(Z+i)/2i] =2
=e—i(zz+2)6<le->’
0
UR @)y =e~ "2, (4.6)

so the action of the subgroup SO(2,R ) on the state i) is just a
multiplication by a phase factor. Then following Perelo-
mov'? we call “coherent states” of SL(2,R ) associated with
|i) the system of states |xy) defined by

~ yoox/AyN .
xy) =U
|xy) ((0 1/\/; i)

which, since

() - )

is given by
sz [* x/\/i) .
(Z |xy) =(Z| ((0 Ay )6
—a—2f1 V4
=Ca(‘/;) (z[(vj_;—

5
= W HZ |x + ).

So we have

) = (é—’%) "12), 4.7
with Z = x + iy, so

Z) = (%l)/ 9. @3)

C. Principal operators on 57,

A large class of operators H on /%, can be expressed by
kernels, i.e., functions of two complex variables, analytic in
the first and antianalytic in the second: 4 (z,Z') so that

(Hf )z) = f h @2 ) (), 4.9)
where 4 (2,Z') = (z|HZ'),
|Hz'Y=H |z').

The kernel of the adjoint operator H * of H is given by the
following formula, denoting G = H *:

8(z2') = h(z 2). (4.10)

We just will now briefly mention some elementary operators
in #°,, see Ref. 15 for details of proof.
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1. The operator n: — {(3d/9z)
The operator 7 defined by

() = —i(—f—f(Z)
Iz

is self-adjoint because it is the strong derivative (multiplied
by — i) of the strongly continuous group 7'(¢) of unitary
transformations given by

[TV =Sflz—1)

Its domain is the set of functions of 5, such that

J

2. The operator & multiplication by z
Here ¢ is defined by
(Ef)2) = 7/ (z).

The resolvent R (E) of £ at point E is given by
(R(EV)2)=(6—E)" N =(—E) fla), (414)

so we see that the spectrum of £ is the upper half-plane. The
adjoint £ * of £ is given by

(4.11)

(4.12)

2

dug(z) < + .

I
% 7

(4.13)

&N = [ pale — FS W) (@.15)
and its spectrum is the lower half-plane.
Note: We have
+
[5 +2§ ,n] —i (4.16)

3. Dilations

If we restrict the representation (4.4) to the subgroup of
SL(2,R ) of diagonal matrix (dilations)

(f 1/()J2) ’

we obtain the following unitary dilation operator D (a):

(D (@)f)iz) = a®** f (az). (4.17)
So we obtain the generator 6 of the dilations
. d . (a )
S = —jz— —i{= + 1} 4.18
(6f)(2) Z— =it (4.18)

V. APPLICATION TO QUANTUM MECHANICS

In this section we come back to the transform defined in
Sec. III. We have constructed in Sec. III a unitary map
between L (R, dp) and 77, ), @ . _ .=,

A
() = (o) 5
v/ o¥
(herey =9, + ¢, and A, ¢, =0and 4,9y, = O0sothat4, ¢,
=4, pand 4,9, =A4,Y).
Each operator in L?R dp) will be represented in

@ 1, by a “matrix-valued kernel,” that is, four
kernels

(hee hea )
h0¢ hOO
such that
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Here, if H is the operator in L *(R,dp),
H=AHA "' (5.3)
and
hyz,Z) = (pl|H |(pjz»), with i, j € {e,0}, (5.4)
and
Ula'b')lg;) ’

JCa

g

We will give the expression in & of simple operators in
L 4R ,dp); one of them (multiplication by the variable z) sug-
gests a classical meaning of z, the free evolution and Schro-
dinger equation in the interaction picture are very simple in
this representation.

A. Some operators
(i) — #(d/3z) since

2
B i%fpgeiz< P2y pldp = J-Pﬁe"z“’z/z’gz— ¥( p)dp.

The operator — i(d/dz) is equal to 4 (P2/2)4 ~ .
(ii) The dilation generator (QP + PQ)/2 [where Pand Q
are the Heisenberg operators on L *(R,dp)] is expressed in

d 3
7 _ by —2iz— — —i
1/2 OY oz 2
and in
a 5
H by —2iz— — =i
+1/2 OY oz 2

so we get the matrix
— 2iz{d/0z) — 3 i 0
0 —2iz(3/3z) — 3i)

The operators P and Q change the parity so their expressions
are not very simple. We get for P, the matrix

A )
and for Q, the matrix
0 i2{2[1 + 2(8/92)]
_ iz i[(z —2)/2i] 32 0
427

B. The operator £ and the classical meaning of z
From (4.13) we see that, for fe 77 _, ,,
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fhee(zz'm(z')dul,z(z')+ j o @2V, (N1 2l2)

f ho (22 Mt o) + f AT TR

(5.2)

—
(&/)e) = 2 (2)

1 -
=~z [ et pap

= f [(f—:lg—;@: - %P‘z)%’,] (PY¥ p)dp

(25 - 4o

L(R,dp)
with
@5(P) = (1/2/%) pe= =772,
So we see that if ¢ is in the natural domain of
P04+ QP—I _iP_2

we have i i
=4, [(F2EL= 4 Ly 69

For fin 5, ;, we have the same computation

-1 -1
Ef)e) = 4, [(ff—Q—;ﬂ— + % iP —2)¢]. (5.6)
This suggests, in analogy with the Schrodinger and Barg-
mann representations, to identify the variable z with the clas-
sical quantity g/p + i/2p* in the odd case and ¢/p + 3(i/2p?)
in the even case. Two other arguments suggest the same in-
terpretation: it is easy to see that, if we call

@;=Ag '|z2) (resp.¢i =4."|2)),
that is (5.7)
oilpl= —srpe ™ (resp.gi = — pre=
¢ 274 2 ’
then
@3, l(P'Q+ QP 1) 2]p3), .
— * =Rez (5.8)
(@o@?).:
{and the same for ¢ %), and
3P ~2/293),.
— =Imz (5.9)
(¢ o’¢o)L§
(@23P @2,
resp. ——————— =Imz . (5.10)
(¢ P e)LZ

So by analogy with the usual (Weyl) coherent states |p,q), for
which we have

(9@ + iP p.g)) = q + ip, (5.11)
where Q and P are the Heisenberg operators, we can identify
z with ¢/p + i/2p* (resp. q/p + 3i/2p?).

Another argument for this “classical meaning” is the
following: in the Weyl case we construct coherent states by
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acting on an element |y, ) of L %R ) with a (projective) repre-
sentation of the group of translations on phase space R 2,
namely a Weyl coherent state is |p,g) = W (p,g)|¢,) with
¥,(p)=e~7"% and W(p,q) is the usual Weyl operator, in
this representation we have identified a translation in phase
space with the point translated from this origin. The origin
can be defined as the point (q,, p, ) such that

Po =¥, |P[¢,) =0,
and
9, = ($1Q[¥,) =0.

We want to show that we have here the same construction:
this time the group acting is the subgroup of Sp(2,R ) consist-
ing of the triangular matrices

- (2 39

This group acts on phase space as a subgroup of the symplec-

tic group
(Z,) B (JE b/f) (p)
' 0 1z
The representation of this group in L *R,dp) is of the form
2
Ulab)= exp( —ib%) exp(+1 loga PQ-;- Qp)

so b and — log a/2 must be “identified” as conjugate varia-
bles of p>/2 and gp. We obtain

b~q/p

which gives by symmetrization the operator
YP'Q+ QP )

and
(—log a)/2~ log p—a~P ~*

which gives the operator P 2,
Consider now the even case.
As “origin” of our phase space we take the point

G

defined by
P . 1
Lz — _(¢J—¢) = 2:[)0 = —,
Ps (@erpe) 2
and

4 _ lpol(P~'Q+ 0P ~)2]p.)
pa (¢2’¢7e)

(p) - (1/0\/5)'

Now, identifying {a,b } with the point image of the origin by
{a,b } we have

=0,

SO

O =05 )<l
) \o 1Aa 1n2/°
which gives

a=1/2p*> and b=gq/p.
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The same computation is valid also for the odd case and gives
a=3/2p*
Remarks: (1) Arguments given here are essentially heu-

ristic,

(2) The operator (P ~'Q + QP ~')/2 is not self-adjoint.

and b=gq/p.

C. Free evolution

If we consider the free movement of a particle with mass
1 its Hamiltonian is

J
_l—

Jz

Then the free evolution e ~ 22 is just a translation by — ¢in
the argument of the function

cofa- (51)
z—1)
Remark: Since the variable z has the classical meaning

of g/p + Ai/p* with A =} or 3, one could expect the free
evolution to be a classical change corresponding to

plt)=p and g(t)=

Ai Ai
_q_(f_)+_'2=(z+,)+_2{

pt)  ple) p p
The reason for the presence of the minus sign will be ex-
plained in the next section (VI).

o

H = —1;—andm2f1t1sH

(5.12)

SO

D. Schrodinger equation
Consider a particle of mass m = 1 with Hamiltonian
H=P2+V,
where Vis an operator in L *(R,dp) (potential part). Suppose
for simplicity that the operator ¥ conserves parity [the gen-
eral case can be treated with a matrix valued kernel as in

(5.2)]. Then the Schrédinger equation is written on each
Frpor K _y

. d
lgt'.fe(z’t)
—ife)+ f Vo2V 2 o o2,
(5.13)
i%j;(z,t)
- (zt)+fV(z Vo2t it ol
where
V.e2) = @5 Vel
(5.14)

Vo(eZ)=p:.Ve?)
with ¢ and @7 given by (5.7).

If now we define |g(t)) = &7
here

glzt)=flz +1.1), (5.15)
we obtain easily the Schrodinger equation in interaction pic-
ture

|f(z)) that is explicitly
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i 2 get) = [ Vilet o2 + Dgl2 ),
(5.16)
. a = ’ ’
i 2 gient) = [ Vilz-+ 12 + el s o).
Application: Quantum mechanics of a system of two fer-
mions interacting with a local potential: a system of two par-
ticles in one dimension can be described, after removing the
center of mass, by a wave function in L %R ). If these particles
are fermions, the wave function is odd {because of the Fermi
statistics). The kernel of the potential is then
V,2Z) = @5 Vel) = @5.VF),
which, if the potential is local, is equal to

Viez) = [ Frig? o Haka,

where

- + = 1
z — xqp e
Pslq) \/7-?—[ 257 P

—1/2

(5.17)

- lz(p’/Z)dp

I
T 2P0

so we obtain

(E) —3/2 q e(i/a(q’/zi

V,(2z)= (zz)73

47’3/2

+ @ =
X f 9’7 (g)exp [i (z —Z
— 44

Also, V,(2,2') can be written

) %z]dq. (5.18)

VoeZ) = 7 )"

7r'4/2

+ ®

x| e [i(z;;’)l]di, (5.19)

with # (1) =4 V271 V?).S0V, (z,2)iscloselyrelated to the
Laplace transform of #7(4 ).

E. Orthogonal basis for 7%

In this section we study in greater detail the complete
orthogonal systems ¥V, defined in the Appendix. We shall see
that the V', in ¥ _,,, (odd case) are eigenvectors of the
harmonic oscillator {(odd Hermite functions) and we shall
compute the elements of #°,,, corresponding to the even
Hermite functions. We shall also see that ¥} ' in %%,
(even case) are eigenvectors of the harmonic oscillator with a
centrifugal force.

1.TheV,in¥_,,»

Let us compute first of all the operator in #°_, ,, corre-
sponding to the harmonic oscillator Hamiltonian H:

o= Q2+P2 1 [ ]
Thenwehave

Hp "= [_t(z2+ nl - i,-z] @5 (5-20)
oz 2

so that the operator H in #°_,, is
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d 3.
H —iZ+1)— — =iz
H: — i +)az 212

The eigenvalue equation for H is then Hf = (2n + 3)f which
is exactly Eq. (A14) for @ = — 1. Then the f, are the images
of the odd Hermite functions:

V. 2=4 o(hzn +1 )’

Y YR ’2F(n+3/2) z—1)"
V. (z) = n;/z(n)! (z + l-)n+3/2'

Now, to compute the images of the even Hermite functions
we make the following remark: It is easy to verify that

n n—1
h = — nh / h, 5.
by \/: + 2 h—2

Then, for n — 1 even, we have

fp eﬂzp /2)k ld

J pet(zp’/Z) J- hh

so that we have
wn = A e(th )

_ 23 2n+1 , 2n ., ]
N i [En

=2n+ 1V V24 2nV '

L b (P)dp,

Explicitly we have
» —2 2l (n + 1) {n+l(z—i)
"ot a1 | Jn \z+1
+\/"; (Z—i)n_l

(Z + l)" +172°

2.The W, in#,,»
The ¥ ;7 /% in 57, , verify the following equation:

[—1(22+1)——l ]V“’z(z)

= (2n + %) V2.
An easy computation shows that

(— i+ 1) 9 —i%z)fe"zﬂ””’

lé‘2 1 pz)z,.z(z/2
=| - == 4 = + &) pPer,
( 23p2+p2+2p

So the harmonic oscillator with a centrifugal forceis in #°, ,,
the following:

. a .5
e 2
izt + )az 122
The
Cn+ _
Vi) =4 /zn|§ (z 1) (z i)

are eigenvectors, with eigenvalues (2n 4 3) of this operator,
which is a special case of operators studied by Calogero.'®
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VI. REPRESENTATION OF THE CANONICAL
TRANSFORMATIONS
A. Odd case

Remember that every element C of SL(2,R ) can be writ-

ten as
(J} x/\/;) (cos 6 —sinf )
C ad . >
0 1/Jy/ \sin@ cos ¢
with (6.1)
. ai+ b , .
x+iy= =S54, 0= dl.
iy 1 d i arg{ci+d ]
if (¢ %) eSL(2,R ) we have also
(a b)C— (Jf x’/\/?) (cosB’ —sin 9’)
c d/7  \o 1)/ \sing’ cos8'/’

with (6.2)
az 4 b
cz+d’

Now, consider the metaplectic representation of
SL(2,R),'” U(S'), and consider the transform of U (S )¢, with
v e L*R,dp), ¥ odd. We have

VC (A, USWox + iy) =y (U ((xp})p,, U(S)Y),

where
(8 29

=y U S YU ({x3})p,:¥)

_ ufW x/fy) )
— 3/4 1 .
4 (U(S )<o 1y @ord

x + iy=Cz= §'=0+arglcz+d].

Now we have, if § ~! = (¢ %),

g1 (\/} x/\/f)
0 1A
_ (‘/)7 x’/\/)7) v (cosG’
I VA sin @'

with x' +§' =(ez+ b)/{cz+d), where z=x+iz and
@' =arg[cz+d]so

NATRAE
=y MUl 4y O

—sin9’>

cos @'

cos@' —sind’

sin @' ) ot
(6.3)

but, because ¢’ is the first excited state of the harmonic oscil-

lator and the generator of the subgroup SO(2,R )of SL(2,R }is

the harmonic oscillator Hamiltonian, we have

cos @'

cos@' —sind’ _i328¢
v (sin o’ cos @ ') P, —¢€ (/2 Pos
y—3/4e—i[3/2)9' =y—3/4(eie')—3/2
=(cz+d)3? -—————y_ ]_3/4
L(cz+d)cz+d)

_ | =22 ]
=lez+d) L(cz+d)(c2+d)]

r —3/4
—(cz4d)™3? Im(‘c’jjr's)] . (6.4)

So we have
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JC 4, U S W)
—Im (‘Zj 3) ez +d )~ HU (x5 ) t)

=(cz +d)7>%[C,(4,y) (‘Z:Z)

Then we have the following result:

(A, (U(S)W)z) = ez + d) >4, ) (——Z:Z)

We have then the following representation of SL{2,R }:

VISV e) = fez + )27 (22, (6.5)
cz+d
withS§~'=(@ §).

Remarks: (1) The space #°_ | ;, has been used by Itzyk-
son, but considered as the space of analytic functions on the
disk, see Ref. 3.

{2) This representation is a projective representation of
SL(2,R )withmultiplier + 1givenbythefactor(cz +d )~/

(3) The representation of the subgroup of free evolution
on phase space, thatis (; }), is then

[V(é )7 ]‘z) =fle—1).

This explains the minus sign in the free evolution (see 5.12)
because SL{2,R ) acts on the argument by inverse transform.

B. Even case

The calculation for the even case begins in the same
manner and we obtain a formula identical to (6.3):

VG4, U (SW)z)

=y o ey o (S0 e

cos 8’ )

Sin 6 ’ )¢e 7¢’)
(6.6)

Now of course g, is not an eigenvector of the harmonic oscil-

lator but we remark that

@ =(7"%/2)[ ho +\2h,], (6.7)
where 4, and 4, are the normalized Hermite functions of
order 0 and 2. So we obtain

cos 8’

U(cose’ ~sin0')
sin 8’ cos 8’ @
1/4
. , T e . ,
=e~t(5/2i9¢)e+ 2 [e~19 /2__e i(5/2)6 ]hO'

The first term (e —#*/? %p ¢) gives in (5.6) the contribution
JC.lez +d)**f({az + b)/cz + d)).
For the second term we remark that
(U5 + Y holp) =y e~ #P7r =14 (6.8a)
with z’' = x’ + iy’ and [recall thatz’ = (az + b /(cz + d )]
(17'”4/2)_}’"5/4[8 —i9°/2 _ o i(s/z)e']yr1/4
= (2i)(m"4/2)cz + d) %,
so the second term in the left-hand side of (6.6) is

(6.8b)
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ez +d)>"% f " 42 g pldp

= _\/C—;.-(cz+d)—3’2cj+wf(z' +il)dA  (6.9)

(because of estimates on f this integral always exists); so we
obtain the final expression

ViSY)e)=(cz+d )—Slzf(az 1_ Z)

i 32 az+b i/l)d/l.
+2c(cz+d) J; f(cz+d +
(6.10)

Remarks: (1) For the even case, Itzykson used another
space of analytic functions constructed on the same manner
but with @, ( p) = e ~ 72 which does not satisfy the admissi-
bility condition (see Ref. 3).

(2) If we restrict the representation to the “ax + b~
group then ¢ = 0 and we have the following representation:

d (ﬁ l;;f

(3) The same argument for the free evolution as in the
odd case holds.

fle)= =a**flaz +b).

VII. GENERALIZATION TO HIGHER DIMENSIONS

In this section we describe briefly the possible general-
izations to a higher dimension.

The generalization of the Lobatschevski space in the
Siegel half-plane, i.e., the set of symmetric complex matrices
Z with an imaginary part positive definite.

A good candidate for the transform is in the even case,

£iZ): f P22 p)d p

(up to a constant), and in the odd case the ¥ transforms
12)= [ Bt

(up to a constant). We can transport the even and odd Her-
mite functions and define on this space of analytic functions
in Z a Hilbert space structure by defining the system of the
image of H, as orthonormal {this space is the space used by
Itzykson, but on the disk).?

In this space the metaplectic representation is the fol-
lowing: let S in SL(2V,R ) with

A B
- (¢ 2)
C D

we have for the even case
(USV,)z) = {det[CZ+ D]}~/
XfAAZ +D)CZ+ D)™,
and for the odd case,

(U(S)E,)i(2) = det[CZ+ D]~'/2 E (CZ+D);!
X fy(lAZ + B)CZ + D)™).
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VIIl. OTHER TRANSFORMS

(i) Instead of using the generators P2/2 and (PQ + QP)/
4 of the “ax + b group, we can use the generator Q and
(PQ + QP)/20on L %R *,dg). This gives the family of unitary
transforms between L ¥R *,dg) and 77,, _,:

2,{ T o 1Z
f.2)= WJ‘; q°e"Ylq)dq,
V27
with a > 0.

This map is a unitary map between L *(R *,dg) and the
space 57, _, of analytic functions used by Berezin to quan-
tize the Lobatchevski space.™

In this space, the variable z can be considered as the
classical quantity p + ia/q, ¢ > 0.

(ii) We can also consider the map 4, on the radial part
of the wave function in L (R"), that is

L¥R™)=L*R*p" " 'dp)e LYSV~1,d2)
A,
HKoarnn—2® LSV 1,d0),
by

Aﬂ
Y- f PP Y p02 "~ dp d2

(up to a constant). This map is unitary and in this space the
operator

L px .t xp—.

o 1]
(time operator), where H, = p*/2 is expressed by the kernel

Parnrn-2le—Z)z+Z)/2].

APPENDIX: PROOFS OF STATEMENTS OF SEC. IV

In this Appendix we compute the reproducing kernel
and an orthogonal basis of #°,, @ > — 1 (see Refs. 13-15).

First of all we remark that 5#°, = { £, analytic function
on [T such that f| f(z)|* du,(z) < + «}, where (z=b + ia)
du,(z) = a*® da db is unitary equivalent to the space &, of
analytic functions on the disk D = { 3,8 | < 1} square inte-
grable with respect to the measure (8= x + iy)dv,(f)
=((1 —BB)/2)* dx dy.

The unitary transform between 5, and & is B:

. a9,
S8 =Bf,
with
si8)=2 (L))
fl =22 e e tg (22), (A2)

It is easy to show that in &, the system of functions u,,,
defined by

2a/2

Lin+a+2)
Ja \V Tin+ )l (a+1)

u,(B)= B, (A3)
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forms an orthogonal system.
Furthermore, this system is complete'®
lytic in D we can write

g(B) = zgnﬁ"~ S u,(B).
n=0

So we just need to show that the series converges in L > norm.
Let 0 <7< 1, then we have

j 2(B) dv.(B)
Bl<r

2 }:OC C. " u,(B) tn(Bldvy(B).

The integration over angles gives a 8,,,, and taking the limit
r—1 we obtain

[tsirave= 3 ic.r

so the series is L *-convergent.

: since g is ana-

According to Bergmann,'? the function defined by
(BB)= 3 w(B)u,(B) (A4
isareproducing k"e;nel for the space, i.e., wehaveforge &,
| 78868 av. 15 =s8lB). (A3)
Since
22 _Tintatd gz

o m Tn+ ) a+1)

-

we have
o= () e

By the unitary transform B we obtain from (A2) the kernel
for & ,:

ren= ()

VeHa [fEue-2Hu)=fE (A8
In (A6) and (A7) the power is taken as analytic continuation
from the real axis for p,, and from the circle for _, i.e.,

(Z_E!)—a—z_
2i

=

z—-Z
2i

—(a+2)

z—?ﬂ
2 /0

X exp [ — ila + 2)arg (

and

(1) ™ g

: —2BB’)]'

3262 J. Math. Phys,, Vol. 25, No. 11, November 1984

X exp [ — i(a + 2)arg (

From (A5) and (A8) we deduce, by the Cauchy-Schwartz
inequality, that

a+1 l___lﬂfl —a/2—1
BlI<tlel [ SEL (FZEE) T ag)
@<l S iz == (al0

where

{llgll}2 = fgw)mdva(o )

and

ol = ff(z)miua(z).

From (A9) it is easy to see that &, is a Hilbert space:
9,CL*D,dv,(0)) which is a Hilbert space; so every
Cauchy sequence in &, converges in L*(D,dv,(0)). Now
because of (A9) the restriction of a Cauchy sequence {g, ] to
a compact subset E of D verifies V0 € E,

1g.(0) —&m(6)]

a+1/1—1]6]>\—22-!
<l — sl | [ 5 (F20)

a+1
<{”gn_gm“}a dir

for some C so the restriction of {g,} to E is uniformly
Cauchy convergent and {g, ] is uniformly convergent on
each compact. It is well known that every sequence of ana-
lytic functions uniformly convergent on each compact con-
verges to an analytic function so &, is complete. The same
argument holds for #°,.

With B we can also obtain an orthogonal complete basis
for 77, ; the result is

2a+1

Tla+2+n) z— i
NS F(”+1)F(a+1)(z+i)n+a+z'
(All)

Remark: 1t is easy to verify that the functions ¥, verify
the equation

Vite) =

[_i(z2+ 1)5; —i(a+2)z] V,(2)=Q2n+a+2)V,2)

(A12)
Special cases: For ¢ _ |, we obtain
Vn— l/Z(Z) — 2r (n3_/*_2 3/2) l) (Z + i)_3/2,
() “n!
(A13)

which verify

(—i(z2+1)ai - %iz) y -1 (2n+ 3>V 2,
Z

{Al4)
For 57y, we have
/20 n+ 5/2 ) 5/2
V., He)=4 173/2n' w (z+1)
(A15)
which verify
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Quantum systems with time-dependent harmonic part and the Morse index
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A simple relation between two quantum systems with a time-dependent, respectively, time-
independent, harmonic part is established. Using this we give a computation, valid for all times, of
the Green’s functions of the time-dependent harmonic oscillator with and without a perturbation
of the type g/x*. The asymptotic expansion of the wave function in powers of Planck’s constant is
discussed using a new representation of the Morse index.

PACS numbers: 03.65.Ge, 03.65.Sq

I. INTRODUCTION

A canonical change of variables has been used by sever-
al authors, see, e.g., Refs. 1-10, both in classical and quan-
tum mechanics, in order to reduce a dynamical system con-
taining a time-dependent harmonic potential to a simpler

one.
To set up the framework developed in the present paper
we give first a simple example of such a tranformation. Con-
sider the Schrodinger equation
. d h? d? A?
lh'a—t + T'd? — —2'—~X2 lﬁ/{(x,t):(), (11)
where £ is Planck’s constant divided by 27 and A>0. We
distinguish two cases: the free case (4 = 0) and the time-inde-
pendent harmonic oscillator case (TIHO: A > 0). Let #y(x,t)
be a solution of (1.1) for A = 0. Then it is easy to see that
¥, (x,t) is given by
¥ (x,t) = (cos At) V2 exp[ — il tan Atx*/2h |

X tholx/cos At,tan At /1). (1.2)
But it must be emphasized that the solution (1.2) of {1.1) is
valid only for |7 | < 7/24. In other words, the change of varia-
bles under discussion does not give the time evolution of the
wave function ¢, for all times if A > 0. A similar difficulty
arises in the corresponding classical situation.
A general expression, valid for each ¢ such that
cos At #0, is obtained by taking into account the Maslov
correction''~** and is given by

¥, (x,t) = |cos At | ~'? exp[ — imm/2 — iA tan Atx*/2h |

X olx/cos At,tan At /A ), (1.3)
where m is the Morse (Maslov) index, m = int(1/2 + At /),
int € is the integer number such that € — 1 <int e<e.

We learn from this example that the TTHO system can
be essentially reduced to a countable number of free systems
using a countable number of canonical transformations cho-
sen in order to have continuity for the time evolution of the
wave function. This rule introduces the Maslov correction
consisting in a jump of the phase at every half-period.

This phenomenon has been observed long ago as point-
ed out in Ref. 14 (see also the references therein and Ref. 17):
“In 1890 Gouy observed and explained the phase gained by a
wave as it goes through a focus. Similar phase shifts occur in
the wave function of quantum systems; they have been de-
rived by Keller from the single valuedness of the wave func-
tion and by Gutzwiller who established their relationship
with the Morse index of the corresponding classical trajec-
tory.”
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If we replace A ? in Eq. (1.1) by a real continuous func-
tion p(z ) we obtain the Schrodinger equation corresponding
to the quantum mechanical system describing the time-de-
pendent harmonic oscillator (TDHO). We shall prove in this
paper that one can reduce every TDHO system to every
TIHO one by a simple canonical transformation without
worrying anymore with the Maslov correction. We shall also
apply these ideas to more general systems containing a time-
dependent harmonic potential.

Let us now describe shortly the structure of the paper.

In Sec. II we discuss the TDHO differential equation

u(t) + p(t Juft) =0, (1.4)

which has been already studied by several authors in relation
with the theory of exact invariants for the TDHOQ.?%24-58
Here we use the results stated in Refs. 59 and 60. For a class
of solutions of (1.4) we introduce the notion of an index func-
tion.

Section III is devoted to a detailed analysis of the ca-
nonical transformation which reduces a quantum system
containing a time-dependent harmonic potential to a simpler
one. We obtain in this way the quantum analog of the trans-
formation established by Perelomov® in the classical case.

In Sec. III we apply the results of the previous sections
to calculate some Green’s functions with Maslov correc-
tions. Let us now mention some previous related work and
the connections with ours. The Green’s function of the
TDHO, for small times, was first calculated in Ref. 61 using
the Magnus formula.®? The Maslov correction was given in
Ref. 63. (See also Refs. 21 and 29.) Our global (i.e., valid for
all times) and canonical calculation is based upon well-estab-
lished mathematical results.'>** The Green’s function of the
TDHO with a perturbation of the type g/x? for small times,
was given in Ref. 29 using the Feynman path integral formu-
lation.%* Our result includes the Maslov correction.

In Sec. V we wish to comment upon the connection
between Maslov’s results and the TDHO. We point out that
the problem of defining, in the semiclassical approximation,
the Morse index, arises in all its complexity already in the
TDHO case. Finally, we investigate the asymptotic behav-
ior, at time ¢ and as 2~—0, of the wave function using the fact
that, in this case, the Schrodinger equation is explicitly solu-
ble. Let us add the following remark to emphasize the advan-
tage of studying the TDHO; in fact, this approach allows us
to use the method of stationary phase in finite dimen-
sion,®>%¢ avoiding, therefore, the complexity of this method
in Hilbert space.5’-%°
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il. THE DIFFERENTIAL EQUATION OF THE TIME-
DEPENDENT HARMONIC OSCILLATOR

We consider the differential equation in R

i(t) + pltJuft) =0, (2.1)
where p(t ) is a real-valued continuous function. The solutions
of this equation have beautiful properties. For example, the
zeros of any nontrivial solution are isolated and simple. For
more details see, e.g., Refs. 59 and 60.

In what follows , and u, denote two independent solu-
tions of (2.1) with Wronskian w(u,,u,) = w = u,tt, — t,u,.
As w=£0, we have that if one of these two solutions vanishes
for some r€R the other is automatically different from zero in
this point.

Let 5 and ¢ be the two independent solutions of (2.1)
such that s{0) = ¢(0) = 0 and ¢(0) = 5(0) = 1, which implies
that wic,s) = 1. We define now

&= P+ 2Qcs + Rs* = Pu? +2Qu,u, + Ru}, (2.2)
for P,Q,R,P,0,RcR where (P,Q,R ) and (P,Q,R )arerelated by
some one-to-one correspondence.

Lemma I: (i) w’(PR—Q%=PR— Q% where
w = w(u,,u,). (i) We assume that P,R>0 and P+ R>0.
Then PR — Q2»0implies £ (£)>0; the same result holds if >
is replaced by >.

Proof: Lemma 1 follows immediately from the fact that
¢ and s do not vanish simultaneously.

From now on we assume that PR — Q% =
and that P, R>0, P+ R>0.

For every such A we have the following important rela-
tion involving £ (see Ref. 59):

2UE—E2+4ApET — 442 =0 (2.3)

We denote by ]m,, M,[ a maximal interval where & does not
vanish. For 6e€]m, M,[ we define the function 7:
Imy, My[—]m M |[ by

() = f§ (1)~ dr, 2.4)

with M, = 11m 7(t), m, = limn(t), where M€]0, + ]

A?withA>0

t—m,

and m€[ — «, 0[ We emphasize that 7 is well defined be-
cause & (t)> O for every t€]m,, M,[ and that 7 is strictly in-
creasing in }m, M,[. Finally % is a smooth bijection between
1Im,, My[ and Jm,, M|[.

We distinguish now two cases: A >0and 4 =0.

(a) A >0: From Lemma 1 we get that m, = — « and
M, = + «. The general theory discussed in Ref. 59 estab-
lishes that

ult)=£(r)"*d cos(An(t)) + B sin{Az(t))) (2.5)
is the general solution of (2.1), where 4 and B are arbitrary

constants. We remark that (see, e.g., Refs. 8 and 35)
v= + & '?is the general solution of the equation

b+pv—A2=0. (2.6)

Equations (2.1) and (2.6) appear in the theory of exact invar-
iants for the time-dependent harmonic oscillator?~324-3% but
we do not go into this subject here.

{b) A = 0O: In this case we have that

E=P"c+R"%P=ul, (2.7)
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where u, is some solution of (2.1). It is now easy to see that
there exists a unique u,, with w(u,, ¥,) = 1, such that

N = uy/uy. (2.8)

Now we recall that for zeC, with — 7 <argz <, logz
is defined such that Im log z = arg z. For ecR, we define as
usual z€ = exp [€ log z]. Let u be a solution of the equation
(2.1). We denote by m(u,t): R—Z the index function of u;
m(u,t)is such that for ¢, > |, m(u,t,) — m(u,t,) is the number
of zeros of u in the interval J¢;, £,] and m{u,0) =

If there exists some >0 such that TG]O 1 [ implies
u(t) >0, we define for ¢, teR

u(t) = |u(t)|* expliemm(u,t)]. 2.9)

Example: Ifweputin(2.2)P=1,0 =0,R =4 *andin
(2.4) 8 = 0 we have £ = ¢ + 1 %s* and

sit)=A 7'E(t)? sin(An(r)), (2.10)
c(t) = £()"* cos{An(t)). (2.11)
Let first p(t ) = u® withu > 0. Then we have s(t) = u ' sin ut

and c(t) = cos ut. In this situation m(s,t) = 1nt(,ut /) [and
mic,t) = int(ut /m + 1/2).] Here one has £ (t)= cos®ut
+ Au~?sin® urand£ (¢ )>min{ 1,4 >/u?}.Fory = lonecan
easily check that (cf. Ref. 20)

sin'/2 ¢t = expli(t /2 — 7/4))(1 — i cot t)~'/2,

os'/? t = expl[i(t /2)](1 + i tant)" V2

(2.12)
(2.13)

Now in the general case, where p is not constant, using for-
mulas(2.10)and (2.11)wehavec!/?(¢) = & (¢)"/* cos'/*(An(z)),
mic,t) = int(An(t)/7 + 1/2), and so on.

I1l. A SIMPLE RELATION BETWEEN TWO QUANTUM
SYSTEMS

In this section the notations are the same as in Sec. II.
Let D, be a domain {open and connected set) such that
D, CR X ]m,, M,[. For (x,t )eD, we introduce the following
change of variables:

(. ){o€ (1) x,(2 ), (3.1)
where o = + 1. It is obvious that this transformation de-
fines a smooth bijection between D, and its image
D, CRX]m,;, M,[.

Consider now the two quantum systems associated with
the following Schrodinger equations defined, respectively, in

D, and D;:
[zhai + hTZA - %zx — (x,t)]¢(x,t)=0, (3.2)
[ih% + hTZA - %xz

— &)V (& (6)" it ))]d/(x,t) =0, (3.3)

where ¥V (x,t) is a real-valued continuous function in D, and

¢ (x,t )and ¥(x,t ) are continuously differentiable with respect

to ¢ and twice continuously differentiable with respect to x.
Using (2.3) one can now prove the following theorem.
Theorem 1: Let ¢ (x,z) be a solution in D, of Eq. (3.2).

Then
Wx,t) = £ (6)™""* expli (£ 2/4h& ()]

X (o€ (£)~"x,m(t)) (3-4)
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is a solution in D, of Eq. (3.3).

For A =0, using (2.7) and (2.8), we have that
§(e)=uy(e P& () "2 = Juy(t)| =\ mle) = wafe )/ (£ ),in(3.1)
and (3.3), and formula (3.4) becomes

Yix,t) = |uy(e)] =2 expliie,( Jx*/2hu (¢ )]

X (oluy(t )]~ "x,uylt)/us(t)). (3.5)

This is the quantum change of variables corresponding to the
one used in Ref. 9 in the classical case. See also formulas (5) in
Ref. 10 and (3.7) in Ref. 7.

Remark: In Ref. 70 Husimi describes a canonical trans-
formation which reduces a quantum system with a time-
dependent linear part to a simpler one (Taniuti’s transforma-
tion). This transformation together with the one just stated
can be used to generalize some results of Sec. IV. For exam-
ple, formula (3.66) in Ref. 64 and partial results of Refs. 30
and 71 can be obtained in this way.

IV. APPLICATIONS: THE CALCULATION OF GREEN’S
FUNCTIONS AND THE MORSE INDEX

A. Harmonic oscillators

Let us begin by introducing the following notations:

Ho= —(h?/2)4, H,=(—h%/2)4 4+ (A%/2)°,

H,= — (h*/2)4 + (p(t)/2)x?
are the Hamiltonians on L *(R)in the free, TIHO, and TDHO
cases, respectively (here we let 4 #£0); and Uy(¢), U,(t), and
U,(t) are the corresponding time evolution operators on
L?R). This means that one has i(x,t) = Ui(t)ix,0), ie.,
ih(dU, (t)/dt) = H;U(t) and U,(0) = 1 forj = 0,1,2.

Moreover forj = 0, 1, U;(t ) = exp[ — {i/h )tH; ] and the
Green’s function in the free case is given by

Kofx,t; p,0) = (2miht )~ /% exp[(i/2ht )x — y)],

for t £0 (4.1)

Ko(x,0; ,0) = 6(y — x), (4.2)
where § is the Dirac measure. In order to calculate the
Green’s function for the TIHO K, from K, we put 4 =0,
V=0 in (3.2 p=A4? in (3.3}, and u,=cosAt,
u,=A "'sinAt in (3.5). Let 4, =1—7/24+mm, 7w/
2 + mm(, meZ; here every A4,, plays the role of m,, M,[ of
Sec. II and III. For such an 4,, we choose 0 = ( — 1)™. By
Theorem 1if ¢ (x,¢), (x,t )}eR?, is a solution of the Schrédinger
equation in the free case we have that

Yix,t) =€, |cos At |~/ exp[ — id tan Aex?/2h |
X ¢ (x/cos Attan At /1) (4.3)

is a solution of the Schrodinger equation in the TIHO case
for (x,t )eR X A4,,, where €,,€C. We let €, = 1 which implies
¥(x,0) = ¢ (x,0). From (4.3) we have

x,mm/A) =€, — 1)"x,0). (4.4)
Now we can choose the €,, such that ¢(x,t) is continuous at
the points 7/2 + m, meZ; (4.1) and (4.3) imply that

ix,t) =€, |cos At |~ VYA /2mih tan At)'/?

x f expl- 19 ,0)dy, 4.5)
where R
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[-] = (4 /2h sin At )[(x* + p*)cos At — 2xp]. (4.6)

A simple calculation shows that €,, = exp[ — imm/2] and
finally we have

K, (x,t; ,0) = (A /2mik )/? sin~'/2 At exp[--],
t #ma/A, (4.7)

Ki(x,mw/A; y,0) = exp[ — imuw/2]8(y — ( — 1)"x),
(4.8)
where sin '/ is defined as in Sec. I1, [-] is defined by (4.6),
and § is the Dirac measure; (4.7) is the well-known Feyn-
man’s formula with the so-called Maslov correc-
tion.'?17-2022:64 We have deduced once more this known for-
mula because this new method can be used in different
situations as we shall see in Sec. IV B.
We can obtain now the Green’s function for the TDHO
K, from K. As in the example of the Sec. IT we put in (2.2)
P=1,0=0,R=A4%andin(2.4)8 = 0. From Theorem 1 we
get that
Uyt) = U(2)U,(n(2)), (4.9)
where U (t) is the unitary operator on L %R) defined by
U (e): lx)—E (¢)7"/* explié (¢ e/ 4hE (1))
XYE(2)%x). (4.10)
Using (2.10), (2.11), (4.7), (4.8), and (4.10) we can now prove
the following theorem.
Theorem 2: The Green’s function K,(x,t;y,0) for the
Schrédinger equation of the TDHO is given by
K(x,t;»,0)
= (2mih )~ 3~V

X expl(i/2hs(e ))(t bx* + clt p* — 2xy)],

t £t (4.11)
Ky(x,t,,:3,0)
=c™ 2t )exp[ic(t,, )x*/2he(t,, )],
X8y —x/clt,,)) (4.12)

where 572, ¢~ /2 are defined as in Sec. II, § is the Dirac
measure, and ¢,, is the zero of s such that m(s, ¢,,,}) = m.

Remark: For related results see Refs. 10, 13, 15, 17, 20,
29, 30, 61, 63, 64, and 70-78.

B. Harmonic oscillators with an inverse quadratic
potential

Putting V(x,t)=g/x> geR, in (3.2) we have
E(t) "V(o€ ()" %x,m(t)) = g/x* in (3.3). So, starting from
g/x* and doing the change of variables of Sec. III, we arrive
at the same time-independent singular perturbation. As we
can see the results of Sec. III are well adapted to the study of
the quantum systems associated with the Hamiltonians # ¢

=H, +g/x* x>0, j=0,1,2. For more details about such
qguantum systems see Refs. 29 and 79-84.

In the following we denote by K%, j = 0,1,2, the corre-
sponding Green’s functions and we are going to deduce K%
and K% from K§.

According to Ref. 29 we have

K3(x,t:,0) = ((ey)"/*/iht M, (xy/iht )

X expl(i/2ht )x* + y*)], (4.13)
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where x,p>0,1#0,g> —h?/8,anda = (1 4 8¢/h W2/,
Here 7, is the modified Bessel function (see Ref. 85),

o 2m +a
L= 3 &2
o miim + a)
In order to calculate K2 and K4 we use the method of Sec.
IV A with the exception that we let o = 1 in every 4,,. This
prescription is motivated by the fact that x>0, the math-
ematical structure of (4.13), and is in agreement with Ref. 79.
For example, the formula corresponding to (4.5) is, in this
case,

—w<Argz<m. (4.14)

ot = (= ey = [ 72
’ ™ ik sin At Jo

a( XA cot At )exp["-]'ﬁ( yOdy,  (4.15)
ih |cos At |

where

[«] = (iA /2h )cot At(x? + 7). (4.16)
Using the fact that I, ( — i{) = exp[ — ima) I, (i), for £ >0,
and the same argument of continuity at the points 7/2 + m#
as in Sec. IV A, we conclude that €, = exp[ — imm(a + 1)].
Moreover a careful calculation gives the following theorem
(cf. Ref. 29).

Theorem 3: The Green’s function K%(x,ty,0) for the
Schrédinger equation of the TDHO with perturbation of the
type g/x? is given by
K% (x,19,0)

1/2
= by} I( i )exp[—Ziﬂ'a int(i + —1—)
ihs(t) 2 2

ihs(t)
4 L(SL%D’_Z) . (4.17)
K% (x,t,,39,0)
= |e(t,,)| "2 exp[ — imm{a + 1) + I;}(Itc"('t):: ]
o 5

where & is the Dirac measure, n = m(s,t ), and ¢, is the zero of
s such that m(s,,,) = m.

Remark: Formula (4.17) differs from the one of Ref. 29
in as much as it takes into account the Maslov correction.

V. THE SEMICLASSICAL APPROXIMATION

We consider the Schrédinger equation

2

ih % Ylx,t)= — hTAi//(x,t) + Vix)ix,t), (5.1)
where A is the Laplacian on R” and 4 is Planck’s constant
divided by 27; the wave function ¥(x, ) describes the state at
time ¢ of a quantum mechanical particle with mass one, in
R", under the influence of a potential ¥ (x); for each fixed ¢,
Y(x,t) belongs to L }(R").

Following Ref. 19, we set up the Cauchy data at time
t=0,
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#(x,0) = Y(x)exp[(i/h )So(x)]. (5.2)
Functions t,(x), Sy(x), and V (x) are real valued and

Yol¥)EC TR, Solx)eC =(R"), (53)

Vix)e# (R, inf{V(x):xeR"*}> — co. (5.4)

For more details see Ref. 19, Sec. 12. For yeR", consider the
path ¢{ y,t ) which satisfies the differential equation

Yt)+ Vi(r(ne)) =0, (5.3)
and the Cauchy initial conditons
Ny0) =y and #»0)=Sq(y) (5.6)

In this section the prime denotes the derivative in R, e.g.,
V' = DV, and, as before, the dot denotes differentiation with
respect to f.

Wedefinenowu( p,t ) = ¥'( p,t jandJ { y,t ) = det u{ y,t ).
For yeR", the matrix valued function «( y,t ) is the solution of
the Jacobi equation

i yt) + V't )u(y:t) =0,
such that #( y,0) = 1 and #( ,0) = S§(y).

(5.7)

In Ref. 19 asymptotic formulas are given for the solu-
tions of the Schrédinger equation at nonfocal points. For
yeR”, a point ¢ is called a focus of the trajectory y{ y,7) if
J(,t) = 0. The multiplicity of the focal point ¢ is the co-rank
of the matrix u( y,t).

For yeR" and ¢ > 0, the Morse index m of the trajectory
¥ y,7), with 7€[0,], is the number of focal points on {0,7]
counted with their multiplicity.

We fix xeR” and ¢ > 0, and we suppose that y,eR" are all
points for which ¥{y;,t ) = x; {x,t ) is called focal if ¢ is focal for
at least one of the trajectories ¥{ y;,7). As we assume condi-
tions (5.3) and (5.4) one can prove (see Ref. 19) that the num-
ber of points y; is finite, provided that (x,z ) is not a focal point.

We have now the following theorem (for the proof see
Ref. 19, Sec. 12).

Theorem 4: We assume that (x,) is not a focal point.
Then

i) = 3 (bl 00 exp] — i T

J

+0¢(h ))exp[ %Sj(x,t)], (5.8)
as h—0, where S;(x,t ) is the action along the classical trajec-
tory joining the points y;and x, i.e.,

S 0t) = Salyy) + f [ %y(y,-,r)Z—V(r(y,,r»]dr, (5.9)

[y

and m; is the Morse index of the trajectory.

Remark: Expression (5.8) is called the semiclassical
asymptotic of the wave function.'* 819886 The same kind
of asymptotic expansions arise in the WKB approxima-
tion. 14,21,64

In order to simplify notations welet n = 1 from now on.
If we replace ¥ (x)in Eq. (5.1) by the time-dependent harmon-
ic potential | p(t )x?, where p(¢ ) is a real continuous function,
we obtain the Schrodinger equation corresponding to the
quantum mechanical system describing the time-dependent
harmonic oscillator.

Jorge Rezende 3267



In this case Eq. {5.5) becomes

¥wt)+plt)y(yt) =0,
with ¢ y,t ) satisfying conditions (5.6).

(5.10)

If p(t) = V" (1 y;st )), where y(y;,t) is one of the above
classical paths related with the potential ¥ (x), then we have
that y{ y;,t ) satisfies also (5.10). We shall see that the contri-
bution of this trajectory to the asymptotic expansion of the
wave function of the TDHO is given by

('/,O(yj)l‘,(yj’t)l_llz
Xexp[ — iw/2)m;] + O (h))exp[i/h )§j(x,t)], (5.11)

where

5,00t) = Sa(y) +JO L [y — Pl s, 7P dr. (512

As we see, the difference between (5.11) and each summand
in (5.8) consists only of the part that contains the classical
action of the two different potentials. So, the problem of
defining the Morse index arises in all its complexity already
in the case of the TDHO. This is the reason why we are now
going to investigate the asymptotic behavior, at time ¢ and as
h—0, of the wave function ¢ for the Cauchy problem (5.2) in
the TDHO case. We begin by recalling the following
lemma.5>%¢

Lemma 2: Let feC *(R) and geC §(R) be real-valued
functions such that f*(x;} = O for a finite number of x; in the
support of g. Suppose that f”(x;)#0 for every x;. We have
then

h—Y 2Lexp[ —;1— f (x)]g(x)dx

_ ;exp[ %f(xj)] Kfzz;') )mg(x,«) +O0(h )},
as h—0. j

We use now this lemma to prove the following and final
theorem.

Theorem 4': We assume that conditions (5.3} hold for
¥olx) and Sy(x). Let the point (x,t ) be such that (i) the equation
x = c(t)y + S §(p)s(t) has only a finite number of solutions y;
in the support of ¥, and (ii) for every y; let ct)+S¢
(y;)s(2)#0. Then

Yxt) = Yoy, N "V (3pt) + O(h))

Xexp[ %—S—j(x,t)], as h—0,

where J ( y,7) is the solution of the Jacobi equation such that
J(»,0) = 1andJ (»,0) = S¢(y);J ~?is defined by (2.9) and
S;(x,t) is as in (5.12).

Proof: In order to obtain the asymptotic expansion of
the wave function we use Theorem 2. The case t = ¢,, is ob-
vious. For ¢ #¢,, we use Lemma 2. Then we have

g(y) = 2mi) =23t (),
S(p) = (2s(2)) 71502 )x® + (e p* —
Y7 =clrly + S phsir),

u( p,7) =J(y,7) = clr) + S5 yis(7),

2xy) + So( ¥)
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F(y)=st)" (ryt)—x),

Ly =s(t)""u(y).
From assumptions (i) and (ii) we get that in support of ¢,
there exist a finite number of stationary points y, [ie.,
S'(y;) = 0] which are nondegenerate [i.., f*( y;)#0]. From
the above formulas we conclude that ¥{ y;,7) is the classical
path joining y; and x and with initial momentum S 4 ( y;). We
can easily see that f(y;) =5, ;(x,2), i.e., f(y;) is the action
along the calssical path ¥y, ,7-) Finally, a trivial but cautious
computation using (2.10)—(2.13) shows that (/" (y;)/2mi)"/?
(2mi)' %'t ) = J V/3(y, ¢ ), whereJ '/ y,,7)isdefined by (2.9).

Remark: This result can be generalized to the case of
the n-dimensional TDHO in agreement with Maslov’s re-
sults.'®
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Nonexistence of asymptotically free solutions for a nonlinear Schrédinger

equation
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Let u be a nontrivial, smooth solution to iu, = Adu — |u|” ~'u. If n = 1 and 2 < p<3, then there
does not exist any finite energy free solution v such that ||u(z ) — v(t )||,—~0ast— + . Thisextends
a theorem of Strauss in which the same result was proved for 1 <p<2.

PACS numbers: 03.65.Nk, 42.65. — k

I. INTRODUCTION

Consider the perturbed (nonlinear) Schrédinger equa-
tion

iu, = Au —glu|” " 'u (1)
and the corresponding free (linear) equation

iv, = dv. (2)

Here xeR", t€R, p > 1, and the constant g is positive unless
stated otherwise. For each ge[1, ), the norm ||-||,, is the usu-
al spatial L {R")}-norm and the dual variable is denoted by ¢’
(so 1/¢ + 1/q' = 1). The suppressed notation

L7=L9YR", f=Lnd"x, w=w(t)=wx,t)

will be used.

Definition: A solution u to (1) is asymptotically free if
there exist L 2-solutions v, to (2), decaying sufficiently ra-
pidly, such that ||u(t) — v, (¢)]|,~>0as#— + co.(Theneces-
sary decay is made precise in Remark 2 following Lemma 2.)

It has been shown (Strauss') that if p is large enough,
then a substantial class of solutions to (1) are asymptotically
free. Strauss then proved the following partial converse.

Theorem 1 (Strauss'): If either

{)n>2 and 1<pgi+2/n, or

(ii)n =1and 1 <p<2,
then the only asymptotically free solution to (1) is identically
Zero.

The main result in this paper, Theorem 2, is that the
condition for nonexistence of asymptotically free solutions
to (1} includes the case n>1 and 1 <p<1 + 2/n; i.e., the one-
dimensional case is not really exceptional. The general idea
in the proofs of both this result and Theorem 1 was originally
used by Glassey? to prove the analogous theorem for the
nonlinear Klein—Gordon equation. The proof is by contra-
diction. A bilinear form H is defined so that £ —| H [u(t ),v(?)]|
is uniformly bounded for ¢ sufficiently large. All the lemmas
are preliminaries to the establishment of the key estimate
which is essentially dH /dt>c/t > 0; integration leads imme-
diately to the contradiction.

The new ingredient which makes this extension to
Strauss’ theorem possible is an estimate (Lemma 3) derived
from the pseudoconformal identity of Ginibre and Velo.?
Kadekawa* first used this estimate to obtain positive scatter-
ing results in higher dimensions.

* This work constitutes part of the author’s Ph.D. thesis in the Department
of Mathematics at Indiana University, August 1982.
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l. PRELIMINARIES

The lemmas consist of identities and estimates satisfied
by solutions to {1) and/or (2). Since it is expected that such
statements will continue to be basic tools in future work,
they are proved for n>1 even though Theorem 2 is a one-
dimensional result. For simplicity, solutions to (1) and (2) are
assumed to be smooth; however, much less stringent as-
sumptions would suffice (see, e.g., Ginibre and Velo® for de-
tails). Therefore, the hypotheses stated here are intentionally
redundant to emphasize those features of the smoothness
assumptions that are crucial.

The following well-known conservation laws obtain for
both free and perturbed solutions.

Lemma I (Conservation Laws): If w is a smooth solution
to (1) with geR and w(0)eH 'nL #* ', then for all ¢

d o
Z(lIW(t)IIz) =0, (3)

_‘i 2 Zg p+1Y)
i (IIVw<t)Ilz+p———+1 nw(r)ll,m) 0. )

Proof: Replace u by w in (1), multiply by 2w, and take
the imaginary part to obtain

4 (wit)?) = V-ImQ@Vw) (5)
dt

Integration over all space implies (3). To establish (4), multi-
ply (1) by 2w,, integrate over R”, and take the real part of the
result. |

Part (i) of Lemma 2 is well known. The statement and
idea for the proof of part (ii) appeared in Strauss.'

Lemma 2 (Estimates for Free Solutions): If v is a smooth
solution to (2) with 0 # ¢ = v(0)eL 'nL ?and 2<¢< o, then (i)
there exists a constant ¢ = ¢(||¢ || ;) such that

[Jole )|, <et =224, V10, (6)
and (ii) there exist positive constants B = B(n,q,¢) and
T, = To(¢ ) such that

lofe )l >Br ~"a =%, Ye>T, (7)

When ¢ = «, the power of tis — n/2.
Proof: The classical representation of v,

ot ) = (dmit )~ 2 f e ik O)d my (8)

R
(obtained via Fourier transform), implies

o). <t =" |1
This estimate and an application of (3) to v together satisfy
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the hypothesis of the Riesz-Thorin theorem (Reed and Si-
mon,’ p. 27) whose conclusion is (6) with ¢ = ||¢ |-

Ifg = 2, then (3)implies (7) with B = || ||,. Ifg > 2, then
for any k >0 (yet to be chosen), Holder’s inequality implies

q/2
(J lv(x,2)|? dx)
|x| <kt
(g—2)2
<(j dx) J [v(x,2 )9 dx
x| <kt |x]<ke

= Clk.ng)e™ = 22|Juf(e )3

Therefore, to prove (7) it suffices to show that there exist
k>0, Ty < 0, and C, > 0 such that

C,<f lvix,t )2 dx=I(t), Vit>T, (9)
%) <kt

Replace v by representation (8), change variables (£ =
and use le”*| = 1 witha = — |x|>/4t to see that

I{t)= J-
€<k /2

Then

It)= f \F ) dE,
€<k /2

x/2t),

(2m) =2 f e42Te 1 (3)ldy| de.

where f( y,t)=e ~ 1174 ( y) and F ~! denotes the inverse
Fourier transform in the space variable. It follows from the
dominated convergencetheorem thatf (-, }—¢ (-}in L *(R"}as
t— 0. Since Z is anisomorphismon L ?, & ~Yf % ~!¢in
L *(R")and hencealsoin L *({ |£ | <k /2}). Therefore, for each
k>0,

1(:)—.f \F ¢ PdE=I(c0) as t—co.
|§1<k/2

Now 0#||# ||3 = ||.¥ ~'# ||3, so there exists k large enough
for I(e0)>4|/¢ |3 >0. Fix such a k and define C,=4/ (o).
Since I {t)}—2C, > 0 as t— w0, there exists T, < oo such that
I({t)>C, for all £>T,. This establishes (9) which implies (7)
with B = C,/[C (k,n,q)] " [ ]

Remark I:Note that k and hence also B and T, depend
on the function ¢ (the support of ¥ ~'¢ ) not only on ||é ||

Remark 2: The decay in the definition of asymptotically
free is that stated in (6). If veL 2, then the additional weak
hypothesis that v(x,0)cL ' is sufficient to guarantee this de-
cay.

If perturbed solutions enjoyed the same decay (6) as free
solutions, in particular in the L *-norm, the proof of the
main theorem would be straightforward. Though such a
strong estimate is not expected, the following key lemma
establishes some decay which will suffice.

Lemma 3 (Decay of Perturbed Solutions): If u is a
smooth solution to (1) with 1l<p<l+4/n,
& (x) = u(x,0)H 'nL #+"', and ||x¢ (x)||, < o, then there ex-
ists ¢ > O such that

flale ), o <ct —me—W2APHL0 s Q.

Proof: The first main step is to derive the pseudoconfor-
mal identity

3271 J. Math. Phys., Vol. 25, No. 11, November 1984

d f( . 2
— u — 2itVu|” +
7 |x |

_% tz|u|”+')dx
p+1

_ Kgl4—nlp—
p+1
Here, x = (x4,....%,), r = |x|, and 4, = 3, u = du/dx,. Mul-
tiply (1) by 2#%, and integrate the real part over R”. The
result can be expressed as

I=1II 4 III,

where

I=2Re if ( Zxkﬁku,) dx,
k

=2 Ref ri, Au dx,

D] tf P+ dx, (10)

m— — 2% frc? (lu]?* )dx.
p+1
Integrate by parts to find that

=(n-2) f |Vu|? dx,

I = 2g—”flu|"“dx.
p+1

Term I can be rewritten as
I=Re[ifz.xk(l7ku, —uka,)dx]
k
iRe[ifo (@, ) — 3, (uid ))dx]
dt < k\C\% k t

%Re[ifrﬂ,u dx] +Re[infu17, dx].

Substitute for iz, from (1) to get

I= %Im[ fru,ﬁ dx] + nJ([Vul2 + glu|?+ dx.

Hence, the equation I = II + III becomes
nglp—1) f P+

—%(Imjru,ﬂ): —2f|Vu[2
(11)

In light of the lhs, multiply (5) by |x|* and integrate over R”
to obtain

dijlxu|2= —4Imfm,z7. (12)
4

Now multiply (11) by 47 and rewrite as

4 (41 Im fru,ﬂ) — 4 Im Jru,ﬁ
dt

= %(—4tzf1Vu]2)+4t2%f|Vu]2
_ Anglp—1)

p+1 f'"lw

Use (12) in the second term and (4) in the fourth term; then
rewrite to obtain
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%J(!xlﬂulz + 41%|Vu|? — Re 4tiru, u)dx

(—8g 2flu|p+l>
dt 2+1

168 JI ‘p+1 dng{p —1) tf|u'p+l.
p+1

Simpliﬁcatlon y1elds (10).

The remainder of the proof is the following Gronwall
argument. Integrate (10) over [0,¢] and use the positivity of
the first term:

8gt?
S Itz

<JxuO)]2 + 4g[4p”“’ 2l f rlu(r)) 27 idr.
Thus,

d—nlp—1) ("
ezl ﬁruu(r)uﬂ.dr, (13)

t¥|ue )] <

where
. 1
=L (ol
a8 = olp =0 (" ),
u dr
+ Bt 0L [ oy

Since integration of (4) over [0,z ] implies

£ Nute g

IVue)ll3 +

2
= V813 + —SE- g 121,
it is easy to see that

a'<a=clg, p)(||x |15 + IS [z + [I4 1|7}
which is finite by hypothesis. Then (13) can be written as

Fit)<a + Jllﬂ(rwr)df,

where
Fley=t?uft)| 25
and
Blt)=[4—n(p—1)/2t, for >1.

Here, F, a>0 by definition and 30 by hypothesis. Since F
and f3 are continuous on [1, ), Gronwall’s lemma implies
that

F(t)Ka exp(fﬁ('r)dfr), V> 1;

ie.,

¥ ule)|| 2 <a exp(j IL—MH dr)

Simplify to get

(e )| 251 <t =P~ 172,

Vi> 1.

The hypothesis on #(0) and integration of (4) together imply
that ||u(¢)||7; is bounded uniformly for all ¢, in particular
for 0<t<1l. Hence, there exists a constant
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¢ =clg, p||x¢ |||V [|»| |l + 1) such that
a2 ||, <ct ~7P=AP+D g, a

lil. THE MAIN RESULT

Theorem 2 (Nonexistence of Asymptotically Free Solu-
tions): If n>1 and 1 <p<1 + 2/n, then the only smooth, as-
ymptotically free solution to (1) is identically zero.

Proof: In light of Strauss’ result (Theorem 1), it suffices
to consider the case n =1 and 2 <p<3. Assume u is a
smooth, asymptotically free solution to (1). Then there exists
a smooth L 2-solution v of (2) such that

leet) — vfe)||,—0 ] (14)

lote)].. =0 —3f # T (15)
Since the conservation of the L 2-norm (3) and statement (14)
together imply

(lute)ll2 = llofe )l =4, Ve, (16)
it suffices to show that v(0) = 0. The proof is by contradic-
tion, so suppose v{0)#0. Let B and T, be as in Lemma 2 (ii),
which will be applied to v. Note that (15) implies

lote)l.. V1> T, T, (17)
Now for ¢ > T, define

et —172,

Hit)= Jto u(x,t Ju(x,t )dx.

Differentiate H with respect to ¢, substitute from the differ-
ential equations (1) and (2) for u, and v,, respectively, and

integrate by parts to get
H(t)zd—H = 'gJ lu|?~ 'uv dx.
dt

Add and subtract ig f |v|?* ! dx; then take the imaginary
part

ImH(t):gJ’|v|"“dx
+Rng(|u|”_lu5— o7+ Ydx.

Lemma 2 (ii), applied to v, implies

ImH(t)>gBt ~‘P~ V2 _gl, Vt>T, (18)
where
1=|Re [ (fuf#= 1t — 1]+ x|

The following estimate shows that I = ot ~?~ "?)as t— o,
so that Im H (¢)>ct ~»~ 250 for all large ¢. The contra-
diction arises by showing, after integration, that the lhs of
(18) is bounded above while the rhs has an arbitrarily large
lower bound.

Use the Minkowski inequality and the mean value
theorem (since 0 < p — 2) to estimate

<] [ thulr= +| [ wle= -

<cj(|u|p~2+ 1012~ — o] |ul o]

— vl ? ™ Jup

+ [ 1ol? == vl

So
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I<J1 + J2 + JS’
where

lecf I — ol ju| 7~ o],
szcf |v|?~ Yu — v||uldx,

Jssf 1012~ — o] [oldx.

First consider J, for k = 2,3 each of which has the form
cSf|v|?~ Y\u — v||w|, wherew = u,v for k = 2,3, respectively.
From Schwarz’s inequality, the decay of the free solution
(17), and the L >-bound (16) it follows that

Ji<cllo(e)]| 27 Hlule ) — vie ) 2to(e )2
<ele 712 ule) — vit )
The asymptotic assumption (14) implies
J, =oft ~(27 17 for k=2,3. (19)

To estimate J, use the generalized Holder inequality to
get

as t—oo,

Ji<c|lu(t) — v(e )|[ ]|l )||:J:11”v(t)”2(p+ /3 —p)*
(The positive numbers 4, (p —1)/(p+1), and (3 —p)/
2(p + l)sumto 1.) Apply the decay estimates Lemmas 3 and
2 (ii) to u and v, respectively, to see that

J1<c||u(t) _ v(t)||2t ~(p—=1P/2p+ 1)y —(q—2)/2q,

withg = 2( p + 1)/(3 — p). (The assumption 2 < p< 3 implies
that 2<¢g< «.) Simplification yields

Ji<elfuft) —vft)lt =217,
S0

Jy=o(t ~'P-y,
Recall (19) to conclude that

I, + T, +Jy=oft ~7= 173

This estimate together with (18) implies that there exists
T>max{1,T,} and a positive constant C{C < gB ) such that

as t—ow.

ImH(t)>Ct ~»= V2 VT,

Keeping Cand T fixed, let K be a positive integer (yet to
be chosen) and integrate this inequality over T<¢<KT to get
KT

Ct *P‘””dt)Cf t~ldt.

T

KT d KT
— [Im H (t)]dt>
dt T

T
Note the use of the hypothesis p<3, crucial for the validity of
the second inequality. Therefore,

Im HKT) -~ ImH(T)>Cn K.
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The bound (uniform for K > 1) for the lhs follows from the
definition of H, Schwarz’s inequality, and (16):

fw u(x,t Jolx,t Jdx

<[l )llute ;=42 Ve>T.

|lm H (1) <|H (t)| =

So
ClnK<|Im H(KT)| + [Im H(T)|<24>.

Choose K > exp(24 ?/C)) to reach the desired contradiction.
Hence, v(0) = 0 which implies via (16) that u(t) = 0in L 2 for
all z. The smoothness of # implies #(x,t }==0, and the theorem
is proved. ]

Though Lemma 3 is sufficient for the proof of Theorem
2, the following corollary says that perturbed solutions de-
cay in the L %-norm at the same rate as free solutions pro-
vided ¢ is not too large.

Corollary: Under the hypothesis of Lemma 3,

llu(e )|y <et ~™9= 2724, for 2<q<p + 1,

where ¢ depends on the same parameters as in Lemma 3.
Proof: Interpolate to get

llafe Ml <Huate)ll2 = *llate 7 115 for 6€(0,1),

satisfying 1/g=(1—6)/2+6/(p+1). An elementary
computation shows @ = (g — 2)(p + 1)/¢q( p — 1). Use of the
decay in the L ?* '-norm and the conservation of the L -
norm [Lemmas 3 and 2 (i)] establishes the corollary. ]

V. CONCLUSION

The nonexistence theorem precludes the development
of a scattering theory in the case 1 <p<14 2/n and n>1.
Current scattering theories demand that p be sufficiently
large. It has just been proved (Tsutsumi and Yajima®) that
for a large class of data and 1 + 2/n < p there exist asymp-
totically free solutions. (If #>3, there is an additional upper
bound restriction on p.) Hence, the nonexistence theorem is
sharp.
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We study the consequences of the existence of a one-parameter group of conformal motions for
anisotropic matter, in the context of general relativity. It is shown that for a class of conformal
motions (special conformal motions), the equation of state is uniquely determined by the Einstein
equations. For spherically symmetric and static distributions of matter we found two analytical
solutions of the Einstein equations which correspond to isotropic and anisotropic matter,
respectively. Both solutions can be matched to the Schwarzschild exterior metric and possesses

positive energy density larger than the stresses, everywhere within the sphere.

PACS numbers: 04.20. — q

I. INTRODUCTION

In this paper we attempt to study space-times which
admit a one-parameter group of conformal motions generat-
ed by a vector field £ ¢, such that

Lgaﬁ =¢ga[3’ (1)
3

where the left-hand side is the Lie derivative of the metric
tensor with respect to the vector field &, and ¢ is an arbitrary
function of the coordinates. For 3 = 2 and perfect fluids we
recover the self-similar solutions which have been extensive-
ly studied in the past.'™

In the present work we generalize the discussion on self-
similar space-times; specifically: (1) we consider conformal
motions with an arbitrary choice of the function ¢ in Eq. (1);
(2) instead of perfect fluids we shall consider anisotropic
matter (principal stresses unequal).

The use of general conformal motions, instead of ho-
mothetic motions () = constant), allow us to find static and
spherically symmetric distributions of matter which may be
fitted to the exterior Schwarzschild metric.® We shall see
that for the case of homothetic motions this fitting cannot be
accomplished.

The introduction of anisotropic matter is suggested by
recent theoretical works on more realistic equations of state
and stellar models,”? which indicate that some of these ob-
jects could have anisotropic pressures. Beside, it has been
shown that some properties of anisotropic spheres may differ
drastically from the properties of isotropic ones.’"'* Anisot-
ropy could be introduced by the existence of a solid core, by
the presence of type P superfluid, or by the existence of an
external field. Also, if the fluid is composed of two perfect
fluids with different four-velocities, then the energy-momen-
tum tensor can be cast into the standard form for anisotropic
fluids. '

In this paper we do not discuss the mechanisms for in-
ducing anisotropy. Rather we concentrate on the following
two questions: (a) what kind of constraints on the hydrody-

2 Postal addre}ssz Apartado 80793, Caracas 1080A, Venezuela.
® Centro de Fisica, I. V. 1. C., Apdo. 1827, Caracas 1030-A, Venezuela.
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namical variables does the existence of the conformal motion
impose? (b) How to generate exact solutions for anisotropic
matter?

Discussion on the first question, as well as the conven-
tions used, are given in Sec. II. In Sec. III we exhibit two
solutions for both perfect fluid and anisotropic matter. Fin-
ally the results are discussed in the last section.

1. CONFORMAL MOTIONS AND THE
HYDRODYNAMICAL VARIABLES

Let us consider a space-time whose metric tensor g,,,, is
a solution of the Einstein equations for a distribution of mat-
ter represented by an anisotropic fluid. Further we shall as-
sume that the space-time under consideration admits a one-
parameter group of conformal motions [i.e., the metric
satisfies Eq. (1)].

To find out the constraints that our assumptions impose
on the hydrodynamical variables, let us start by taking the
Lie derivative of Einstein equations

Lé(RW — 8. R)= — 87TL§ T, (2)
where the energy-momentum tensor can be given as

T, =p+P)UU —Pg,+P—Pl.x.,
where U* is the four-velocity, y* is a unit spacelike vector
orthogonal to U¥, p is the energy density, Pis the pressure in
the direction of y,,, and P, is the pressure on the two-space
orthogonal to y,, .

The Lie derivative of the energy momentum tensor 7,,
can be written as

xXU,U, —g,,v(LgPi + ¥P,)
+ [IZP_IEPi +I/J(P——P1)]Xpl’w

where we have used the expressions
LU, =@/)U,,
¢

1;)(# = ¥/2)x,,

(3)
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which follow from the symmetry of the problem. In fact,

LU“:Ld—xuz—U“Igds (4)

£ & ds ds
where we have used

L dx*=0 (5)
(see Rgef. 16, p. 89). On the other hand,

I2 ds* =2 dsI2 ds = Iggw dx* dx* = ¢ ds”. (6)
Feeding (6) back into (4) we get

[g,U“z — (w/2)U* 7
or, for the covariant components,

[5, U, =W/2)U,. (8)

In a similar way, the expression for L y* can be obtained.

3
Next, let us calculate the left-hand side of Eq. (2). For
the Lie derivative of the Ricci tensor we have

LR, =%"Vv,yv,Lg, ~-V,V,Lg,,
£ £ ¢

- VaVvI;_ gy.p + Vanngyv) (9)

(see Ref. 16, p. 52), where V denotes covariant differenti-
ation. Using (1) in (9) we get

I;RM =V,V. o+l (10)
where

Uy=g>v,v, .

Next, for the Lie derivative of the Ricci scalar R we obtain,
using the expression

Lg*= —g"¢"Lg,,
and (10)

LR =I£(g‘“’R#V)=3|:|¢—z//R. (11)
Thus Eq. (2) reads
v.V.¢—ig,. Ly

= _8”{[I§‘P+IEP1 +¥p +P1)]

XU“UV_g,w(I;PL + YP,)

+[ep-Lp +pp—p)lr.] 1)
or, taking projections,
UrUrv V- = ~8(Lp + ¥p), (13)
XXV VA + L W= — 8mL P+ yP), (14)
3275 J. Math. Phys., Vol. 25, No. 11, November 1984

SeS V.V + L W= —8nLP +yP),  (19)

= —87(12T+¢T), (16)

where T =T/ = p — 2P, — P,and §"is a unit spacelike vec-
tor orthogonal to y* and U*.

Thus the transformation properties (the Lie derivatives)
of the hydrodynamical variables are determined by the ex-
pressions (13)-(16). Moreover, there is one case, for which a
specific equation of state for the stresses and the energy den-
sity appears as a consequence of the conformal motion. We
have in mind the so-called special conformal motions.!” For
this subgroup of the conformal motions, which includes the
homothetic motions as a special subcase, the function i sati-
fies the condition

V.V, =0. (17)

In this case, it follows at once from (13)-{16), that

Lp+1p=0, (18)
LP+yP=0, (19)
LT+yT=0, (20)
LP, +yP, =0, 21)

Also it is easy to prove that the following law of conser-
vation holds

V. (R4EY) =0, (22)

In fact, developing the left-hand side of (22) and using the
Bianchi identities, we get

v“(R¢§V)=5g_f;§v+vaﬂ§v. (23)

Then using (20), the Einstein equations, and

V.5, + V.6, =g,
we obtain (22).

We shall further restrict our special conformal motions
to two specific subcases, namely (a) the vector field £# is
collinear with y * (i.e., £# = Ay*, A being an arbitrary func-
tion of the coordinates); (b) the vector field £# is spacelike
and orthogonal to U# and y*.

Let us consider the first case. Using the Einstein equa-
tions and the fact that £ # = Ay*, we get

REEY =8mt#(— P, +p/2 + P/2). (24)
Taking divergence of (24), using the expressions (18)}21),
the definition of the Lie derivative of a scalar, and

V.§# =24y,
we finally obtain

V. RLEY)=8mplp/2 + P/2 — P,). (25)
Now, since the left-hand side of (25) vanishes, according to
(22), then

p=2P —P (26)
Thus the relationship between the stresses and the density is
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given in a unique way by Eq. (26), provided the space-time
admits a one-parameter group of special conformal motions,
with the vector field & # parallel to y*. Observe that for per-
fect fluids (P, = P}, the equation of state becomes

P=p. {27)
This equation of state has been widely used in general
relativity to obtain stellar and cosmological models for ultra-

dense matter.> 52!
Let us now consider the case when

§°U, =8, =0. (28)
Then from the Einstein equations we get
RE{EY = (8m/2)5%p — P). (29)

Taking divergence of (29), and using the conservation law
(22) and the expressions (18), (19), we obtain

P=p. (30

No constraint involving the tangential pressure P, was
found in this case.

Thus for perfect fluids we get again the stiff equation of
state, pressure equal to the energy density.

Let us now see what kind of constraints are derived
from the transformation law of the four-velocity [Eq.(8)].

Using the definition of the Lie derivative of a covariant
vector, we have

LU =V, U, + U, V.65 (31)

or, from the fact that £* and U“* are orthogonal to each
other,

L§ Uv = §a(va Uv - Vv Ua)‘ (32)

Let us now introduce the tensor ,,,, as

}/,uv =gyv - Uy Uv’ (33)
which defines the projection operator onto the three-space
quotient to the streamlines.

We can now define the kinematic quantities which
characterize the streamlines, they are the acceleration

a*=UV,U", (34)
the expansion

e=v,U" (35)
the shear

0w =75 Yo{ViaUs) — 167}, (36)
and the vorticity bivector

Dy, =V, }/fvla Ug . (37)

{Round brackets and square brackets between the indices
denote symmetrization and antisymmetrization, respective-
ly.) It follows from these definitions that

V. U,=a,U, o, +0, + 16y,,. (38)

Feeding (38) back into (32) and comparing the result with (8),
we get

lng = —§%,U, + 2., =@/2)U,. (39)

Contracting this last equation with U*, it follows that
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Y= —2a%,
which implies, using (39) again, that
£0, =0. (40)
This relation is valid for all kind of conformal motions
provided & “ is orthogonal to U “.

lll. SOME EXACT SOLUTIONS FOR STATIC AND
SPHERICALLY SYMMETRIC DISTRIBUTIONS OF
MATTER

In this section we shall assume that the metric tensor
not only admits the one-parameter group of conformal mo-
tions but also is static and spherically symmetric. In the usu-
al Schwarzschild coordinates the line element may be writ-
ten as

ds’ = AYndt* — BYndr* — r(dO? + sin’0 d¢ ?) (41)
and in comoving coordinates we may choose

U“U®0,0,0), x*0,x',0,0).
Since U*U, = — y*y,, = 1, then

U°=1/4(r), x'=1/B(r),
and the components of the energy-momentum tensor are
Ti=—P, T3=T}= —P,.

It is easy to prove that by virtue of the spherical symme-
try and the independence of the metric tensor on the timelike
coordinate the most general form of £ ® is

§ = /1)( % (42)

where A is an arbitrary function of .
Now, the corresponding field equations are given as

TS =p,

1/24° 1\ 1
grp=— (24 1) L1 43
& Bz(Ar +r2) P (43)
1 (4" A'B’ I(A' B’)]
grp, =1L [4° _AB  1(4° B gy
(a BZ{A 48 \4 B (44
1 /28" 1\ 1
oo 1 (2B° 1\ 1 45
P Bz(Br r2>+r2 (43)

(primes denote differentiation with respect to 7).
The functions 4 and B are further restricted by the con-
dition (1), which implies, in our case

Ar)=Cr, (46)
B(r)=2C,/1, (47)
A= Cor, (48)

where C, and C, are two constants, and we have used (41)
and (42). Feeding {46)—(48) back into the field equations (43)-
(45) we get

_3pr 1 49
817'P—4C%r2 = (49)
_ (W 1 (50
8P, 4C§{r¢+ } (50)
1 g {2¢' 1}
87p = — — LA 51
= arer) P o

Thus, different choices of the function ¢ will lead to
different classes of solutions with the symmetry properties
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specified above. If one desires to match any of those solu-
tions to the exterior Schwarzschild metric on the boundary
of the source, then the radial pressure should vanish for some
finite value of the radial coordinate (say r = r,), and the func-
tionsA (r)and B (r)should be continuously joined to the corre-
sponding values of the vacuum Schwarzschild metric.®
Thus,

A r)=C2rt =1-2M/r,, (52)
4C; 1
Plrg) 1 —2M/r,
(where M is the total mass), whereas from the vanishing pres-
sure condition we get

B3(ry) = {(53)

Yy =4C2/3. (54)
Combining (53) and (54) we get
M/ry=14 {55)

Furthermore, this value for the ratio M /r, may be obtained
just by integration of the energy density, given by (51), over
the sphere of radius r,, in fact

M= L “4rp dr = f rz[;% _ —l—r;(2¢¢" + 1/’2)]dr

o 8C3
(56)
or
M=o L fro(Wr)' dr. (57)
2 8CiJ
Assuming #(0) < «0, we get
M =ry/2 — (1/8C3 ) (ro)ro, (58)
and using (54} in (58) we finally obtain
M/ro=1

Two main conclusions follow from the results above.

(a) All solutions, for any choice of the function ¥
(bounded in the interval 0 < » < ry) will have the same gravi-
tational potential on the boundary, provided the boundary is
a vanishing pressure (radial) surface.

(b) The existence of the vanishing pressure (radial) sur-
face ensures the fulfillment of the condition (53). Further-
more, since the condition (52) may always be satisfied by an
appropriated choice of the constant C,, we can conclude that
the existence of the vanishing pressure surface ensures the
matching of any of the solutions to the vacuum Schwarzs-
child solution on the boundary of the sphere.

Let us now specialize the choice of .

A y=2
In this case we get
13 1
P=—I1—_1!— 59
87 [C§ } r 59
P, =1/87C3r, (60)
1 111
=—{1 - —1 - 61
P 817-{ cg] 7 (1)
and for the metric functions
A=Cyr, B=C, (62)

Next, from (59j—{61) it follows that
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p=2P —P, (63)
which was to be expected according to the precedent section
(¢ = 2, defines a special conformal motion and £# = Ay”).
The solution given by (59)—(62) is the generalization to aniso-
tropic matter of previously known solutions,' and is a spe-
cial case of one of the Bayin solutions.!*> When the constant
C, is chosen to be C, = 2, matter becomes a perfect fluid
and

P=P =p.

Finally, observe that the solution above cannot be matched
to the exterior Schwarzschild metric, as it can be seen from
the fact, that the pressure (radial) does not vanish for any
finite value of the radial coordinate.

B. The perfect fluid solution

One important point emerging from Eqgs. (49)-(51) is
that there exists only one choice of the function ¢ (which
includes ¥ = 2, as a special subcase) for which there exists a
perfect fluid solution. In fact, from the condition

P=P
and using (49) and (50) we get the equation

gy +2C1 — ¢ =0, (64)
whose general solution is
¥*=Ci(Cr +2), (65)

where C is a constant. For C = 0; C3 = 2, we recover the
¥ = 2 subcase mentioned above.

If we now demand the radial pressure to vanish for
some finite value of the radial coordinate (say r = r,), then
we get from (49) and (65)

R~ = —2/3C, C<O0. (66)

We can now write the expressions for the pressure, the den-
sity, and the line element

1 (1 1
P=P =—1) — ——1 6
' 817'[2r2 2;%,] (€7
1[1 1

=—0—4 -0 68
P 817{2r2+2r(2,] (68)

de=CpPd - 44

(Cr +2)
—~rdO? +sin’ Odg?) (0<r<r,) (69)

from which it can be seen at once that

p>P>0. (70)

As it was shown above the total mass of the sphere will
be

M=ry/3.
Thus it will be less compact than the interior Schwarzschild
sphere for which

M /r,=0.44, (71)

Finally observe that the singular surface ”” = — 2/Cin
the line element (69) is outside the sphere, whose radius is
given by Eq. (66).
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C. An anisotropic solution

As we have just seen the perfect fluid case occurs when-
ever the function ¥ is chosen according to the expression
(65). Thus, in principle, there exists an anisotropic solution
for any other choice of the function ¢.

Here, we shall give one example, whose physical prop-
erties are reasonable and which possesses vanishing pressure
surface.

Let us take

¥ =C}(Cr+2)+C3H, (72)

where H is a constant which measures the anisotropy. Feed-
ing (72) back into (49)51) we get

srp=2c+ (3 +2) (73)

R T

e - e (L= 1)
and for the radius of the sphere

rh=— %(1+3—f—) C<0 (76)

In order to ensure the positiveness of the energy density
and the stresses, we have to restrict A to the interval

— 3<HKLO. (77)
Also, in that interval the energy density will be larger than
the stresses. As in the perfect fluid case the function ¥ van-

ishes for a value of the radial coordinate which is bigger than
Yo

IV. CONCLUSIONS

We have seen so far that, under the assumptions of Sec.
11, the existence of a one-parameter group of conformal mo-
tions introduces specific restrictions on the hydrodynamical
variables. Furthermore, for the case of special conformal
motions, the stiff equation of state (pressure equal to the
energy density) is singled out in a unique way, provided the
vector field £ * is orthogonal to the four-velocity. So far we
do not know whether this link between the stiff equation of
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state and the group of special conformal motions is “casual”
or if there is any “deeper” physical meaning behind it.

Concerning the solutions presented in Sec. III, they
could serve as initial (or final) configurations in a self-similar
evolution scenario. They share reasonable physical proper-
ties (positiveness of the energy density and stresses, energy
density larger than stresses) and possess vanishing pressure
surfaces. We would like to stress the fact that the gravita-
tional potential at the surface will be the same for all solu-
tions, provided the boundary is a vanishing pressure surface.
Werecall that for others’ previously known anisotropic solu-
tions, ' 131 the ratio M /r, depends on the degree of anisot-
ropy, and it can approach the limit value 1/2 as close as one
desires, provided large amounts of anisotropy are allowed.

Finally we would like to stress the point, that for any
choice of ¢ different from (65) and (72), different anisotropic
solutions could be obtained.
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In this article we analyze a particular class of anisotropic cosmological models, the Kantowski-
Sachs models, in the presence of a nonzero cosmological constant A. We study them qualitatively
by means of autonomous systems with two and three dimensions. The plane autonomous system
gives a new class of empty Kantowski-Sachs cosmologies, with A > 0and A <0. We find two new
types of singularity points. The autonomous system with three dimensions yields a set of solutions
of nonzero measure becoming isotropic in an infinite cosmological time.

PACS numbers: 04.20. — q, 98.80.Dr

I. INTRODUCTION

During the last fifteen years, spatially homogeneous
cosmological models belonging to the Bianchi class have
been studied in the framework of general relativity.' An
exceptional case to these cosmologies was discovered by
Kantowski and Sachs.* The isometry group for these models
contains a three-parameter Lie group G; whose orbits are
two-dimensional. The curvature of such an orbit is constant
and positive. An improved version of the proofs of these
statements has been given by Collins.® He analyzes the Kan-
towski-Sachs cosmologies containing a perfect fluid with a
zero cosmological constant. The field equations can be trans-
formed in this case into a plane autonomous system. This
permits an easy qualitative study of the evolution of the Kan-
towski—Sachs cosmological models. This method has been
applied to more types of Bianchi models.*™®

In this article we introduce a further parameter, the
cosmological constant A, which gives rise to a three-dimen-
sional autonomous system when we consider nonempty
Kantowski—Sachs models containing a perfect fluid with an
equation of state of the form p = (y — 1) u, where y is the
density of matter, p the pressure, and ¥ a constant whose
values lie in the range 1<y<2. We will derive this three-
dimensional system in Sec. II below, and discuss the singular
points at finite distance that it exhibits. A more general re-
sult of the geodesic incompleteness of the Kantowski—Sachs
models than that presented by Collins® can be given. In fact,
for a null or negative cosmological constant, these models
have a past or future singularity of the cigar, pancake, barrel,
or point-type.

When we consider only empty Kantowski—Sachs mod-
els in the presence of a cosmological constant, our three-
dimensional autonomous system reduces to a plane one. We
will study extensively this case in Sec. III.

It is the simultaneous presence of matter and of a cos-
mological constant which leads to a three-dimensional au-
tonomous system. The latter will be studied in Sec. IV. An
interesting result emerges (Sec. V), namely the existence of a
set of nonzero measure of Kantowski—Sachs solutions to the
field equations which approach isotropy in an infinite cos-

* Present address.
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mological time, contrary to a claim made by Collins and
Hawking,® who did not consider the influence of a cosmolo-
gical constant.

Finally, the theorems necessary for the study of our
three-dimensional autonomous system are mentioned in the
Appendix.'®12

Il. QUALITATIVE ANALYSIS
The Kantowski-Sachs metric* takes the form
ds = dt? — X7t)dP — Y(t)d6? +sin2 0dg?),  (2.1)

in the coordinates (¢, r, 6, ¢ }, where ¢ is the cosmic time coor-
dinate, r a radial coordinate, and 4, ¢ the usual spherical
coordinates. Here X (¢ Jand Y (¢ )aretwounknown functionsof
t. Einstein’s field equations with a cosmological constant A
can be written as follows ( £ and p being the fluid parameters
described above):

Xy 14 ¥?2
22 + <—) — A=y, 22
XY 72 H“ (2.2)
Y 1+ ¥?
2—+( )—A:—, 2.3
Y 7 P (2.3)
Y x xy
4+ =4+ = —A= —p. 2.4
Y X XY P 24

A dot in these equations denotes differentiation with respect
tot.

By using the volume expansion 6 = Xx-'42yy!
andtheshearo = 37 V3 XX ~! — YY ~!), wecan express the
field equations as follows:

6+37'02 4202+ 2" (u+3p)—A =0, (2.5)
G+00—3"12y"2=0, (2.6)
37192 _ P+ Y 2 —A=p. (2.7)

Equation (2.5) is the well-known Raychaudhuri’s equa-
tion in the case of a perfect fluid and a nonzero cosmological
constant. We shall analyze Kantowski—Sachs models for
which the pressure p and the matter density u of the perfect
fluid are related by the barotropic equation of state
2 = (¥ — 1) u. The values of the constant ¥ lie in the range
1<y<2. We shall use the variables {2 (¢) and B(¢) instead
of X(¢) and Y(t), defined by X=-exp(— 2 + ) and
Y = exp( — £2 — B /2). The time variable will be £ and a
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prime will denote differentiation with respect to £2. We then
introduce quantities measuring respectively the dynamical
importance of the shear, i.e., 8’ = — (2v3 0)/6, and the dyn-
amical importance of the fluid, i.e., x = 3u/0% = /3022, as
well as a third quantity z = 3x/u.

These definitions allow us to reexpress the field equa-
tions (2.2)(2.4) together with the conservation equation

L+(p+p6=0 (2.8)
in the form of a three-dimensional autonomous system and a
constraint equation, with three dependent variables 8, x, z,

and with £2 as the independent variable.
Equation (2.2) becomes

B?+4x —4+4Az
= ($2?) exp(22 + B). (2.9)

By eliminating {2 from (2.3) and (2.4) and substituting the
expression of the exp(22 + 8 term obtained from (2.9) we
have

B"=1B'[4—B"—(3y —2)x +}Az]
— 3[4 —4x - B —4Az].
The elimination of B in (2.3) and (2.4) yields
— 6249022 +3B%— 34 +exp(22 +8)= —3p. (2.11)
By using (2.8) and (2.9) we get

(2.10)

x' =x[(3y — 21 — x} — B"* + 2Az/3]. (2.12)
Differentiation of z with respect to {2 gives
7= —2[1+13y—2)x+ 187 — Az/3]. (2.13)

Equations (2.10), (2.12), and (2.13) form a three-dimensional
autonomous system of ordinary differential equations. The
qualitative behavior of the solutions will be drawn in the
(x, B',z) phase space. The region of interest is given by {x > 0,
z>0,andB"? +4x —4 +4$Az>0).

The singular points at finite distance, also called critical
points, i.e., the points (x, 8, z) where the right-hand sides of
the system vanish simultaneously, are different according to
the constant , or do not exist (as real numbers) according to
the value of the cosmological parameter A. By taking ac-
count of the physical region we have the situation represent-
ed in Table I. The study of the three-dimensional autono-

TABLE L. This table summarizes all critical points in the two cases: 1<y <2
and ¥ = 2. In the first case we have divided the points according to their
appurtenance to the x- or 8 "-axis, or ( 8, 2) plane when A > 0. In the second
case there is a continuous line of critical points in the (x, 8 ') plane. There are
no (real) critical points in the (£, z) plane when A<0.

A>0 (x,B8',2) A0
{1,0,0} {1,0,0)
(0,2,0) 0,2,0)
I<y<2 (0, — 2,0) 0, — 2,0)
{0,0,3/4)
0, —2,9/4)
2=0,4—4x—B7=0) (z=0,4—4x—57=0)
y=2
(0,0,3/4)
(0, — 2,9/A)

3280 J. Math. Phys., Vol. 25, No. 11, November 1984

I<¥<2; A>0 I<y<2; A<O

0,-2,9)

FIG. 1. We have indicated the region of physical interest for the three-di-
mensional autonomous system, as well as the singular points at finite dis-
tance according to the value of ¥ and of the cosmological constant A.
Striped parts are outside the region of physical interest.

A>0 'y

o
i
s

N\
A\
727 //// %///// ///////

FIG. 2. Qualitative description of the evolution of the empty Kantowski~
Sachs models when A > 0. Each curve represents the evolution of a model
for a fixed set of initial conditions. The variable ' = — 2v3(0/6 ) measures
the relative dynamical importance of the fluid shear. The associate types of
arrows indicate the entire course of evolution. The time reverse is also possi-
ble.
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FIG. 3. Qualitative description of the evolution of the empty Kantowski~
Sachs models when A <0.

mous system can then be subdivided into four different
cases: (1<y <2, A>0) (1<y <2, 4 <0); (y=2,4>0); and
(y = 2, A <0). We have represented the singular points in
Fig. 1.

® When the cosmological constant vanishes, we have a
plane autonomous system in the variables x, 8'. It has been
studied in detail by Collins.* By setting x = 0in (2.10), (2.12),
and (2.13) we obtain a new autonomous system

B"=iB'[4~B"+3Az] -} [4—-8"7—34z], (2.14)
and
7= —2[1+}B"*—Az/3]. (2.15)

It describes empty Kantowski—Sachs models in the presence
of a cosmological constant. The region of physical interest is
givenby (z> 0, 8> + 4 Az — 4 > 0) and the singular points at
finite distance according to the value of A are
(B'=4+2,2=0), (B'=0, z=3/A), and (B'= —2,
z=9/A)whenA>0,and (8'= +2, z=0)when A <0.

In his article,” Collins has shown that all perfect-fluid-
filled Kantowski-Sachs models are geodesically incomplete
both to the future and the past. This theorem can be general-
ized to negative values of A.

Ill. PLANE AUTONOMOUS SYSTEM FOR EMPTY
KANTOWSKI-SACHS MODELS WITH A
COSMOLOGICAL CONSTANT

In order to study qualitatively the plane autonomous
system (2.14) and (2.15) we examine the behavior of integral
curves in the neighborhood of the critical points at finite
distance as well as at infinity and we join the two regions.

The critical points at finite distance are simple.'*!* Two
of them, (2,0) and (0,3/A4 ), are improper nodes; the point
{ — 2,0)is a proper node, and the point { — 2,9/4 ) is a saddle
point.
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TABLE I1. Empty Kantowski~Sachs models with A > 0 and A < 0. We indicate for these models the singularity type as well as the asymptotic behavior of physically relevant variables: the average length scale /, the

length scales X and ¥, the fluid expansion 6, the fluid shear o, the Ricci scalar *R, and the integrated shear 8. Here cte denotes a nonzero finite limit.
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FIG. 4. We indicate the region of physical interest which is outside the
striped part in the neighborhood of the critical point (0,2,0) for A >0 and
A <0. Here e,,e,,e, are the three characteristic vectors.

The two Poincaré transformations (8’ =s~ ',z = us™")
and(B' = vs~ ',z = s~ ") enable us to study the critical points
at infinity. In the variables {1, 5) we have the simple singular
point (0,0) whose topological structure is a saddle point. On
the z-axis at infinity, we find (v = 0, s = 0), which is a double
singular point. The theory is well established for such multi-
ple equilibrium states.”* We find three directions of ap-
proach (in polar coordinates) ¢ =0, arctan (—}), and 7
when A > 0, and two directions ¢ = 0 and 7 when A <O0.

The global picture is given by the integral curves of the
system (2.14) and (2.15) drawn in Figs. 2 and 3. In each dia-
gram there are integral curves starting at a finitely distant
singular point (in the variables 8’ and z), extending to infi-
nitely large values of z and coming back to another singular
point at finite distance. When A > 0 we have such behaviors
as well as other ones like curves which are time symmetric
and curves for which we do not have z— «. The arrows
depict the entire course of evolution, but the time reverses
are also possible.

Thecritical point( 8’ = 2,z = 0)isa “cigar” singularity
type, whereas (8’ = — 2,z = 0)is a “pancake” singularity.
The Raychaudhuri equation (2.5) tells us that at these points
the shear o and the expansion & are dominant and A is negli-
gible. The point (0,3 A ~') is an “infinite” singularity, so
called because X — o« and ¥ — oo from the metric point of
view, and as autonomous system it is a singular point. The
quantities A and € are dominant and o is negligible. The
saddle point ( — 2,9 A ~!) is a “pancake” singularity in one
direction, and an “infinite barrel” (X — «, ¥ — const) in
the other direction, which is a new type of singularity; o, 6,
and A are equally important. The asymptotic behavior of all
these quantities as a function of ¢ is given in Table IL

IV. NONEMPTY KANTOWSKI-SACHS MODELS WITH A
COSMOLOGICAL CONSTANT

We will follow for the study of the three-dimensional
system the same pattern as in two dimensions. All the critical
points at finite distance are simple. The point (x = 0,8’ =2,
z=0) is a node; the characteristic roots A =3y —6,
= —2,v= — 6 are negative when 1<y <2. The orbits
starting at a sphere (see the Appendix) centered at {0,2,0)
tend to this point for 2 — . We distinguish three cases:

3282 J. Math. Phys., Vol. 25, No. 11, November 1984

(0,0,3/48)

Y /

+
A4 i (0,2,0)
-3

= (1,0,0) I

v, (0,-2,0)
[ 3

FIG. 5. We indicate the singular points at infinity: (s = 0, & = 0, v>0) when
4 >0, and (s =0, # = 0, 0<v< ~ 3/4 ) when A <. Striped parts are out-
side the region of physical interest.

I<y<t Jul<|d|<v], (4.1)
r=% lpl=1[< (4.2)
f<y<2 |Al<lpl <l (4.3)

When y#4 we have the three characteristic vectors
e, ={(1,—1,0) e,=(0,1,0}, and e; =(0, — 1,3/4) corre-
sponding to 4, s, and v, respectively. When ¥ = $ we have an
infinity of characteristic vectors in the plane (x, 8'). The co-
ordinate system (X,Y,Z) with origin at the point (0,2,0) is
associated with these vectors (see Fig. 4).

In the case (4.1) there is a double infinity of orbits start-
ing at the sphere and tending to (0,2,0) alongside the vectors
e,; in the case (4.2) we find a double infinity of orbits tending
to (0,2,0) along the plane (X, Y ); and in the case (4.3) we have a
double infinity of orbits tending to (0,2,0) along the vector e,.
These are all the orbits within the physical region tending to
the critical point (0,2,0).

The point (0, — 2,0) is also a node with characteristic
rootsA =3y — 6andy = v = — 6, all negativefor 1<y < 2.
The vector e, = (1,1,0) corresponds to 4, and there is an in-
finity of vectors for u = vin the plane (8’, z}. A double infin-
ity of orbits tends to (0, — 2,0) alongside the vector e;.

The singular point (1,0,0) is a saddle point with
A= —3y+ 2,4 =3—3y,v= — 3yand with correspond-
ing vectors e, =(1,—2/(1+39)0), e,=(010),
e; = (1,0, — 3/A ). We find a simple infinity of orbits tending
to (1,0,0) along the vector e,. All these results are valid for
A>0and A <0. When y = 2 there is a continuous line of
singular pointsin the plane (x, 8):(4 — 4x —B'* =0,z =0).
In this case we have a simple infinity of orbits tending to each
singular point along a characteristic vector in this plane.

Inthe plane( B’, z) we have the singular point (0,0,3/4 )
which is a node. The characteristic roots A = 3y, u = 3, and
v =2 have the corresponding vectors e, = (1,0, — 3/4),
e, =(0,1,0),and e; = (0, — 1,3/2 A with A >0and 1<y<2.
There is a double infinity of orbits tending to (0,0,3/4 ) along
the vector e;.

Finally we have the singular point (0, — 2,9/4 ) which s
a saddle point with A = 3y, u = — 3, and v = 6. The corre-
sponding vectors are
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TABLEIIIL. Nonempty Kantowski—Sachs models with A > 0 and A < 0. We indicate the different singularity types as well as the asymptotic behavior of physically relevant variables. Comparing with Table II, we add the
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e1=< (L+12—7) 2-y _1)

y[12/4 — (3/A)3y — 21+ p)/y] " 12/A —(3/A )3y — 21 + y)/y ’

e; =(0, —A/4,1)ande; = (0,0,1) with A > 0 and 1<y<2. There is a simple infinity of orbits tending to (0, — 2,9/ ) along the

vector e, for 1<y <2. When y = 2, there is only one orbit tending to (0, — 2,9/4 ) in every direction of the plane (e,, e,).
We generalize to three dimensions the Poincaré transformations used in Sec. III for the study of the critical points at

infinity. Settingx =s~', ' = us ™',z = vs~ ! we find the double singular points at infinity (s = 0, u = 0, v>0) which are not in

the plane ( B, z) (see Fig. 5). The general expression of the directions of approach (see the Appendix), not in the plane (s = 0) of

the singular points (s = 0, u = 0, v = v) is given by

(0} = 1 , 2(2 4+ (24 /3) vy) — 3y, ]
3y —2—(24/3)v, 3y —2—(2A/3) vl By —2— 24 /3)vp)2)
Notice that tan ¢ = w,/w, is (3y — 2)/4 whenv, = Oand — ] when v, — oo, which corresponds to the two plane autonomous
systems. We have tan ¢ = 0, when v, = 3 A with A >0 and tan § — « whenv, = — 3/4 with A <0. The regions of physical
interest for positive and negative values of the cosmological constant are indicated in Fig. 5.
By analyzing the three surfaces {dx/df2 = 0}, {dB'/df2 = 0}, {dz/d2 = 0}, we obtain a global picture of the orbits. We
distinguish four different cases, as we have seen in Sec. I1. The first case divides into three subcases according to the value of y.
When A > 0and 1<y <2 we have a double infinity of orbits starting at (0,2,0) and tending to (0, — 2,0), becoming tangent
to the singular line at infinity with tan ¢ = 0. There is a simple infinity which tends to the saddle point (1,0,0). Likewise we had
a time symmetric orbit in the plane (x, 8 ) we have now a time symmetric surface of orbits, approaching the singular points at
infinity with ¢ = arctan w,/w,, as long as v,<3 A. There is further a double infinity of orbits starting at (0,2,0) extending to
infinity with ¢ = 7 and coming back to the same critical point. From the points {0, + 2, 0) and (1,0,0} orbits start and tend to
(0,0,3/A4 ) as a double infinity with x, 8°, z being finite for the whole evolution. There is finally a simple infinity tending to
(0, — 2,9/4 ). When ¥ = 2 we have a simple infinity of orbits coming from each singular point in the plane (x, 5 ') and tending
either to the singular line at infinity or to (0,0,3/4 ). From (0, — 2,9/A4 ) comes a simple infinity for every characteristic
direction which tends to the singular line at infinity. For A <0 and 1<y<2, we have a global picture similar to the plane case
when A = 0. The asymptotic behavior of the models around the singular points at finite distance is indicated in Table III.

V. CONCLUSION

We have carried out a detailed analysis of Kantowski—
Sachs models in the presence of a cosmological constant.
Two new types of singularity points have been found, name-
ly, an infinite singularity (from the metric point of view and
as an autonomous system) and an infinite barrel.

One should notice, in particular, the models tending to
(0,0,3/4 ) when A > 0. Their asymptotic behavior (see Table

III) gives the same length scales X = Y = exp( F vA /3 ¢)
tending to infinity when # — F oo, whence these models
become isotropic in an infinite cosmological time. There is a
set of nonzero measure of such models when they come from
{0,2,0) or (0, — 2,0), and a set of zero measure for those mod-
els coming from (1,0,0). The point (0,0,3/A4 ) is an infinite
singularity (as defined above) and the Raychaudhuri equa-
tion (2.5) tells us that at this point the cosmological constant
A and the expansion @ are dominant whereas the shear o and
the density of matter u are negligible. The time variable £2
goes to — oo (see Appendix} and Eq. (2.9) can be trans-
formed in order to give the cosmic time dependence of 12, i.e.,
2= +JA/3. The average length scale /= (XY?3

=exp( — £2)=exp(FyA/3¢t) shows then that for
2 > — o wehave! — o and 1 — T : the point (0,0,3/
A }is not a cosmological singularity, because it takes an infi-
nite cosmic time to get there.

This class of Kantowski-Sachs models becoming iso-
tropic in the presence of a cosmological constant motivates a
further study of three-dimensional systems in order to obtain
more general results, in particular for the Bianchi cosmolo-
gical models.
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APPENDIX: THEOREMS FOR THREE-DIMENSIONAL
AUTONOMOUS SYSTEMS1012

Consider a three-dimensional autonomous system. The
definitions for the simple and multiple singular points are
the same as for a plane one. When two of the three real
characteristic roots A, u, v in the case of a simple singular
point have the same sign and the other one the opposite sign,
we have a saddle point. If the three real characteristic roots
have the same sign, we have a node.

We analyze first a saddle point with the autonomous
system in the form

X' =AX+f Y =uY+g Z' =vZ+h (Al

where f, g, h are the nonlinear terms of the system and where
the singular point is at the origin of the coordinates (X,Y,Z ).
The sign of v is denoted by o{v). We indicate only those
theorems which are needed in this article. 8, ¢ intervening in
these theorems corresponds to the angles in spherical coordi-
nates (X = rsin & cos §, Y = rsin sin ¢, Z = r cos ).
Theorem 1: The autonomous system (A1) with 4 >0,
4 >0, v <0 has (a) only one orbit tending to the origin with
ov)2—> — o and 8 = ﬂlim 6 = 0 and only one orbit
with @ _ = m; and (b) an orbit y satisfying the following prop-
erties: y and its projection on the plane (X, Y ) are homeomor-
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phic to a circle, and every orbit starting at one point of ¥ is
lim 6

a2+ o

tending to the origin with o{v) 2 — + « and

=7/2.

Theorem 2: The autonomous system (A1) with A #u

and |p| < |A | has aninfinity of orbits starting from ¥ with ¢ _
= — /2. Thereis only one with ¢ __ = 0 and only one with
., =

Theorem 3: The autonomous system (Al) with A =pu
and with f,g = O(r' ™ ¢) has for every ¢, €[0,27] only one
orbit with ¢ = ¢,.

We consider now a node for the same autonomous sys-
tem.

Theorem 4: If the characteristic roots are all of the same
sign, there is a sphere centered at the origin such that every
orbit starting at its surface tends to the singular point with
ofl > — ».

Theorem 5: If the characteristic roots are such that
|v| < || <]A4 |, then every orbit which tends to the origin does
go alongside the positive Z-axis or the negative one, except
those orbits which start at an orbit ¥ which is homeomorphic
to a circle, as well as its projection on the plane (X,Y); in this
case 0 =mw/2.

Theorem 6: If the characteristic roots are such that
[v| < || < |4 |, then every orbit starting at y tends to the ori-
gin with ¢ . = + /2, except only one with ¢_ =0, and
only one with ¢ = .

Theorem 7: If the characteristic roots are such that
|¥| <|A | = ||, then for every ¢, € ]0,27), there exists only
one orbit starting at 7, tending to the origin with ¢_ = ¢,
when f,g = O (r' * ) when r— 0.

When we have a multiple singular point for the autono-
mous system

dx;
A =f;'(x1’ X3, X3),

= 1,23, A2
10 i (A2)
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we define the direction of approach to the singular point (at
the origin) as follows.

Definition: Let {x,(£2); 1<i<3} bean orbit of (A2) and /
definedby /% = 3,(dx,/d2 }*. When {x,({2 )} tends to the ori-
ginfor 2 — o and whenlim,,__ x,(2)/! = 0, with {,} a
nonzero vector, then we say that {e,} is a direction of ap-
proach of the orbit to the origin.

If / = O (") when r —0, we say that the multiple singu-
lar point of order n has a regular principal part, and in this
case, the w; are the roots of the equation

Lo = =L apar
n—1 Ox? - Ix!
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This paper formulates a statistical description of a collection of N identical classical particles that
interact relativistically via linear fields in a fixed background space-time that admits a conformal
timelike Killing field. Attention focuses upon the special cases of a simple scalar interaction and a
linearized gravitation interaction which should suffice to model many systems of astrophysical
interest. The fundamental object of the theory is a complicated distribution function that depends
upon appropriate variables for both the particles and the fields. By assuming that, in a first
approximation, this distribution factorizes into an infinite product of reduced distribution
functions, one recovers the type of mean-field theory developed by such authors as Ipser and
Thorne. Alternatively, one may derive various exact and approximate relations which contain

information about the interparticle correlations.

PACS numbers: 04.20.Cyv, 05.20.Gg, 98.80.Dr

I. INTRODUCTION

Recently, Israel and Kandrup have developed a new,
manifestly covariant approach to nonequilibrium statistical
mechanics in classical general relativity which could be ap-
plied to the study of such problems as galaxy clustering or
the dynamics of a collection of stars.'™ Although the for-
malism which they constructed is rather complicated in its
details, the basic physical ingredients may be stated very
simply.

(i) Following the viewpoint developed by Hakim,>® it is
argued that a collection of N gravitationally interacting par-
ticles may be characterized by an N-particle distribution
function, defined in an 8 V-dimensional phase space, which
satisfies a collection of N conservation equations.

(i) By mapping the “true” physics—particles following
geodesics in the “true” space-time manifold—onto a ficti-
tious “background” space-time, which may be chosen to sa-
tisfy some ““average” field equations, one then obtains a use-
ful covariant notion of “evolution™ in response to a
“fluctuating gravitational force.”

(iii) It is assumed that the deviations between the true
and background space-times are in some sense small, so that
they may be described by linear field equations.

(iv) It is assumed further that these gravitational forces,
which derive from linear field equations, may be modeled by
a direct interaction that involves only the coordinates and
momenta of the various particles (one assumes, therefore,
that incoherent radiative effects may be neglected).

Given these four premises, it is straightforward to de-
fine a statistical mechanics for the system, and, in particular,
to formulate various exact equations for appropriately de-
fined reduced distribution functions. Thus, for example, by
introducing a preferred time coordinate, one can derive an
exact closed equation for the evolution of the one-particle
distribution function very much analogous to the sort of re-
lation that arises in a Newtonian theory.” By implementing,
in a suitable fashion, a relativistic analog of an “impulse” or
“dilute gas” approximation, one is then led to a covariant
analog of the standard Landau (or Fokker—Planck) equa-
tion. '
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This approach, albeit a legitimate one, has the obvious
disadvantage of failing to include from the outset explicit
reference to the degrees of freedom of the gravitational field.
The objective of ongoing research is, therefore, the develop-
ment of a more general, “field theoretic” approach which
will embrace, in a natural way, these gravitational degrees of
freedom. This can, for example, be done by introducing gen-
eralized coordinates and momenta for the fields, and by de-
fining as the basic object of the theory a more complicated
distribution function involving both particle and field varia-
bles.

Given the obvious desire for the formulation of a covar-
iant statistical description, it is of course natural to approach
this general problem in terms of the theory of constrained
Hamiltonian dynamics,® as applied to general relativity by
such authors as Kuchat’ or Arnowitt, Deser, and Misner.'°
This can (at least in principle) and should be done in a com-
pletely general context. It should, however, be clear that the
problem simplifies enormously if the underlying space-time
admits a preferred time coordinate, e.g., if one is concerned
with astrophysical processes in the context of a Friedmann
cosmology or if one is concerned with a cluster of stars that is
nearly static. In this case, it would not seem all that unrea-
sonable to break manifest covariance by implementing the
obvious 3 + 1 decomposition, and, indeed, one obtains
thereby, equations of motion that are more easily tractable.

For this reason, this paper is devoted to the general
problem of formulating a statistical description of a many-
particle system interacting via linear fields in a conformally
static background space-time, i.e., for a space-time that ad-
mits a conformal timelike Killing field. Attention will focus
upon (i) the linearized gravitational theory introduced by
Israel and Kandrup'* and (ii) the simpler example of a scalar
field which has been studied in a special relativistic context
by such authors as Hakim™® and Kandrup.? The case of the
scalar field can, and will, be described without great difficul-
ties for an arbitrary conformally static space-time. The gra-
vitational interaction is made more complicated by the ten-
sorial character of the field and, therefore, for simplicity,
attention will be restricted to the special case of a k = 0 spa-
tially flat Friedmann cosmology. A number of useful results
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appropriate for gravitational interactions in a static, spheri-
cally symmetric space-time are implicit in the work of Ipser
and Thorne'' and Kandrup.®

At this stage, it is convenient to record the appropriate
equations of motion for the gravitationally interacting sys-
tem in a form that is manifestly covariant. Let gz denote the
metric appropriate for the *“‘true” space-time, in which the
particles follow geodesics, and let g,» denote the metric for
the “background” space-time to which these trajectories are
to be referred. The particle equations then take the forms’

dx” _ P*
dr m’
and
ar, 1 1 y
7 =;Fﬁ#P1P"—— ;—AM&F{}VP“P
(@B,... =0,1,2,3), (1.1)

where 7 denotes the proper time of the particle (for the metric
8as) I, and I" . denote, respectively, the Christoffel sym-
bols for the background and true space-times,

8L, (x=I" 5 (x*) — I, (x%), (1.2)

and the quantities P%, m, and 4,4 are to be viewed as func-
tions of the covariant momentum P, and the inverse metric
g%

P=gP;, m=(—g"P,P,)'?

and A,; =g.5 +m P, P,. (1.3)

These equations are derived from the equations of motion for
a free particle in the true space-time by identifying space-
time points but rescaling momenta so as to preserve the mass
shell constraints and cross sections of the tangent bundle.
The quantity 8I" 2, will of course transform as a tensor and,
therefore, it is clear that the “gravitational force” possesses
an invariant geometric meaning.

Granted that the difference between g_; and g, may be
treated as small, all the fields of interest will depend linearly
upon the quantity

hop(X*)=80p(X") — Zap(x¥). (1.4)
Thus, in the context of the linearized theory,
61"ﬁv =thv)‘—5v"hw, (1.5)

h,,, being derived as a solution to the linearized field equa-
tion
5GP [h] = 8a8T,". (1.6)

Here 6G,?[h], the perturbed Einstein tensor constructed

from h,,,, takes the form'?

8G,B =V, VB, * 4+ 4V, V b5 — |V*V h P
— VAV, b — h*PR,, — 18, P (VM h,”
— VAV, k" —h*R,), (1.7)

where R,,, and V,, denote, respectively, the Ricci curvature
and the covariant derivative operator associated with g4,
and the quantity

ST, P=T,P — [T.”], (1.8)
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denotes the difference between the stress-energy sources for
the true and background space-times.

The equations of motion for the scalar interaction to be
considered are very similar. In this case, the particle equa-
tions take the form?

dr_ P
dr m
and
dP
e =%rgﬂplpﬂ—/ma}ﬂ, (1.9)

where A is a coupling constant, and the “force” F* is con-
structed as the gradient of the scalar field @ (x*):

Fe(x*) = V& (x¥). (1.10)

This @ is in turn assumed to satisfy an inhomogeneous wave
equation of the form

V, Ved + nR® = 4mip = 4 p/m), (1.11)

where p = pm is the mass density, R is the scalar curvature,
and # is an arbitrary numerical constant. The case n =0
corresponds to the minimally coupled field. The case
n = — lis conformally invariant.

The program of this paper is as follows. Section II for-
mulates the basic equations for the scalar interaction in an
arbitrary conformally static background space-time in a
fashion that exploits the natural 3 + 1 decomposition. Sec-
tion III then constructs a statistical mechanics appropriate
for the interacting system. A particle-field distribution func-
tion is defined as a probability density in a suitably con-
structed infinite-dimensional phase space, an infinite-di-
mensional Liouville equation is formulated, and it is seen
that, in the most naive possible approximation, one recovers
a relativistic analog of the ordinary self-consistent field ap-
proximation. Section IV examines various properties of in-
terest for the one-particle mean-field description. Section V
then considers an analogous description for a gravitationally
interacting system in a ¥ = O Friedmann cosmology.

A final summary of notation is in order. Unless noted
otherwise, all conventions follow Misner et al.'? This implies
a metric with signature (—, 4+, + , + ). Greek letters @,5,...
label space-time indices 0,1,2,3, whereas lower case Latin
letters a, b,... label spatial indices 1, 2,3. Capital letters 4,B,...
label the field oscillators introduced in Sec. II. Lower case
letters iyj,... label individual particles. The quantities # and n
denote, respectively, the “true” and “conformal” times,
{2 (n) is the conformal factor, so that dt={2dn, and
Yur(x®) =2 7%(n)g,, (x*) denotes the conformally static
metric.

il. A SIMPLE SCALAR FIELD

Granted that the space-time is conformally static, the
line element can of course be taken to be of the form

ds* =g, dx* dx* = Q’(n)y,, (x)dx" dx"
=0 2(1’}(7/1717‘1772 + Vap dX° dx’ ) 2.1

where 7, (x°) denotes the time-independent spatial metric.
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The starting point for the analysis is the total action S,
for the system of particles and fields, which is assumed to be
of the form

S= — i dr,[m + A® (x)]

i=1

- Jd“x( _ g)”z-gl—(v,‘ OV“® + nRD?
Y

= — medr,- - fd“x( —g)'?

% [%qu + é(vﬂ OVid 4 nROY|. (22)
Here m denotes the mass of the N identical particles, 4 is a
coupling constant associated with the scalar field @, 7, de-
notes the proper time of the ith particle, and, in analogy with
the electromagnetic interaction, the scalar density p may be
written as'®

dr.
plxn) = mz—é%( — gV x —x )], (23

where § ¥ denotes a three-dimensional Dirac delta distribu-
tion.

Given this action and the space-time metric g,,, of Eq.
(2.1), the Lagrangian for any given particle is of course

L

P

- (m + A’¢ )( —g'rrr] ‘gabvavb)l/z

= — (M + AP (— ¥y — Varb™*)'?, (2.4)

where v* =dx° /dn denotes the ordinary three-velocity. As-
sociated with this Lagrangian is the canonical three-momen-
tum

(m + AP )2y,,0°

Ty =Y T = . 2.5
Ve ( - 7/1777 - y«:dvcvd)llz ( )
By inverting Eq. (2.5), one finds that
_ 1/2,,ab
vy, = L= Vo) ¥ (2.6)

[m +A® P02 + yor m, ]V
where 7’ is defined so that *®y,. = ° .. It will be observed
that, in Eqs. (2.5) and (2.6), spatial indices are raised and
lowered with the conformal metric ¥, .
Given these relations, one can immediately identify the
particle Hamiltonian
H= ( _ 7/17',1)1/2[("1 + Ad )2{2 2 4 7/zb7ra7Tb ] 1/2
—(m+ AP )2
__—(m+A42)0y,, =, (2.7)
( - y'rm - Yabvavb)l/z
Here the introduction of the notation H = — ,, is to be
viewed simply as a convenient definition, to assist with the
summation convention. As, e.g., in the paper of Balescu and
Kotera,'* it is not to be assumed that 7, transforms as the
component of a four-vector. One may also observe for future
reference that
d — N2 (m+AD) .
—Z—_= = =‘(2(_y177] — Yap?¥ vb)l/Z.
dny T,
(2.8)

It follows at once from the Hamiltonian (2.7) that the particle
equations of motion take the forms
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dx* _dr 1

A N b
dn dy 2maad)
and
d
To_dr| ___ 1 o s —ia,0)
dnp  dn L202%m + AP)

(2.9)

where d, =d/dx" denotes an ordinary partial derivative.
Related to 7, is the “physical” momentum p,, defined
by the relation

Pu=(l + A0 /m)"'7,. (2.10)

This p, coincides with the P, entering into the covariant
equation (1.9). If, however, one adheres to the convention of
raising and lowering indices with the conformal metric, it
follows that p*=y*"p, = 2 ?P*. In any case, by re-express-
ing the particle equations of motion in terms of p, , one finds
that

dp dr{ —1 AP\ !
e ———|——p.p, 3, ”—/1(1 +——> 4,49 ¢],
dy dnl2mo 2Pl OuV m #
(2.11)
where, now,
A =5, + (1/2°mp p* (2.12)

is the spatial projection tensor viewed as a function of p,,.
Because of the factor (1 + A® /m)~", Eq. (2.11) is nonlinear
and, therefore, will be difficult to analyze. However, in the
limit that |[A® /m)| is small, that factor may of course be ne-
glected, and, in that case, the equations of motion for the ith
particle assume the form

dx;* dr, 1 bin i
=_—" i
and
dp', _dr[ —1

iupiv aia 7"“/(’) - AAal‘(i)ai,u b (l) .
(2.13)

Equations (2.13) will be taken as the starting point for all
subsequent discussion.

By varying the action (2.2) with respect to the field con-
figuration, one obtains the field equation

V. VP 4+ nR [g] P = 4m{d /mip(x°,7),

dn  dplomn 2

(2.14)

where V,, and R [g] denote, respectively, the covariant deri-
vative operator and scalar curvature associated with g,,, .
For the g, of Eq. (2.1), one finds explicitly that

Y73, 2P+ Y22 /2)3,P +(— )8, (— '

X 73, ® + nR [g1022® = 4miA /mp2?, (2.15)

where now a prime ' denotes differentiation with respect to
7. The scalar curvature R [g] is related to the R [y] appropri-
ate for y,,, by the simple formula'®

R[g]l =02 ?R[y] — 62 D, D"
=02 "R [y] — 62 ~H"™0"/2), (2.16)

where D, is the covariant derivative operator associated
with ¥uv» and thus, one sees immediately that
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202’ " A
3 2P+ 2 9 P bn—P — AD | = 40023,
}/ n + ..Q n n 0 mp
(2.17)
where
A=(—y") (=923, (—** 3, +nR [7]]
(2.18)

denotes a convenient generalization of the flat space Lapla-
cian. In terms of the rescaled field

x =420 (2.19)
Eq. (2.17) takes the form
3, x —(1+6n)Q2"/2)y — 4y
= —4m(d /mp23(—y™) " (2.20)
For the special case when n = — }, one finds that
D, D"y + nR [yly = 4mld /mp2°. (2.21)

At this stage, it is convenient to re-express the rescaled
y as a superposition of appropriately defined field oscilla-
tors.'® The first step in the procedure is to view Eq. (2.20) as
an operator equation on a Hilbert space with an inner pro-
duct

E£)= f d3x(— ) — P™E (XL (x7)

(the form of the inner product is all that is relevant here;
domain issues, completeness, etc., will be neglected in what
follows). The important point, then, is that if one can inte-
grate by parts and neglect all surface terms, the operator 4
will be symmetric:

(£,48) = (48.5). (2.23)
If, for example, y,,, is flat, it is customary to ensure this by
imposing periodic boundary conditions.

Granted that 4 is symmetric, it follows at once that its
eigenvectors are orthogonal, and that its eigenvalues are
real. And thus, if one assumes, in the usual way,'® that the
eigenvectors ¥, (x° ) form a complete set, y (x?,7) may be ex-
pressed as a linear combination of the ¢, ’s:

(2.22)

X = 3 gl (224
where
41/’,4 +w, 2’/’4 =0. (2.25)

Here the notation is predicated upon the assumption that the
modes are in fact discrete. If this is not true, the summation
in Eq. (2.24) must of course be replaced by a Stieltjes integral.
Without loss of generality, one is free to impose the normali-
zation

(a4 ¥s) = 47‘9/41;’_ (2.26)
and, given this normalization, the assumption of complete-
ness implies that

Shax W) = A — y") T — )28V — ).

A

(2.27)

It is now trivial to obtain equations of motion for the
individual oscillators. All that one need do is substitute the
expansion (2.24) into Eq. (2.20), take the inner product with
¥y, and divide by 4+, In this fashion, one finds that
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) ﬂ "
94" = (1+ 614, + 0.7
- _ %J‘d 3x( _ 7,)1/2( _ 7’"7’)/7-9 3¢A (xa)/( _ ,},7117)

dr.

A AT a
= — ()Zd?]'//A(Xi ).

Alternatively, the second-order Eq. (2.28) may be viewed as a
coupled first-order system:

(2.28)

dq, =—p
dn 4
and (2.29)
dp, 2 2" A A7 .
= — (1 + 6n)— =S — (i)
dn @4 (1 + 6n) 0 g4 + 'QZd’?z/}A()

In the limit that £2 is a constant, Egs. (2.29) are completely
analogous to the equations for an electromagnetic field in
flat space.

lll. A STATISTICAL DESCRIPTION

The first step in the formulation of a statistical descrip-
tion is of course the construction of an appropriate phase
space.

If one starts from the particle equations of motion in a
form that is manifestly covariant, the “natural” configura-
tion space for any given particle is the four-dimensional
space-time manifold itself: this comes equipped with a vol-
ume element ( — g)'/% d *x. Similarly, the momenta live natu-
rally in the cotangent space, which comes equipped with the
volume element { — g)~'/2d *p. The natural eight-dimen-
sional one-particle solution space, the cotangent bundle as-
sociated with the space-time manifold, thus comes equipped
with the volume element’

d*V=(—g)d*x(—g) d'p=d'xd*p
=d’xd’pdndp,. (3.1)
The mass shell constraint will of course restrict the
physics to a particular seven-dimensional hypersurface in
the cotangent bundle (so that p, may be thought of as a
function of the spatial p,’s) and, by focusing upon a given
instant of time, i.e., by setting 7 = constant, one selects out a
six-dimensional analog of the ordinary Newtonian phase

space. This space comes equipped with the natural volume
element

d°V=d’xd’p=(-g)""d’x(—g)~'"?d’p
=(—=y"2dx(— )" d’p, (3.2)

which can of course be written in a form that is manifestly
covariant'’:

d*V=dVdndp, =d°Vdrdm. (3.3)
It should be clear that this 5V is the natural element asso-
ciated with the noncovariant equations (2.13).

The full 6N-dimensional, N-particle phase space is con-
structed as the direct product of N identical copies of the
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one-particle phase space, and comes equipped with the vol-
ume element

N N
a7, = [[4°V: =[] 4°x dp'
i=1 i=1
The embedding of this space in the “natural” 8 N-dimension-
al covariant solution space has been considered by such
authors as Israel and Kandrup' or Hakim.?

It is perhaps most natural to think of the oscillator
phase space as being the cotangent bundle associated with an
infinite-dimensional flat manifold for which the g, ’s are the
generalized coordinates (the structure of curved, infinite-di-
mensional manifolds is of course a very subtle affair). The
volume element then takes the form

a7 ;= [] 49. dp4-
A=1

The total particle-field phase space is constructed as a
direct product of particle and field phase spaces, equipped
with the volume element

N ©
dO=d? ,d7 = (Hd3x, d{p’)( II 4. dp,,).
i=1 A=1
(3.6)
Given the introduction of the element 6, one may de-
fine the distribution function u, the basic object of the the-
ory, by the statement that

(3.4)

(3.5)

d7 =,u'(xlarpla,""qliplv--;ﬂ)de (3.7)

represents the probability that, at some time 7, each given
particle i has coordinates and momenta centered about the
values x;° and p',, and that each oscillator 4 has coordi-
nates and momenta centered about ¢, and p,, . Conservation
of probability in the infinite-dimensional phase space, i.e.,
the invariance of d%7 under Lie transport along the trajec-
tories defined by the equations of motion, then implies that

I 3 (dx,f’ ) J (dp’;, )

-+ + ) —

an zi:axi“ dn # T dp, \ dy #
ad (qu ) a (dPA )

+ + =0.

230, Can M) T S N #

It follows at once from Eq. (3.8) that one can impose the
normalization

fyd@:l

for all values of 7.
Given the fundamental distribution function u, one can

of course define appropriate reduced distributions. Thus, for
example, one may define the N-particle distribution

(3.8)

(3.9)

F (xl",p‘,,,-.-;n)zfy a7, (3.10)
and the field distribution
G(qupr-smM=|pd” . (3.11)

Of particular interest are the irreducible one-particle and
field distributions, (i) and g(4 ), obtained by integrating out
all the degrees of freedom except for one of the particles or
oscillators:
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fxpsm=f )= |F[Jd°V, (3.12)
and .

8lga.psm=8ld) = GB];[Aqu dps. (3.13)
These will of course satisfy the normalization

Jriaev. = 1= [sta g, dp.. 3.14

At this stage, it should be straightforward to proceed in
analogy with the standard Newtonian analyses to obtain var-
ious exact equations for the evolution of the reduced distri-
bution functions. Thus, for example, by integrating over the
degrees of freedom of some subset of the particles and the
oscillators, one can obtain various relations among the re-
duced distributions, and, therefore, one might hope to obtain
some useful analog of the standard BBGKY hierarchy of
coupled equations.'® Similarly, one might try to construct
some analog of the projection operator techniques developed
by Balescu, Prigogine, and their co-workers'®!? (this will,
however, be complicated by the facts that the “forces” will in
general be explicitly time dependent, and that even a “free”
particle will experience time-dependent effects). These sorts
of issues will be considered in a later paper.

The object here is to demonstrate simply that, in the
most naive possible limit, one can in fact recover a relativistic
analog of the ordinary self-consistent field (or Vlasov) ap-
proximation.”'8 This approximation amounts simply to the
assumption that, to lowest order, the full distribution © may
be taken as an infinite product of irreducible /s and g’s:

=1/ [] &4).

i=1 A=1

(3.15)

If one inserts this Ansatz into Eq. (3.8) and integrates over
the degrees of freedom for all of the oscillators and for ¥V — 1
of the particles, one obtains an equation of the form

af (i) 3 (dri 1 Ly
an + ax,*\dy .szya (l)pbf)
a (dTi 1 i -
- apia \E mzmpupv aay“ (l)f)
ad (dr ) )
_ Y |4 H =0, 3.16
2 (Graarae, o) 3.16)
where, now,
(F,(1)=d (D) =2,[2 ' (xiP], (3.17)
and
@@ =2"'3, [da. do. st 1.t0a. (3.18)

denotes an ‘‘average” value for the scalar field @, defined
with respect to the one-particle g(4 )’s. In a similar fashion,
one may obtain an equation for the evolution of each g(4 ).
Thus, if one supposes that ¢ is symmetric under particle
interchange, one finds that
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), % [, ﬂ"] 3
B pi=t|o q
on  P1a, "L “ .4
d
+ 22 a5, a3 P/ ey (3.19)

By constructing an appropriate moment of Eq. (3.19), it
will become apparent that the coupled system of Egs. (3.16)
and (3.19) really do imply a simple mean-field description.
The proof is straightforward if one observes that

—quA dp, gl ) valk) = — quA dp,s gl 1pathalk).
(3.20)

Equation (3.20) is easy enough to verify. Thus, if one views
Eq. {3.19) as an operator equation

— = Ag, (3.21)

an

it follows immediately by an integration by parts that

Jda. o .t = [dg. dp. vtk gia)

J-qu dp, q ¥k ps jg
- _ jqu dp. 0k pagd).
(3.22)

What one must do now is multiply Eq. (3.19) by the
quantity ¥, (/|p,,, integrate over the variables g, and p ,, and
then sum over all the 4 ’s. By virtue of Eq. (3.20), it follows
that

ZquA dp, alilp. [af;g’?"

=[—a,72+(1

1+ 6n)—q c?g(A)J
P4

- [ —32+(1+ 6n)%]{) (@ i) (3.23)

Similarly, it is easy to see that

dgld)
p 4

;J.dq,q aps Yullpawa’q,
— =3 da dpa sl walh

— 5[4, dp. sid)g.av.0)
= 4 (x) = A2 (@ (0. (324)

And finally, a somewhat more complicated calculation
shows that
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ZquA dp, ¢A(I)p,4fd x,d>p f(]) ,/, (1) g(A)

— — D5 fda dp, ata)]

drl

fdxd O (0

4w NA dr
—_ d3x. dp! Fl1)=L
; x,dp f( )d

X (= 7N = ) 2690, — x,°)
__ Ama? (o) (3,25
m —
where
Ay 3,d7'i_ ~1/2, £ i g
<p(z)>=Nfd P =8 —Nmfdw 10

(3.26)

and do' denotes the invariant three-dimensional momen-
tum space volume element associated with particle i.'” The
quantity { p(/}) may of course be interpreted as an “average”
density defined with respect to the one-particle distribution.
By combining Egs. {(3.22)—(3.26), one concludes that

3,%y) — (1 +6n)(2"/2)(y) — 4 ()

= 47(A /m)2°{ p)/(— V™) (3.27)
or, equivalently, that

V. V(@) +nR [gI{P) = 4m{d /m){ p). (3.28)

The coupled system of Egs. (3.16} and (3.28) constitute a
simple relativistic analog of the ordinary self-consistent field
approximation. A gravitational analog of these equations is
in fact the starting point for the stability theory of “collision-
less stellar dynamics™ developed by such authors as Ipser
and Thorne,"! in which one is concerned with the behavior of
linearized perturbations of a static background space-time.’
There is also an obvious connection with the sort of formal-
ism developed by such authors as Ehlers, Ellis, Israel, and
Stewart.'72%22 It should, however, be observed that these
authors were concerned with the full nonlinear Einstein
equations and, as such, they could not have expressed their
fields as a linear superposition of oscillators.

At this stage, it is also straightforward to derive hydro-
dynamic moment equations involving the particle distribu-
tions. Thus, for example, a trivial integration of Eq. (3.16)
shows that the “average” current

<Jﬂ>—zvfd ol —g) imZE

dnf

—N[ap—g I Ly s

dn n?
=1vf do PHf (3.29
will satisfy the relation
V.(J*) =0 (3.30)

This is nothing more than an expression of probability con-
servation. Similarly, if one multiplies Eq. (3.16) by dx* /dr
before integrating, one finds that
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VATHY = — %v,,@)(g‘”(p) +(T*)), (3.31)
where
(TH) = i”f— J dw P*P*f. (3.32)

Equation (3.31) is the energy-momentum balance equation.

IV. TWO LIMITING CASES
A. A static background space-time

Equation (3.16) assumes a particularly simple form for
the special case of a space-time that is actually static. In this
case, one may of course arrange that £2 = 1, so that 7 = ¢,
and, therefore, the mean-field or Vlasov equation takes the
form

Ly 2 ) L 07)
- ai(%lm vy (cb)f) (4.1)

It is useful to rewrite this expression in a form that is
manifestly covariant. In the limit that £2 = 1, one knows that

—P = ( - 7”)1/2(”12 + ?/abpapb)l/2 (42)
and
LA Vp . (4.3)
dr m
and, therefore, one finds that
J (_d’_) R S
dp, \dr mp, L
and
d ( dt ) 1
—_— = - —— a, 7. 4.4
e 2mptp,4pv 7 (4.4)
Equation (4.1) thus takes the form
Tos)+ gl )~ s 1)
+ 1 v Va
at( p.f pw mpJ .2 PPy 0V f
s (o)L _ 3y oyf=0. @)
ap, m
It is, however, easy to see that
9 4, =P (4.6)
ap, m
and
_i pupv aag“v = r:{z,upllpy’ (4'7)

where I” j,‘,, is the Christoffel symbol associated withg,,, , and
one therefore concludes that

Z(Es)+ Tt

ax*\m ap, \m

9144V, (D)) =0,

[24

or, equivalently, that

(4.8)
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1:" aaf; m ay llp“ f aj (AAa”v,u (¢ )f) =

(4.9)

In obtaining these relations, one has of course exploited the
fact that f depends upon only three independent components
of momentum. Equations (3.28) and (4.9) define a mean-field
theory that is manifestly covariant. The relativistic theory of
“collisionless stellar dynamics” admits to an analogous for-
mulation.

One of the crucial bits of folklore underlying one’s intu-
ition in kinetic theory is the idea that the mean-field equa-
tions should admit the isothermal distribution as an exact,
stationary solution. In other words, one anticipates that Eq.
(4.9) should admit a solution of the form

log f=a(x) + B(x)(m, ) = a(x) + (1 + A (P )/m)B,, (x)p",
(4.10)

where (7, ) denotes the canonical momentum associated
with the “average” ().

That this is in fact the case is not difficult to see. If one
substitutes Eq. (4.10) into Eq. (4.9) and, consistent with the
linearized equations (2.13), neglects contributions quadratic
in A, one finds that
"—”vﬂ<a _ 1’1-@)) + (1 +5-<—¢l)—)1’“1’ v,.B,,
m m m m

(o

—B*V, (@) =0. (4.11)

This relation will be satisfied identically if the coefficients of
p" and p*p” and the terms independent of p each vanish
separately. In other words, Eq. (4.10} will in fact provide a
solution if (i) V,,B, =0, (i) B*V,(®) =0, and (iii)
a(x) — 34 (@ )/m = const.”?

Condition (i) requires simply that B, be a Killing field.
If, moreover, the hydrodynamic moments of f are to exist,
one must demand that B, be timelike.'” That such a Killing
field exists is of course guaranteed since, by assumption, the
space-time is static. Condition (ii) requires that B,, Lie derive
theaverage (@ ), i.e., that (@ ) be “timeindependent.” If one
supposes that B = 8 9,, Eq. (4.10) takes the form

log f = const + 34 <¢ )

._ﬁ( )1/2( A<¢>)(m _‘_,}/apapb)l/Z
= const + 3A(2)
m
_ 1 ( /1 <¢> 2 1/2 4.12
aalt Yoz + #pap) (812
where, now,
kT (x)( — 7,)"/>=B ~"' = const. (4.13)

It should be observed that the coefficient of 8 in Eq. {4.12} is
nothing other than the Hamiltonian (2.7), viewed as a func-
tion of the average (@ ). The T (x) defined by Eq. (4.13) is of
course the “physical,” red-shifted temperature.'”** The
presence of the factor 34 (@ )/m, required by condition (iii),
is a manifestation of the noninvariance of the six-dimension-
al volume element: dF,, /dp, #0.
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B. Radiative modes in a spatially flat Friedmann
cosmology

The mean field description developed in Sec. III may
also be used to describe such phenomena as radiative modes
in a £ = 0 Friedmann cosmology. Here, of course, the metric
may be written in the form

ds® = ) —dy* + 8,, dx° dx"). (4.14)
And thus, if one supposes (i) that the conformal factor
Qo t? cnp?”' =P and (ii) that ( p) =0 (i.e., that only fields
need be considered), one is led to an homogeneous wave
equation of the form

3,%(x) — [ p(2p — 1)/(1 — pP1(1 + 6n){y) — 4 () =0.
(4.15)
If one assumes that p =4, i.e., that the cosmology is
dominated by a zero-pressure fluid, and looks for solutions
with spatial dependence exp(ik, x*), one obtains the ampli-
tude equation

P~ [2(1 + 6n)/n?1y + k2 =0. (4.16)
In terms of the rescaled

$m=n""¢n), (4.17)
this relation takes the form

"+ (/G + (k2 —v2/776 =0, (4.18)
where

v =1+ 16n/3)"/2 (4.19)

Equation (4.18) is of course Bessel’s equation and,
therefore, the general solution takes the form

(@ (x°,1)) = explik,x"\p~>">[4J, (kn) + BN, (k)]
(4.20)

In the limit of short-wavelength disturbances, Eq. (4.20) im-
plies an oscillatory time dependence. Alternatively, in the
limit of long wavelengths, one obtains a simple power law
behavior. For the conformally invariant wave equation, with
r = —} and v = |, the long-wavelength limit implies that
(@) <y~ or p~2 In other words, one is led to damped
solutions

(Dot~ or t 23, (4.21)

For the minimally coupled equation, with n =0 and v =3,
the long-wavelength modes exhibit a time-dependence
(@)xn®ory3 ie,

(D)ectorr 1. (4.22)

Again, in this case, there are no growing modes. If, however,
one allows for any n > 0, one will in fact obtain solutions that
grow with time. Thus, in particular, the case whenn = +}
implies that (@ ) cz /3 or t —*/3,

V. LINEARIZED GRAVITATIONAL INTERACTIONS IN A
SPATIALLY FLAT FRIEDMANN COSMOLOGY

Turn now to the linearized gravitational interaction de-
scribed in Sec. I. For the special case of a spatially flat Fried-
mann cosmology, with a metric given by Eq. (4.14), the parti-
cle equations of motion take the forms
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dx, dr, 1

ab..i

dn  dyg Q7m0
and

dp' dr, 1

e T A (8T (i p,, 5.1

d7] d’)7 ﬂ4m azl() ,uv( )pr P ( )
where, recall, 8I"7%, is defined by Eq. (1.2), p;* =9*"p’,,
and

4,, =0%,, +m p,p,, (5.2)

where 7,,, is the Minkowski metric.

When considering the field equation for 4, ", it is very
convenient to impose the so-called synchronous gauge con-
dition?>-¢

h,"=h,"=0. {5.3)
This condition implies that one need only consider the spa-
tial components of the field equation, and, moreover, that
they may be viewed as a relation involving the 3 x 3 spatial
tensor A,®. The perturbed Einstein tensor §G,? may of
course be generated from the perturbed Ricci tensor by the
relation

8G,” =6R,” — 16,%5R,*,
and it is straightforward to calculate
(4.14),

(5.4}

13,26 that, for the metric

8R, = zol_i(ac Fhye + & Oyh,* — & 3,h,* — 3 ,h,)

1 a ' a ' a ¢
+§'_{2_261]2hb +F8nhb +E—36b a.,lhc (55)

and
S6R," = (1/202 2)8,,2hc“ + (27202 3)c?,,hc“. (5.6)

It is useful to re-express Egs. (5.5) and (5.6) in terms of
the new function

§ab=hab_5abhcc’ (5'7)
for which
hab=§ab_%5ab§cc' (58)

Thus, with this substitution, one finds that
8G," = (1/20%)[3,%.° + (202'/02)3,£," — (4£)." ],

(5.9
where?’
(48).°=30.8,° -3 9.8.°
—FEL+ 68,2008,
+9d, 8%.° 15,73, (5.10)

In Eq. (5.10}, one is again instructed to raise and lower in-
dices with the conformal metric y,,, so that
& = y*d, = n*d, = d,. These relations lead to an inho-
mogeneous wave equation of the form

3%, +(202'/02)9,£," — (4¢),"
=162 T,° — [T,,"]B), (5.11)
where, recall, T, . and [Ty"] p denote, respectively, the
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stress energies appropriate for the “true” and “background”
space-times.

It is convenient at this stage to eliminate explicit refer-
ence to [ T,”] 5 by rewriting £,” in the form

£,°=H,"—[H,"]s, (5.12)
where
3,2 [H, s +(202'/2)0,[H, |5 — (4 [H]15).°
=16m2*[T," ] 5. (5.13)

This decomposition of £,° is of course not unique. In any
case, Egs. (5.12) and (5.13) imply that

3,°H,* +(202'/02)3, H,* — (AH),’

167 47 e e
= mi* Z%’p apib5(3)[x X (77)]’
where one has inserted the explicit form of 7,,°.
One is now in a position to expand the linear field H,*
in terms of appropriately defined field oscillators. In analogy
with the discussion in Sec. III, the idea is to view Eq. (5.14) as
an operator equation on a Hilbert space with inner product

E%0Lat) = fd Sx £, (X5, ).

The important point again is that if one can justify neglecting
all surface terms when integrating by parts, one may show
that 4 is in fact symmetric?®:

(£:45) = (48,0)-

This implies that the eigenvalues of A will be real and that
the eigenvectors will be orthogonal. Had one worked instead
with /1, %, rather than with £, °, the analysis would have been
more complicated.

If, as in Sec. III, one assumes that the modes are both
discrete and complete, H,” may be expressed as a linear
combination of the form

(5.14)

(5.15)

(5.16)

H x5 = Y g (x), (5.17)
A=1

where

(A¢4)," + @4 s =0. (5.18)
If one then imposes the normalization

(Y455) =476 45, (5.19)
the assumption of completeness requires that

{5.20)

E#’A (XN, 4 (x) = 48, 8,8 % — 3°).
y

At this stage, it is easy to obtain the equations of motion
for the individual oscillators. All that one need do is substi-
tute the expansion (5.17) into Eq. (5.14), take the inner pro-
duct with ¥ (i}, and divide through by 4:

” 2"2, ' 2 I LI b apy
+——q + w _—-_E_ a j¢ i
UF] .() B 5 98 .041' lp P Ab()

=30, ({1 ") (5.21)

Alternatively, Eq. (5.21) may be viewed as a coupled first-
order system of the form
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dq,

dn = —Pa

and
Pr_ M - S0 . (5:22)
d’T] 0 A A - a Ab . .

Given the equations of motion (5.1} and (5.22), it is
straightforward to define a distribution function
w(x:%p" s sq.4:P4»--sm) and to formulate an N-particle con-
servation equation. In analogy with Eq. (3.8), this relation
takes the form

au d (dTi 1 )
Sy a
an Zc?x,“ dn 1 e

J (dr 1 T2 (ip,* V)
apa dﬂ .{24 a/l v i pi
20
Z (pAu { 5 P
aPA

o7, — S0, 0] - (5.23)

Such matters as the definitions of reduced distributions will
of course be trivial.

It is also simple enough to explore the consequences of a
self-consistent field approximation of the form generated by
Eq. (3.15). Thus, in this approximation, it is easy to see that
afli) + ar p’  of

dn dn mQ2? 3x,°
J (dT
© 9p', \dnp 2°m

A 6T 0D ) =0,
(5.24)
where, now, (8I'7.,) denotes the “perturbed Christoffel
symbol” assoc1ated with the average (4, ) [c.f. Eq. (1.5)]:
(Sriy=4v.(h*) +V, (h,*) —V(h,)) (529

Consistent with the gauge conditions (5.3), (A, ) is con-
strained so that

(h,") = (h,") =<(h,") =0, (5.26)
whereas the spatial components satisfy the relation
(hab> = <§ab> _6ab(§cc>’ (527)

where

€.5) = (H,*) — [H,"]s
- zquA dps gAMata’ — [Ha']a- (528)

The quantity (H,°) may be viewed as an average value for

H,"* defined with respect to the one-particleg(4 )’s. Ina simi-

lar fashion, one finds that, in this approximation,

dg(A4) dg 22 d ) , Og
an Pa 34, 2 o, P48 4 94 ap,

_Nfd 3, d ! f(1)0,* (e,

It is again straightforward to verlfy that Eq. (5.29) im-
plies a well-defined “average” field equation. Thus, in ana-
logy with Eq. (3.20), it is easy to see that

=0. (529
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9 b _ 5
317quA dp, 8(4)9.4¥ 4. quA dp, 8 AP Yu>

(5.30)
and, therefore, one may verify that
3, %H,") +(22'/2)3,(H,") — (A (H)),"
= 16m2*(T,"*), (5.31)
or, equivalently, that
5G,°[(H)]=8m(T,"), (5.32)

where 6G,°[(H )] denotes the linearized Einstein tensor
associated with (H,%), and (T, ) is defined by Eq. (3.32).

As a simple example, one may suppose that the “aver-
age” (T, ") is characterized completely by an average four-
velocity (U™ ), an isotropic pressure (P ), and an average
energy density (€} = ( p) + 3(P ) (this will, for example, be
the case if the one-particle distribution is a local Maxwel-
lian®®). In this event, (T, * ) takes the form appropriate for a
perfect fluid:

(T, = (&) + (PIU U™ +(P),”.  (5.33)

If one then assumes further that, in the usual way, [7,”] 5 is
itself given as a perfect fluid, and recalls that the quantity
(T,?) — [T,"]5 is to be treated as a linearized perturba-
tion, one concludes that

(6T, )=(T,*) — [T,% s =8.°(6P), {5.34)
so that the “average” field equation takes the form
6G,°[(£)] =8mw(8T,") = 8w5,°(6P). {5.35)

In a similar fashion, one may record hydrodynamic mo-
ment equations involving the particle distribution. Thus, for
example, it is easy to see that the average current (J* ) satis-
fies the relation

V., (J*) =0. (5.36)

And, similarly, one finds that the energy-momentum ba-
lance equation takes the form

Vo (T = — (6L L)6:°(T*) +(T;#)), (5.37)

where, now,

(T, o0y = f dw P,PPP P"f. (5.38)
m

It is of some interest to consider solutions to Eq. (5.35)

for the special case when (57, ) = 0. If one supposes that

N «n?«t?3, and looks for plane-wave solutions, one ob-

tains an amplitude equation of the form

gab” + (4/77)501” + kzg-ab - kbkcg-ac - kcka&cb

+ 8, %k k£ + kK E— 18,k %E, =0,  (5.39)
where, explicitly, k > = k_k = k_k,. Equation (5.39) is still
rather complicated, since it couples together the various

components Sa b, If, however, one restricts attention to trace-
less modes with 4_.¢ = 0, so that

(hy = (€., (5.40)
and supposes further that V, (4 ¢, ) =0, so that
k,&,°=0, (5.41)
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one obtains the comparatively simple relation

Eab"+ii:,,‘“+kzil,,"=o. (5.42)
n
It follows immediately from Eq. (5.42) that
(hy"(x%m))
=772 explik.x)[A, T3 2lkn) + B, "N3 plkn) ],
(5.43)

where A,° and B,® are constants so chosen that
k,A4,° =k,B,°=0 and 4,°=B,°=0. In the limit of
short-wavelength disturbances, those solutions will exhibit
an oscillatory behavior. Alternatively, in the limit of long
wavelengths, they will exhibit a time dependence of the form

(h,?)«t® or ¢t (5.44)

so that (h,,)=g,, (h,*) ct** or ¢ '/3. These are of course
well-known results.?
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An exact solution of the equations of general relativity is given which tends to Einstein—de Sitter at
late times. The energy density is inhomogeneous at early times, and is singular on two spherical
surfaces which may be related to the “bubbles” typical of inflationary universe models.
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I. INTRODUCTION

The universe at the present time can be reasonably well
described by a solution of Einstein’s equations in which the
energy density of matter is homogeneous and isotropic and
the pressure of matter is zero. The simplest such solution is
the Einstein—de Sitter one. However, it is now widely ac-
knowledged that the universe at early times cannot be well
described by solutions of this type: they lead to serious astro-
physical problems, of which the best known are those to do
with flatness, the horizon, and galaxy formation. These
problems have been known for a while, and can in principle
be resolved by a model which is Einstein—de Sitter at late
times but differs from this at early times. This has been one of
the motivations for the study of inhomogeneous and aniso-
tropic solutions of Einstein’s equations (see Refs. 1-4 for
reviews). Attempts to resolve the classical astrophysical
problems have been recently renewed, and have led to the
proposal of the “inflationary” universe models.>® Many so-
lutions of Einstein’s equations which are inflationary in na-
ture are also inhomogeneous and anistropic,’ so the motiva-
tion for studying solutions of the latter type has also been
recently renewed.

Although there is strong motivation for studying solu-
tions of Einstein’s equations which are Einstein—de Sitter at
late times but differ from this at early times, most solutions
of the desired type are too complicated to work with easily in
astrophysical contexts. Therefore, an attempt has been made
to find solutions of the desired type which are relatively sim-
ple. The procedure which has been adopted is naive but ef-
fective. In the Einstein—de Sitter solution, distances vary as
S?/%, where f = t and t is the time. An attempt has been made
to find “generalized” Einstein—de Sitter solutions which are
spherically symmetric and have f=kt + k,g(R)+ k,,
where the k ’s are constants and g(R ) is a function of a radial
space coordinate. In what follows, a particularly simple so-
lution of this type will be presented.

Il. A COSMOLOGICAL SOLUTION
A spherically symmetric metric is taken in the form
ds’ =e°dt?> —e*dR? — P(dB? + sin? 0 dg ?). (1)

Here, the metric coefficients o, w, and r are all functions of
the time r and a comoving radial space coordinate R. Deriva-
tives with respect to ¢ and R will be denoted by (-) and ('),
respectively. With (1) and a perfect-fluid energy-momentum
tensor, Einstein’s equations can be expressed®!° as five rela-
tions (of which the first is really a definition). These are

2m/r=1+e %P —e~“r? (2a)
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m= —4mr’ip, (2b)
m’ = 4rre, (2¢c)
o= —2p'/p+e) (2d)
o= —2&/p+¢€) —4i/r. (2e)

Here, m is the mass, p is the pressure, and € is the energy
density. Units have been chosen in which the magnitudes of
the Newtonian gravitational constant and the velocity of
light are unity.

It may be verified by direct substitution that a solution
of (2) is given by

f=kit+k,log, R+ k;, (3a)
el =1, e =fY142k,/3f), r=f"R, (3b)
m=2k3iR3*9, p=0, e€=k32af(2k,+ 3f) {3¢)
Here, as mentioned above, the & ’s are constants.

ill. DISCUSSION

The solution (3) has some interesting properties, of
which the main ones may be mentioned here. For t— w0,
S~kit,e”* ~f*3 e~(6mt?) ™}, and is homogeneous, and the
solution tends to Einstein—de Sitter. For +—0, ¢ is inhomo-
geneous. The energy density is singlular (é— o0 ) on two hy-
persurfaces, namely f= 0 and (2%, + 3f) = 0. On these hy-
persurfaces, the metric is also singular, since r~»0 and
e“/2-0, respectively. This behavior appears to be typical of
solutions like this, since in another solution of this type® a
similar behavior is found. It is not necessarily unphysical,
since by a suitable choice of parameters such solutions can be
interpreted as cosmological models.!" Indeed, the existence
of singular hypersurfaces in (3) may be regarded as an asset.
These surfaces are spherical in ordinary three-dimensional
space, and may therefore be related to the “bubbles” typical
of inflationary universe models.>~’” These latter models are
characterized by two or more regions separated by singular
surfaces, where at least one of the regions has a finite vacuum
energy density. The latter can be incorporated into the solu-
tion (3) by the usual device’ of assuming that the total energy
density (€) and total pressure (p) can be expressed as sums of a
matter part and a vacuum part: e=e,, + €,, p=p,, +p,.
For €, = —p, = A /8, this is equivalent to introducing
the cosmological constant A. It is hoped to report in greater
detail on the astrophysical applications of (3) and its relation
to inflationary universe models in future work.
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The problem of the coupled Einstein—-Maxwell scalar field in the framework of general scalar
tensor theory of Nordtvedt is completely solved for plane symmetric static matter-free space-
time. Special cases are considered for some special choices of @ as functions of the scalar field.
Solutions are given also in the absence of the electromagnetic field and these are shown to generate
a few special cases of Bianchi I cosmological models when subject to a set of complex

transformations of coordinates.
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I. INTRODUCTION

Amongst different scalar tensor theories of gravitation
Brans-Dicke’ theory attracted attention at a certain stage
since the theory could incorporate Mach’s principle in its
framework and also because there is no a priori reason to
exclude the introduction of a scalar field in the universe.
However, the results of recent experiments pointed towards
very large values of w at the present stage of the universe
making only a very little deviation from Einstein’s theory. In
this context the general scalar tensor theory in which w is a
function of the scalar field and is a variable (Nordtvedt?) may
be worth investigating. The implication of the said theory in
cosmological models appear to be particularly appealing in
view of the fact that the parameter @, which is apparently
quite large at the present stage of evolution, might be small at
other epochs and small w will introduce a distinct difference
in the dynamics of a model from that of the corresponding
model in the absence of the scalar field. Because of such a
possible role of the scalar field in the generalized scalar ten-
sor theory exact static and nonstatic solutions should be
studied. In fact there are already some in the literature in
Nordtvedt’s theory (Banerjee and Duttachoudhury,® Bar-
kar,* Banerjee and Santos,>® Rao and Reddy,” and Van den
Bergh®).

In the present paper we propose to find exact solutions
of the gravitational field equations for the electrovac in
Nordtvedt’s scalar-tensor theory for a plane symmetric stat-
ic space-time, which by definition admits three parameter
groups with minimum varieties as zero-curvature two-di-
mensional surfaces. The work of Amundsen and Grén® con-
tains exhaustive references of existing solutions for plane
symmetric static and nonstatic solutions, none of which,
however, refers to Nordtvedt’s scalar tensor theory.

In Sec. II we consider the plane symmetric metric in the
form of Taub and completely solve the field equations in
presence of electromagnetic field and scalar field. Solutions
are given for different choices of w as functions of #. The
functional forms are chosen as examples from the different
theories as given clearly in Van den Bergh’s paper previously
mentioned and the corresponding solutions are given. They
include the Brans-Dicke solution as a special case for
@ = const.

In Sec. I1I exact solutions in the absence of electromag-
netic field are obtained.
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Lastly, in Sec. IV a few special cases of Bianchi I cosmo-
logical solutions are constructed from the static plane sym-
metric solutions by complex transformations of the coordi-
nates and some of their properties are indicated.

. SOLUTIONS OF THE FIELD EQUATIONS
We consider the line element in the form {Taub)
ds* = e**(dt? — dx?) — e (dy* + dZ?), (2.1)

where @ and £ are functions of x alone. The coupled Nordt-
vedt—-Maxwell field equations in matter-free space may be
written as
ZB ” + 3B12 _ Zarﬂ:
—2a 4 12 12 ’ ”
_ e oy _Ha,_wl)ﬂ _ '/’—,(2.2)
¥ 27 / Y

" ” n_ e 7 oyY? Y U
+ = — -8B — - (23
a"+p B 5 B " 7 (2.3)

e —w )Y e

B "2 + Zai B 12 — +
¥ 24

where a prime indicates differentiation with respect to x.
Further the wave equation for the scalar field 1) and the Max-
well equation for the electric potential ¢ are given, respec-
tively, by

P +28'Y = —o'Y/(20 + 3), (2.5)
and

[e=2=Alg']" =0. (2.6)
The Maxwell equation (2.6) can be readily integrated to yield

efmug =g, (2.7)

where g is an arbitrary constant which is seen to be related to
the charge contained by the source. Adding (2.2) and (2.4)
together we obtain

B YA Y +48'Y = — 2% (2.8)
Multiplying Eq. (2.8) throughout by ¢* and using Eq. (2.7)
we arrive at the equation

[e*%]" + 294" =0, (2.9)

which in turn yields on integration

(Y]’ + 294 = p, (2.10)

where p is another arbitrary constant. Next we multiply Eq.
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(2.3) by 2 and add the result with the equation obtained by

subtracting Eq. (2.4) from Eq. (2.2). This gives

(2a” +4aB ) + 2o’ +2B'W + 4" —2e~ % =0.
(2.11)

By means of Eq. (2.6) we now eliminate 5 ' from Eq. (2.11) and
obtain

()’ — (Yo" =2¢", (2.12)
which on integration gives
Y= (p>+ad +b), (2.13)

where a and b are arbitrary constants. Again Eq. (2.10) may
also be written as

P Y2B+ /) =p — 24 (2.14)
Dividing Eq. (2.14) by (2.13) and using Eq. (2.7) we get
1w+ ¥ M (2.15)

] $*+ad+b
which can be integrated in three different cases, viz. @ > 4b,
a® = 4b, and a® < 4b, to yield the following relations:

(a) a*>4b,
Y =(¢>+ap+b)"!
[2¢+a—m]1p/q+a m.

>

20 +a+d* —4b
(2.16a)

(b) a*=4b,
28, —2 _ 2(p/g +a)].
e*Yy=(2¢ +a) exp[ ——(2¢+a) ; (2.16b)
(c) a*<4b,
p=(¢*+ap+b)7"

X exp [Z(p/q +a) tan™! 24 +a) ] (2.16c)

Jab — a* Jab —a?

Equations (2.13) and (2.16) relate the metric with the electric
potential and the scalar field. In view of (2.7), (2.13), and
(2.16) one gets equations for the electric potential ¢, which
on integration yield the following different solutions in dif-
ferent cases:

() a*>4b, p/q# —a, p/g#—a+a®—4b,
(2¢ +p/q + 2a)° + (P*/q* + 2ap/q + 4b)
4(p/q + a) p*/q* + 2ap/q + 4b)

X(2¢ +a —\/ET_—4b_)[(p/q+a)/ml .
X(2¢+a+M)_[(P/q+“)/M]—I

=(g/8)x + ny; (2.17a)
(i) a*>4b p/g= —a,
. 1 (2¢ + a)
2a* —4b) L 4(p> +ap +b)
4 1 ln(2¢+a—\/a2—4b)]
2Ja? — 4b 20+a+ Ja® —ab
= (q/8)x + ny; (2.17b)

(iii) a*>4b, p/q= —a+-Ja*—4b,
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+4/a*—4b | {24 +a) £ a® —4b }?
1

1
+
(i\/a2—4b) [2¢+ai\/a2—4b

4 1 ln(2(15—}—0—\/a2—4b )H
2a*—4b  \20+a+Ja¥—4b
= (q/8)x + n; (2.17¢)
(iv) a*=4b, p/q# —a,
1
— [(2 2
/e v ap [(2¢ + a)(2¢ + 3a + 2p/q)
+ 2(p/q + 0)2]e~2(p/q+a;/2(¢+a)
= (g/2)x + ny; (2.17d)
(v) a®=4b, p/g= —a,
$=14[(—3¢/2x +n517'° —a/2; (2.17¢)
(vi) a*<4b, p/q# —a,
exp 2(2¢ +4a) +0) ( 20 +a )]
Vv4b — a2 Jab —a?
X [4(p/q + a)( p*/q* + 2ap/q + 4b)] !
X [2(p/q+a)2 cos? [tan ( 2 +a )]
(4b — a’) Jab— &
+ —(p/q+ ) sin 2 [tan_1 (——2¢ ta )] + 1]
Vab — a? Vb — a*
= (q/8)x + ng; (2.171)
(vii) az<4b p/q= —a,
20 +a
2(4b—f12) 4> +adp+b)
—
Vab - a2 Jab —a?
= (¢/8)x + n,. (2.17g)

In the above r,n,,n,,...,n; are arbitrary constants. It may be
noted that except for the case (v) the solutions for ¢ given by
(2.17¢) are in transcendental forms preventing us from ob-
taining algebraically ¢ as a function of x.

We next use relations (2.13) and (2.16) to eliminate
and the derivatives of @ and B8 from the field equations and
arrive at the equation

¢ 2
#*+ad+b)
(2.18)

Now with ¢ given by (2.17) we can solve Eq. (2.18) for ¢,
at least in principle, provided an exact functional form of
w(y) is known. It then follows from relations (2.13) and (2.16)

that it is formally possible to obtain the explicit forms for the
metric.

Again with Eqgs. (2.13) and (2.16)—{2.18) at hand it is not
difficult to discuss the corresponding cases in the absence of
the scalar field. Now in view of (2.18), ¢’ vanishes when ( p*/
q* + 2ap/q + 4b) = 0. Bearing this in mind while eliminat-
ing ¢ between (2.16a) and (2.17c) one arrives at the expres-

sion for a®> 4b, p/q = — a + \Ja> — 4b,

"2
2w + 3) % =(p*/q* + 2ap/q + 4b)
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Y+ [2/(p/q + a))ePy'?
+ [2/(p/q + @] In[1 — (p/q + a)ePy'"?]
=2(p/q + a)lgx + 8ns). (2.19)

On the other hand using (2.17¢) in (2.13) and (2.16b), respec-
tively, one obtains for a> =4band p/g = —a

e = (1/4y) — (3¢/2)x + ns) 2", (2.20)
# = (1/9)( — (3g/2x + ns)">. (2.21)

Equations (2.19)—(2.21) with ¢ = const can be easily recog-
nized as Patnaik’s results for the electrovac in general rela-
tivity.'® It is not difficult to see that here 8 = a leads us to
¢ ' =0, which means that field equations in this case do not
admit an electrovac solution.

lll. GRAVITATIONAL FIELDS DUE TO AN UNCHARGED
SOURCE

In the absence of the electric field, ¢ ' = 0 and Eqgs. (2.8)
and (2.11) yield, respectively, on integration

ey =cx +d, (3.1)
and
EPY2a’ + /) =1, (3.2)

¢, d, and f being arbitrary constants. Now combining (3.1)
and (3.2) one has

2 + /Y =f/lex + d), (3-3)

which in turn integrates to give, after suitable coordinate
transformations absoring the integration constant,

Y= (cx + d Y7~ (3.4)

Now eliminating the derivatives of & and 8 by means of (3.1)
and (3.4) one obtains from the field equations

( 20 x+d) (3-3)

It follows from Eq. (3.5) that the constant (1 + 2f/¢) and
(2w + 3) must have the same sign. In what follows we shall,
however, choose (2w + 3)>0. This choice corresponds to
the scalar field with positive energy density of the contribu-
tion from the scalar field.

By virtue of the above analysis integration of the field
equations is essentially reduced to the task of solving Eq.
(3.5) with a suitable functional form of w(¢). Equations (3.1)
and (3.4) then give the explicit forms for the metric provided
the integration of (3.5) yields ¢ as an exact function of x.

Different theories suggest different forms of w as func-
tions of the scalar field (see Ref. 8 and references therein). We
now integrate Eq.(3.5) and give explicit forms for the metric
by means of (3.1) and (3.4) in some of these theories.

(2w+3)'/’

A. Brans-Dicke theory: » = const

Here,

¥ =1dfex +d)- (3.6a)

¥ =ys ex+d) K (3.6b)
=9 ex +dYek, (3.6¢)

with k2 = [(1 + 2f/¢)/(20 + 3)] and 9, an arbitrary con-
stant. In this context it may be mentioned that the solutions
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given by Reddy'! in this case are erroneous owing to use of
an incorrect set of field equation in the work.

B. Barkar theory: w = (4 — 3y)/2(y — 1)

Here,

¥ =sec’[In {A(ex +d)}], (3.7a)
e = (cx + d)cos*[In{A (ex + d)'} ], (3.7b)
e =(cx +d Y’ cos*’[In{d (cx + d)}], (3.7¢)

with /? = }(1 + 2f/c) and 4 an arbitrary constant. Solutions
(3.7) were previously given by Banerjee and Duttachoud-
hury.?

C. Schwinger theory: » = (1 — 3n¢)/2ny, n being a
constant [n> 0]

Here,

Y= [In{Blex +dy"}]172, (3.8a)

ew:(cx+d)[1n{3(cx+d)m}]2» (3.8b)
=(cx +dY[In{B(cx +d)"}]? (3.8¢)

with m* = i[n(1 + 2f/c)] and B an arbitrary constant.

D. Models with curvature coupling: » = 3y/2(1 — )

Here,

Yv=4D(cx +d)'[1+Dicx+d)] 3 (3.9a)
e =(1/4D)(cx +d)' ~"[1 + D(ex +d)"]%,  (3.9b)
e**=(1/4D)cx +d Y ~"[1+D(ex +d)']> (3.9¢)

In the above n* = 1/3(1 + 2f/c) and D is an arbitrary con-
stant. It may be pointed out here that any other scalar de-
fined to be proportional to (1 — #)'/? will satisfy a confor-
mally invariant equation (O + }R ) ¥ = O (see Penrose'?).

IV. COSMOLOGICAL SOLUTION

The static solutions (3.6)—(3.9) can yield special cases of
Bianchi I homogeneous solutions when one performs a set of
complex coordinate transformations

x—i(t —d /c), ie, f——Iif.

In the following we give the final forms of a few cosmological
solutions obtained in the above manner.

t—ix, ¢c—>—

A. Brans-Dicke theory (v = const)

Here,

e =yy ' K (4.1a)

e2a=¢0— lc(f/c—k)t(f/c—k)’ (4.1b)

¥ =o', (4.1¢)

R 3 =e(a+2ﬁ)= '//0—3/20k1tk,, (41d)
and the Ricci scalar g“*R,,,, is given by

&R, = — o> Tk ot *, (4.1¢)
where

k2= (142f/c)2w +3) ",
ky = 1[20k % + 3(k — 1],

by = — [l + D2+ 4k — 12 + 1].
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In the above situation it is very clear for @ > 0. We note that
R—0 and g¢'R,,,— x as +—0. The model is monotonically
expanding or contracting without having a turning point. At
the initial epoch ¢ is either vanishingly small or infinitely
large depending on the sign of the constant XK. The same
conclusion was also previously arrived at by Matzner and
Ryan.!?

B. Barkar theory

The cosmological solutions corresponding to static so-
lutions (3.7) are

e =ctcos’(lInt+ A), (4.2a)

e =t e cos?(lnt + 1), (4.2b)

Y=sec’(llnt+ 1), (4.2¢)

R3=e"+¥ = chtlhicos®lInt + 1), (4.2d)
and

g°R,, = —8c W% ~2hsec’(llnt + 4 ) (4.2¢)

with
PP=41+2/c), A=Ildc), 1,=("+3/4).

Here we see that as +—0, we have R >0, i.e., the spatial
volume of the model is zero and at a subsequent time when
sec(/ In t + A }—0, we have again R >—0. There is a turning
point inbetween at z = exp((1/7){tan~'{/,/3]) — A }], where
the spatial volume attains a maximum value. It is also seen
that 1 has a minimum value thatis ¢ = 1 at¢ = exp( — 4 /I).
At this epoch, since the parameter @ becomes infinitely
large, there is little difference from the corresponding situa-
tion in general relativity. One may also readily verify that
#>0 when R = 0. In other words the expansion halts after
the scalar field crosses its minimum.

C. Schwinger theory

In view of the static solutions (3.8) the corresponding
cosmological solutions are

e =T [In(BT™)]?, (4.3a)
= — T//[In(BT™))?, (4.3b)
¥ = [In(BT™)] 2, (4.3¢)
R3 = ¢le+2) — TU+/29[|n(BT™)]3, (4.3d)
and the Ricci scalar
8 Ry = (—2/nm*T ~ X /29[ In(BT™)] %, (4.3¢)

where the symbol 7 stands for ct.

Here we observe that R *—0 and g"'R,,,— o as f ap-’
proaches O and also 1/(CB'/™)and R = 0 at an intermediate
stage. It can be easily shown that for m <0, R <0 at the
turning point R = 0 and thus we have a maximum of the
spatial volume at this epoch. Further the scalar field ¢ ap-
proaches zero or infinity as the spatial volume vanishes, i.e.,
R3-0.
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D. Curvature coupling

Bianchi I type cosmological solutions are obtained from
(3.9) in the form

¢ =D ~'T" =1+ DT"]’, (4.4a)

@ =D ' TV [14 DT"]7, (4.40)

4= 4DT"[1 4+ DT, 440
R*=ée+ = L psnpomnrr|l +DT"]3
8 DTn ’

(4.4d)

and g“'R,,, = 0 with T written for ct.

The above model has a monotonic time behavior indi-
cating that there is no turning point anywhere in the evolu-
tionfrom ¢t = 0to# = co. Oneshould note that the vanishing
of ¥ at any instant indicates the infinitely large value of the
gravitational constant, which, however, ensures the exis-
tence of singularity.

We have seen that in none of the cosmological models
cited above the existence of singularity can be avoided. For
all the above models expressed in the metrics given in (4.5)-
(4.8) if one puts ¥ = O one finds immediately that the line
element in each case reduces to the form

ds’ = (ct)~VYdt? — dx?) — ct(dy* + dZ?).
Now introducing new time and space coordinates by

t=4c7 V434 X = (3¢/4) 3x,

7 =(3c/4)"%y, Z=(3c/4)",
and then dropping bars over coordinates it is not difficult to
show that {4.5) reduces finally to the form

ds®* =dt? —t ~*3dx* — t*3(dy? + dZ). (4.6)
The above metric can easily be recognized as a special case of
the Kasner universe.'*

(4.5)
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Probability measures and Hamiltonian models on Bethe lattices. |. Properties
and construction of MRT probability measures
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The properties of one-step Markov, rotationally and m-step (m = 1 or 2j translationally invariant
(MRT) probability measures on g-state-site (¢SS) Bethe lattices are studied. A theorem is proven,
which completely defines such measures in terms of m(g* + g) fundamental probabilities. These
are explicitly calculated for any MRT—¢SS Hamiltonian model. As a consequence of our

approach, the dychotomy between alternative solutions of Hamiltonian models on Bethe lattices

is solved.

PACS numbers: 05.50 + g, 02.50. + s, 64.60. — i

I. INTRODUCTION

Hamiltonian models on regular lattices are the subjects
of great attention in statistical mechanics, since they are
schematizations which retain the most relevant physical
properties of many real systems. Despite their apparent sim-
plicity, such models are not exactly solved, except for few
cases. This is due to the problem of taking into account cor-
relation effects, which is an enormous task for systems with
only nearest-neighbor interactions, too. These difficulties
justify the fast development of new approximation methods
and the continuous refinements of old ones in order to ex-
tract useful information about the models under investiga-
tion. An alternative strategy is the modification of the topo-
logical structure of lattices, provided this preserves the main
physical features of the original systems and (possibly) gives
exact solutions. This further schematization can be done by
studying Hamiltonian models on hierarchical lattices and
Bethe lattices. As regards to the former ones, which can be
obtained through iterated decoration and miniaturization of
an initial structure, refer to the recent papers by Griffiths
and Kaufman,' and references therein. Although finite por-
tions of a Bethe lattice could be seen as hierarchical lattices’
we shall follow a distinct approach here.

The main feature of Bethe lattices is their thin structure.
Only one path joins every pair of sites, so that correlations
can be taken into account exactly for any m-step Markov
system.> Due to this property, Hamiltonian models on this
kind of lattices were studied in detail by many authors.*2' It
is known (see, e.g., Ref. 20) that distinct results can be ob-
tained for the same system in the thermodynamic limit: they
are usually referred to as (i) Cayley tree solutions and (i)
Bethe lattice solutions. These labels are somewhat mislead-
ing, and it is important to realize that they do not refer to
distinct topological objects (see the Appendix A), but to dis-
tinct ways of calculating the per site values of extensive func-
tions in the thermodynamic limit. In fact, the huge number
of surface sites in any finite tree gives rise to non-negligible
surface effects which are retained by type (i) approaches and
neglected by type (ii) approaches. From the mathematical
point of view type (i) methods seem to be correct, while the
others are criticizable since they do not give formal justifica-
tions for the rejection of surface effects. From the physical
point of view the situation is reversed, since residual surface
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effects in the thermodynamic limit can be seen as undesired
contributions from a “ghost surface”” which actually does
not exist in the infinite system.

The previously described dichotomy between alterna-
tive solutions is related to the concept of convergence in the
sense of Van Hove.? Roughly speaking, the per site free
energy of an infinite system is not defined univocally, but
depends on the sequence of finite subsystems used to take the
thermodynamic limit: Van Hove’s convergence condition is
a criterion to select those sequences which give the “physi-
cally good” result. In this connection, Bethe lattices are very
singular objects, since the use of this criterion in its standard
form (see Sec. VII) implies that no sequence of finite trees
converges to an infinite tree in the sense of Van Hove. As a
consequence two interpretations arise: (I) Van Hove’s con-
vergence condition is considered meaningless on Bethe lat-
tices, and therefore it may be disregarded [as it is done by the
authors who follow type (i) approaches]; (I1) this criterion is
considered meaningful on Bethe lattices, which implies that
“good” solutions perhaps can be obtained by “artificial” de-
letion of surface effects [this way is followed by all type (ii)
approaches]. From the formal point of view this double in-
terpretation is unsatisfactory, since it seems to imply that
statistical mechanics cannot be extended to Hamiltonian
models on Bethe lattices without uncertainty.

It is our aim to remark that this uncertainty may be
removed, and that a new definition and a univocal interpre-
tation of Van Hove’s convergence condition may be found,
by means of some results of rigorous statistical mechanics,
which have been recently collected, generalized, and unified
by Ruelle.?* The main point of interest of Ruelle’s approach,
in the present case, is the fact that the thermodynamic limit
of probability measures always exists on any discrete state
countable lattice, and does not depend on the choice of the
sequence of finite subsystems used to take the limit. In view
of this property, the probability measure approach can be
seen as the canonical method for the solution of Hamiltonian
models on lattices, and Van Hove’s convergence condition
can be interpreted as a test of compatibility of the thermody-
namic limits of the free energy with that of Gibbs probability
measures. This subject is considered explicitly by Ruelle for
Hamiltonian models on hypercubic lattices, and will be stud-
ied here on Bethe lattices by means of formal applications of
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the probability measure approach. In this paper we will also
prove that, owing to the simple structure of Bethe lattices,
the probability measure approach can be applied explicitly,
and gives the complete analytical solution of a large class of
Hamiltonian models [including as very special cases the Is-
ing model, the Potts model, the vector (or planar) Potts mod-
el, the Ashkin—Teller model, the Z (g) (or clock) model, and
all the previous models with annealed site dilution]. To do
this, some tools of measure theory, probability theory, and
graph theory will be applied.

We first study the properties of a one-step Markov (M)
probability measure i defined on a g-state-site (¢SS) Bethe
lattice: ¢ = 2,3,... . We prove a decomposition rule which
completely defines i in terms of two classes of elementary
objects (*“site” probabilities and “bond” probabilities). If 1 is
also rotationally and one- or two-step translationally invar-
iant (RT) on the Bethe lattice, the distinct elementary proba-
bilities reduce to m(g* + ¢) fundamental probabilities, where
m =1 (m = 2) if u is one-step (two-step) translationally in-
variant. Then we introduce the most general Hamiltonian
model characterized by MRT interactions on a ¢SS Bethe
lattice, and show that the physical expectation for RT Gibbs
probability measure(s) describing pure phase(s) of the system
in the thermodynamic limit, corresponds to the mathemat-
ical requirement that a certain piecewise contracting proper-
ty holds. When this takes place (which, e.g., is the case for the
ferromagnetic or antiferromagnetic Ising and Potts models)
the fundamental probabilities are easily calculated, and al-
low us to construct the measure u relative to each phase that
appears in the system. Furthermore, any thermodynamic
limit characterized by RT breakdown is shown to be a “‘mix-
ture,” i.e., a probability measure which describes phase mix-
ing. One can prove that the results obtained are the same (but
much more detailed) as those given by the Bethe—Peierls
cluster approximation®* on standard lattices, while general
agreement with those of the previously described type (ii)
methods can be checked easily. These results and the proof
that the thermodynamic limit of the free energy [as it is done
in type (i) approaches] is affected by a topological discrepan-
cy, show that Van Hove’s convergence condition is extendi-
ble in its standard form to Bethe lattices, and is meaningful
on these graphs. All these subjects are contained in the pres-
ent paper.

Although the knowledge of i« formally solves every con-
figurational problem on the ¢SS Bethe lattice, the thermal
properties of the model under investigation could have no
simple relations with Gibbs probability measures. This prob-
lem is entirely solved by finding the “correct” free energy of
the infinite system in terms of the fundamental probabilities.
One can do that, and actually one can find the correct ther-
modynamic limit of any extensive function on Bethe lattices,
through a localization procedure which takes advantage of
the above-mentioned decomposition property of 4. In fact,
as regards to the thermodynamic limit of local quantities, it
is irrelevant whether Van Hove’s convergence condition
holds or does not. The subjects above and other topics (e.g.,
the solution of all polychromatic MR T-correlated-site/ran-
dom-bond percolation models) are collected in a following
paper?> (which we call paper II from now on).
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The outline of this paper is as follows. In Sec. II the
general terminology is established. A theorem concerning
the definition of a MRT probability measure & on the ¢SS
Bethe lattice in terms of the above-mentioned fundamental
probabilities is proven in Sec. II1. The M probability mea-
sures on finite trees are studied in Sec. IV, while the problem
of the construction of M Gibbs probability measures on fin-
ite trees is considered in Sec. V. The thermodynamic limit is
treated in Sec. VI. Conclusions and comparisons with other
methods of solution are given in Sec. VII. Useful definitions
concerning trees, and their relations with other terminolo-
gies, are reported in Appendix A. The infinite-dimensional
character of Bethe lattices, and the “classical” character of
related solutions are briefly considered in Appendix B. Spe-
cialization of our general formalism in order to obtain some
relevant Hamiltonian models is described in Appendix C. A
proof concerning arguments in Sec. VI is given in Appendix
D.

Finally, we remark that preliminary reading of Secs. I
and VIII of paper II could be very useful for physicists who
are more interested in the applications of the present proce-
dure, rather than its mathematical justification.

Il. NOTATION AND GENERAL REMARKS

Let us consider an infinite, connected, and locally finite
graph®® G = (V,E ) with a countable set of sites. We suppose
that every site ie} assumes g states which will be labeled by
the variable v; = 1,2,...,q. Each configuration of ¥ can be
represented by the collection { V", ¥®,.. V9] where each
set V" contains all the sites ic¥ such thatv, =r;r=1,..., 4.
Therefore, the set of all the configurations of ¥ is in one—one
correspondence with the set || V| of all ordered partitions of
Vin g sets. Let A, A,, ..., 4, be finite sets of sites of G. The
local event {4,, 4,, ..., 4, } on V will be defined as the set of
all the configurations in || V|| which attribute the state v, = r
toevery siteied,; r = 1, ..., g. When there is no confusion we
use the notation & , to denote any local event {4, ..., 4 )
with basis 4 =U?_ , 4,. Notice that, if 4,n4, # at least for
one pair of indices s#¢, {4,, ..., 4, ] is incompatible with all
the configurations of ¥ and is the null event &. The global
event containing all the configurations of ¥V is
{©,8,....0} = ||V]|. The following inclusion rule and com-
position rule follow by definition:

{41 4,} D{A1,..,4,}4,CA], r=1,..,4,

(A 30{A A D) = (Ad 1A oA ). (1)
Let ¥, be a finite nonvoid subset of V. Using relations (1) it is
easy to see that the set of all local events & , such that
ACV(ACV,)isasemiring”’ R (R,), i.e., the simplest collec-
tion of sets where (probability) measures®”?* can be defined.
We may also consider generalized local and nonlocal events
on V (generalized local events on V), i.e., the elements of the
smallest o-field”” FO R [F,D R, (actually R,contains a finite
number of elements, and F, is a ring)*’]. This follows by the
fact that any measure u* defined on a semiring R * can be
extended to the o -field F* DR * of all u* -measurable
events.”” Notice that the collection || V]| of all local events
& y,€R, such that &, #@ may be seen as the set of all the
configurations of V. Obviously, the knowledge of u, (&}, )
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for every &, €||Vo|| completely defines the probability mea-
sure i, on R,,

Up to now the bonds in G were not used: we need them
to introduce a metric in V. We define the length of a walk*® in
G as its number of bonds, and the distance between any pair
i,jof sites in ¥ as the length of the shortest walk(s) connecting
i tojin G. Given a finite nonvoid X C ¥ and a fixed number
m >0, we define the internal boundary AX (the external
boundary dX ) of X as the set of all the sitesin X (¥ — X ) such
that their distance from at least one pointin ¥ — X (X ) is less
than or equal to m. Let ¥ be another finite subset of V" such
that XYnY =@ and dXC Y;and let &, & 5, &, be local
events such that & , C & ;. We say that the probability
measure  on R is m-step Markov? if and only if the equality
between conditional probabilities®®

W& x| y)=ul€ x| & sx) (2)
is verified for every choice of the sets of sites and the associat-
ed events which satisfies the above-mentioned conditions,
and does not hold if m is decreased by 1. The same definition
can be done for u, on R, by substituting V, to V.

We are interested in the construction of Gibbs probabil-
ity measures on R associated to Hamiltonian models on G.
To this end, let us introduce an interaction 7 in the system,
which associates a certain energy to every local configura-
tion of V. In other terms I may be considered as a real func-
tion defined on the elements of R, which is zero on the global
event. The general theory requires that I is properly
normed.?® This will be satisfied here by assuming that
I1(%) =0 for every &eR whose basis contains at least two
sites at a distance larger than a fixed number m > 0. Notice
that the hypothesis above also implies that any Gibbs prob-
ability measure on R(R ) generated by I is m-step Markov.
Given two local events &, , & 5y, , the Hamiltonian on ¥,
relative to &, is defined as™

—BIo\E )= 1(%), 3)
EER:E D8y,
while the interface Hamiltonian on 4 ¥, relative to the
“boundary condition” & ,, , is defined as®

—BATE|E v € oy, )= 1(&).

BER:E DE Y08 gyi® DE v 8 DE oy,
4
The Gibbs probability measure 2, on R, is obtained in the
conventional way by assuming the following probability for
every &y, €R,:

‘uo(?a”,,o)z(l/zo)exp[ —ﬂ%o(gvo)],
(5)
Zy= z CXP[ —B%o(g%)]'

& vo€Ro
In a similar way we define the (conditional) Gibbs probabil-
ity measure 1. on R, (given that & ,,, is an event with prob-
ability 1):
Koo (& A | gaVo)
=(1/Zo)Jexp[ — B (& v,) — PAFANE v; € av,) ],
(6)
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Zy= z exp[ —B%O(g%) —BA%O(gVO;gaVO)] .

& voRo
Let us consider a sequence { ¥, }>_, of finite subsets of V'
(ordered by inclusion) such thatug_ , ¥, = V. Furthermore,
let 1z, be a probability measure on R, , and let n,, be an index
such that ACV, for every n > n,. The following can be

shown.?
Proposition 1: One can choose a subsequence { V. } = _

of {¥,}7_, such that the limit

im (& )=p( )
ny<n—ow
exists for every & ,€R, and defines the probability measure u
onR.
We say that u is a thermodynamic limit of the £,,’s, and
use the conventional notation

lim g, =p. (7)

When every i, is a probability measure given by (6), we
obtain Gibbs probability measures (=Gibbs states) describ-
ing the infinite system governed by the interaction /. In this
case the need of subsequences in Proposition 1 is better un-
derstood by noting that distinct limits may be obtained ac-
cording to the selected (subsequence {¢,. }2_, and the cor-
responding) boundary conditions. The closed hull of the
thermodynamic limits found in such a way is the set %", of
all Gibbs states®® [in fact it contains, as well, the limits ob-
tained when every u,, is given by (5)]. The set %7, is convex
and compact, and is a simplex.?* In other terms, any nonex-
tremal element of %", has a unique decomposition in terms
of extremal Gibbs states, i.e., it is a convex or integral combi-
nation of these probability measures.

iIl. PROPERTIES OF MRT PROBABILITY MEASURES
ON ¢SS BETHE LATTICES

A Bethe lattice L = (V,E ) is an infinite connected tree?®
whose sites have the same coordination number o + 1. We
shall identify L with the graph G of the preceding section, in
order to study the special properties that any one-step Mar-
kov probability measure (not necessarily a Gibbs state) u on
R exhibits is such a case. In fact, the following theorem
holds.

Theorem 1: If 1 is MRT on L, i.e,, if it is one-step Mar-
kov (M), and invariant under any elementary rotation and
m-step translation (m = 1 or 2) that carry L onto itself (RT),
then y is completely defined by a set of m(g* + ¢) fundamen-
tal probabilities.

To begin, we give a formal definition of m-step transla-
tions and elementary rotations of L. The first step in our
procedure is the construction of a proper labeling for every
site of L. To do this we choose a reference site ie¥ and con-
sider a partition of ¥ in shells surrounding /. The / th shell
contains all the sites AcV at distance / [=l! (i,h }J=number of
bonds of the unique walk connecting i to 4] from i;
I=1,2,... . Let us consider a numerical representation using
o + 2 digits, and assign the digit O to 7, and the digits
1,2,...,[o], [o + 1] to the sites of the first shell. Then proceed
in the following way: (1) execute steps (2)—(4) for/ = 1,2,...;(2)

Fulvio Peruggi 3305



choose a site k belonging to the / th shell surrounding J; (3)
assign the digits 1,..., [0] to the sites of the (/ + 1)-th shell
which are adjacent to k; and (4) repeat steps (2)(3) for every k
belonging to the / th shell. Let i=wv,, v,, ..., v;==h be the sites
ofthe walk W, CL connectingitoh, and let [a, ] be the digit
assigned to v,;t = 1,...,/. The site # will be labeled with the
number [a,][a,]-[a;] which we denote a;(h ) to stress its de-
pendence on the reference site i. Let iV and jeF be two sites
of L at distance n. The n-step translation 7 ; of L onto itself
that carries { into j is defined as the isomorphism that carries
every heV onto the site keV such that a;(h ) = a;(k). Let

Z a1 1 be the permutation of the digits 1, ..., [0 + 1] which
interchanges the digits [s] and {#] and leaves unchanged the
others. The elementary rotation % ;,)(, ; of L around the site /
is defined as the isomorphism that carries each AV — {i}
labeled by a,(h }=[a,]{a,]...[a,] onto the site keV — {i} la-
beled by a,(k /=2 . ([a:])a.]...[ 4, ] Note that, since ev-
ery bond of L is identified univocally by its terminal sites,
bond transformation of L under .7 ; and %, , is trivially
implied by site transformation.

Proof of Theorem I: For every heV let us consider the

local events {{4 },2.,...2}, {2,{# },9,...2},...,

{@,....2,{h }}, which will be denoted, respectively, by

& ,3Va = 1,2,...,9. For a given local event &,

= (Ay,.., 4.}, let T, = (V,,E ) be the smallest connected
subgraph of L such that the basis 4 of & , is contained in ¥,
let 0; + 1 be the coordination number of jeV, in T, and let
A=V, — A.Itisclear that the local eventsin ||4 || are mutu-
ally disjoint, and that their union is the global event

Eo = {D,....0}. Then we have

> MEnES). (8)

#gell4 ]

BIE ) = lE ;0E ) =

Since T, is a tree, and owing to the M property, we may
interpret & ,n& 5 as a branching process.”® It starts from the
source site i€V, propagates along the bonds |hk YeE , (ori-
ented along the running direction), and stops into the surface
sites of T, (see Appendix A). Then we have

/‘t(gA): z#(givi) H lu(gkvk|ghvh) (93)
i i thic )B4
I iyer € 4, NE .,
_ (kK ) EA,U( 18 k) , (9b)

A ey, [,u(gjvj)]gi

where, by definition, zed,u4, implies v, = r{r = 1,...,g);
while the second equality shows that x(# , ) does not depend
on the choice of the source. Therefore, we have proven that
the probability measure of any local event in R (therefore of
any event in F ) can be determined by means of the site proba-
bilities,

:u(giviL eV, v,=1,.4; (10)
and the bond probabilities,

Au(gkvk l gkv;,}

:u‘(ghvh | gkvk)
Now, let us choose two adjacent reference sites , v of L, and

let us apply the RT property for m = 1. By repeated applica-
tion of one-step translations we have

](hk YEE, v,,vi = 1,....9. (11)
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W&, ) =p(¥ ., )=p,, i€V, r=1,..4. (12)
By application of the translation that carries & in #, and of an
elementary rotation, we prove that (% | ,,)
=u(%,,|% ), forevery (hk )eE,andr,s = 1,...,q. Then, ap-
plying other isomorphisms of L onto itself, we find

,u(gks | ghr) =;u’(gvs ' gur)Eprs’
(hk)eE, rs=1,.gq, (13)

proving the theorem for m = 1. Now, let us consider the case
m = 2. It is easy to see that two-step translations induce a
partition of ¥'in two subsets V"¢ and ¥ °such that all the sites
of L which are adjacent to jeV <(jeV °) belong to V' (V).
Moreover, ¥ ° and ¥ ° do not mix under rotations of L. We
use again two adjacent reference sites u, v of L, such that
uel . Asin the preceding case, repeated applications of ele-
mentary rotations and two-step translations give

lu’(gir) :/u'(gur)Epi’ iGVe]

=l (14a)
#(gir) :/'L(gur)Epr’ IEV
lu(gks | ghr) =#(gus | gur)zpis)] hEVe,(hk )EE, (14b)
.u’(gksl%kr) zzu’(guslgvr)ip:v rs = 1""’q‘

Thus, in the present case, we have 2¢ + 2¢° fundamental
probabilities.

Q.E.D.
We also state the following.

Corollary 1: There are at most g> — 1 independent fun-
damental probabilities for m = 2; they are at most (g + 2)
(g — 1)/2form = 1.

Proof: For m = 2 the following relations hold:

g

Y =1, x=e0; (15a)
r=1

q

=1 x=eor=1..4 {15b)
s=1
pops = pl# 08 ) =ppS, rs=1,.4. (15c)

Using the normalization condition (15b) for x = o, and the
symmetry condition (15c), we see that
q
p= 21 pipss
rs=1,..q; (16)
P;Dss
2. pipis

i.e., o-probabilities depend on e-probabilities. These must sa-
tisfy relations (15a)—{15b) for x = e, which imply that only
g* — 1 of them are independent. For m = 1, relations (15)
still hold, provided we delete all the upper indices. In such a
case, the symmetry condition can be used only to prove that
Do = D,D,s/Ds; ¥#5. Then we can consider every p,, with
s> r as a function of the other (¢ + 1)g/2 + ¢ fundamental
probabilities. The normalization conditions allow us to
eliminate other ¢ + 1 terms, thus proving the statement. W

o —
psr -

IV. PROPERTIES OF M PROBABILITY MEASURES ON
¢SS FINITE TREES

Let 1, be a one-step Markov probability measure on
the semiring R ;- of all ¢SS local events defined on a finite tree
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T = (V;,E;). We choose a reference site ue V- and orientate
every bond (jj)eE in such a way that [ (u,i) < (uy).
Lemma I: u4 is completely defined by the probabilities
M T( g ur ))
ur(& ;&)

r=1,..,9—1,
r=1,.,9, s=1,.,9g—1,
|if)eE .

Proof: It is enough to use relation (9a), provided we re-
quire that 7, must contain the site , and that u is chosen
always as source site. Some probabilities are not needed since
they are given by obvious normalization conditions. |

We call V¢.(V'%) the set of all the sites in ¥ such that
their distance from u is an even (odd) number. Let veV % be a
site adjacent to u, and weV % be a site adjacent to v and
distinct from u. We say that u , satisfies two-step partial
invariance (PI) on T if, for every |ij)€eE, we have

:u’T(gj: | gir) Z#T(gus | gur)? iGVeT’
:uT(gjs | gir) =#T(gws | gur)’ I'EV%,
rs=1,..4. (17)

One-step PI is recovered if (% ,, | & ,.,) = (& s | € ) for
every pair of indices. Remark that, as a trivial consequence
of Lemma 1 and relation (9a), PI implies that (% ,,)
=ur(&,,)(r=1,..,4q) for every pair A,k of sites in T such
that / (u,h) = I (u,k ). We say that u, satisfies two-step (one-
step) global invariance (GI) if relations as (14) [(12)—(13)] are
verified on 7.

Lemma 2: pu is m-step GI on T if it is m-step PI and

#T(gurngvs) zﬂT(gvsngwr)’ m= 2)

#T(gurngus) =#T(gusmgur)’ m = 1!

rs=1,.,.
Proof: The case m = 2. Note that

q
:u’T(gur) = Z #T(gurngvs)
s=1

= i I'I’T(gvsngwr) (18)

s=1
=url€,,), r=1,.4
Let u=z,, z,,...,z, be the sites of a walk connecting u to the
surface site z; of T. Suppose the following equality holds:

Br(& o) =pr(€,, ) s=1..q. (19)
Then PI and (19) imply
q9
#T(gz,+lr)= Z#T(gz,s)ltT(gz,_,_,r'gzp)
s=1

9
= z luT(gz,+zs)ﬂT(gz,+3rlgz“_zs) (20)

s=1

=/“‘T(gz,+3r)) r= 1,...,q;
#T(gzzs) =ﬂ7‘(gws), s = 1,...,q.

From (18) and (20} it follows by induction that (19) is true for
1=0,1,...,d — 2;i.e., relations as (14a) hold. Then GI for s,
will be achieved if we show that

/“T(gz,rlgz,+ ,s) =#T(gz,+zr'gz,+,s)y
/“T(gz,+|s I gz,r) =.u’T(gz,+ 15 | gz,+2r)’
0<l<d -2, rs=1,.4. (21)
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Remark that 4 (% |€') = u(&'| & &)/ 1 r(€’). There-
fore PI and (19) imply that it is enough to prove the second
equality (21) for / = 0. Without loss of generality we can
choose z,=v and z,=w. In this case, our starting hypothesis
and (18) imply the desired result. The case m = 1 can be
proved in the same way. ]

We are interested in the determination of the probabil-
ity measure u of the preceding section through a thermody-
namic limit. Therefore, we introduce a sequence { T, } *_, of
connected section graphs of the Bethe lattice L = (V,E),
which are constructed as follows. We choose a reference site
ueV and define T, as the tree formed by u, its adjacent sites in
L, and the bonds connecting them. The tree T, , | is ob-
tained by adding to T, = (V,,,E, ) the sites in ¥ belonging to
the shell at distance n + 1 from u, and the bonds in E con-
necting them to sites in V. The whole sequence follows by
induction. Note that the sets V¢,V ¢ defined as above, auto-
matically induce the partition of the sites of L into subsets

yvewve.

Let i (it ) be the restriction of the probability measure
ponR tothe semiring R (R,,) of all local events defined on
the finite tree TCL (T, CL, n = 1,2,...). Furthermore, let
{T,}z_, beasubsequenceof {T,} _,.

Lemma 3: i1 is MRT on the Bethe lattice L if i, is MGI
on T, for every index n'.

Proof: Remark that, as a consequence of Theorem 1,
any MGI probability measure y - on R ;- spans a MRT prob-
ability measure on R. Therefore, 12 is MRT on L if, for every
T, jir is characterized by the same set {p} of fundamental
probabilities. We see that all the i, ’s correspond to the same
{p}, since, for every index n{, A,, canbe considered as the

restriction to R, of any i, with n' > n;. Moreover, any fi

corresponds to the same {p}, since, for every T, there exists
large enough n{ such that TCT ” and fi, can be seen as the
restriction of ,&n;. ]
Finally, we look for the structure of the most general
interaction / on R which is compatible with a MRT Gibbs
probability measure . According to the M property, the
maximum range of I must be m = 1, i.e., it is nonzero only on
maximal local events & ,eR such that 4 contains only one
site (=external fields), or a pair of adjacent sites (=nearest
neighbor coupling terms). Adding to this the request for ro-
tational and two-step translational invariance, we deduce
that the Hamiltonian (3) relative to each tree T, is given by

_B%n(gVn)

= I(givﬁg'v)-i'~ I giv
3’.-»[‘&9}\73;!',.’“])55’- G g:,vggvn ( l
= K’V‘i,,j + z HS. (22)
(ij)eE, eV,
Here x is e (o) if icV ¢ (ieV °);
K{=K;, rs=1,., (23)

and one-step translational invariance can be recovered by
deleting sublattice dependence, i.e., by dropping everywhere
the upper indices. As regards to the interface Hamiltonian
(4), the M property implies that it contains only coupling
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terms associated to pairs of adjacent sites lying, respectively,
indV, and dV,, i.e., to bonds connecting surface sites of T,
to their adjacent sites in ¥ — ¥V, (==the perimeter®® of T,).
Without loss of generality, we will represent them by means
of effective fields acting on each site of the surface of 7,:

_BA%n(gV,‘;gaV,,)
= z 1%

Euw D&y, 85,08 gy, (ij)eE
=> B, (24)
cav,

For convenience we set H\))=H + B, for every icAV,,,
and introduce the shortened notation

iving‘jvj)

_ﬁ(%n +A%n)= Kf',v
pee,

+ 3 Hi;+ Y HY.

eV, — AV, ' €av, '

(25)

V. CONSTRUCTION OF M GIBBS PROBABILITY
MEASURES ON 4SS FINITE TREES

Let u be the common central site of the trees of the
sequence {7, }_ ;. Given an index n, we consider a site / of
T, which is distinct from u and does not belong to the sur-
face of T',. Deletion®® of 4 disconnects the tree 7,,. Let
T,0h)=(V,h),E,(h))be the tree formed by A, the discon-
nected parts not containing %, and the bonds of T, joining
them to 4. For heAV,, we set T, (h )=({4 },2). Finally, for
h =u, and for every k such that / (u,k ) = 1, we introduce the
tree T, (h,k ) which we obtain by 7, through deletion of all
the sites in 7, (k ). We write again T, (4 ), instead of T, (h,k ),
when there is no confusion. For every T, (%) we also define

AV, (h)=V,(h )4V,
A= 3 exp( Y K%,
[|1Valh) — (R ) (iHeE, (h)

+ S Hi+ Y Hg';g). 26)
iedVih)

eV, (h)— AV (h)

Let V (h ) be the set of sites in T, (# ) which are adjacent to 4.
The hierarchic relations

Ayhvy) = explE) ] ( s exp(K:hvkmn(k,vk))

KEVI\ ve=1
(27)
give the values of all the A ’s in terms of
A, (iv,) =expHY), i€dV,. (28)

For every XC V' (h),X #, we also introduce
Iy, ;X)En( S explK %, A, kv )). (29)

keX\ v =1
Letjbe asite of T, and let u==z,, z,,...,2,,i,j be the sites
of the walk connecting u toj. We find

:un(gir)_ Zn ;oz=1An(u’§0)

X gil explK;, +HZ)
XTI, (2,6 :V (21) — {22})
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X e

X 3 oKy, g +HY)

XTI (24,643 V (24) — {i})

Xexp(Ky, + H),(i,rV (i) — {j}) (30)

X 3 explK 51, i)

t=1
q
=Z,0r) Y expK7)A,(it)
t=1
lun(girmgjs) = zn(i’r)exp(KJr‘s )‘An (j,S).
Therefore Lemma 1 implies that x,, is completely defined,

since we have
A, (u,r) Z_explK 7 )A, (v,t)

lu’n(gur) = ’
1A, () 21 expK A, 08) (39
p(B.|E,) = exp(K % )A,, (/:s)

21_ explK ), i)
Notice that these probabilities are homogeneous functions
(of degree zero) of the A ’s, and can be expressed in terms of
A, (hr)
A lhr)= , heV,, r=1,..4. (32)
A, (A1)
These new parameters satisfy the hierarchic relations

39 KAk,
Au(hr)=explHT — HT) ] ( o XD M, () )
kevim\ ZI_ exp(K 1A, (k,s)
=V3A,ks), r=2,...4q, (33)
that give all of them in terms of
A i) =expH — H'Y), iedV,, t=2,..4q. (34)
Let us consider now the special case of uniform bound-
ary conditions, i.e., H'? = H!" for every iedV,, t = 1,....q.
These give shell symmetry on T, , and imply that site depen-
dence is substituted by shell index (=distance from u) depen-

dence in every A, I', and A. Moreover, the hierarchic rela-
tions (33) are substituted by the recursive relations

A= 1L, = DA, (L3), 7 =2,09, (35)
where x is e(o) if / — 1 is even (odd), and
2i_expK M, (L) 7
37 explK § M, (1) ) ’
1<in. (36)

DA, (Ls))=expHT — H ’1‘)(

r=2,...4,
We will say that {4 ¢(r)}?_, is a fixed point of the system
(T,;*, +A47°,)if and only if

Ay =@UPUA ), r=2,04; (37)
and define the auxiliary fixed point parameters {1 %(s)}?_,
as

AA)=P A1), 5=2,0. (38)

Note that every fixed point corresponds to a set of uniform
boundary conditions such that the probability measure &,, is
(two-step or, in case, one-step) PI on T,. In the particular
case of an interaction such that

K; =K.=K,,
Hi=H}=H,, rs=1,.4, (39)
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1, will be one-step PI on T, if and only if
Ar)=A%n=A(r), r=2,...4. (40)

We state the following.

Lemma 4: The probability measure iz, is Gl on 7, at
every fixed point of the system.

Proof: We will show that i, is at least two-step GI on
T,. Because of Lemma 2 it is enough to prove that

lun(gurngus) =:u’n(gusngwr)’

where veV; — {u} and weV, — ¥V, are two adjacent sites of
T,;n=2,3,... This relation is equivalent to

A, (w,rlexp(K 5, + H), (v.s;V (v) — {w})

X 3 explK A, wi)

r=1

q
= 3 Au(wt)explK s, + H?)

X Ty (0:5;V (o) — {w])explK 2,14, (). “2)
Using (23) it becomes
S explK %) [ A, (1A, 0, A, (A, f10,)] =0.  (43)

t=1

By means of (32) we see that the term in the brackets is zero if
Awr) A, (wr)

rs=1,..,q, (41)

= , (44)
A, (u,t) A,(w,t)
which is certainly satisfied at every fixed point since
Huw)=2. n

When (39) holds, applying again Lemma 2 for m = 1
and other simple procedures, one can also prove that condi-
tion (40) is necessary and sufficient to assure that g, is one-
step Glon T,.

Finally, we remark that, if 2, is Gl on T,,, it is com-
pletely defined by the following set of fundamental probabi-
lities:

A%(r) 2 expK 7 A °()

P S e eplk )
. expKL)A7s)
T3 expK )]
X,y =¢€,0 Or 0,e, rs=1,.,, (45)

where {4 *(r)}?_, are fixed points for x = e, and the asso-
ciated auxiliary parameters for x = o.

VI. THE THERMODYNAMIC LIMIT OF M SYSTEMS ON
gSS BETHE LATTICES

In the first part of this section we limit our consider-
ations to thermodynamic limits (see Proposition 1) obtained
with sequences { {H"}7_, }_, of uniform boundary con-
ditions on the trees T,.

We denote ¢~ (%9~ ") the sector of the (g — 1)-di-
mensional real space which contains all the points with non-
negative (positive) coordinates. Let @ *: %%~ '>%?~ 'be the
functions with the components {@7}?_, defined by (36).
We construct a sequence {g,, } ., of functions by setting
gi=PP%g, . 1=8,°8,,; m =1,2,.... The properties of
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thermodynamic limits on Bethe lattices are related to the
asymptotic behavior of {g,, ] = _,. On principle, for every
{A(r)}9_,=Ae#?" ", the sequence {g,,(A }} = _, of points
in 9~ ! converges, or exhibits ergodic, turbulent, or cyclic
behavior. We say that the iterative equations (35) are
piecewise contracting (PC)if {g,,(4 )} 2 _, has a limit point
A *=g(4 )foreveryA€#?~ . Inother terms, the PC property
holds if we have the pointwise convergence g,, —g on %~ .

Theorem 2: The probability measure 4 = lim,,__u,, is
RT on the Bethe lattice if the recursive relations (35) are PC.

Proof: Let {T,. }2_, be the subsequence of { T, }7_,
which defines i (see Proposition 1). We denote
Aw(B)={A,(hn)}2_, [A*h)={A *(hr)]?_,] the set of
parameters associated by u,, () to the site heV,.. We assume
that AV, C V¢ for every tree T,.. This can be done without
loss of generality, because any T, with odd »’ and uniform
boundary conditions 4,.(#’) on 4V, can be substituted by
T, , with the boundary conditions 4, _,(n" — 1)
=A,n —1)=D,(n))ondV, , [obtained by means
of (35)]. Finally, let us consider a tree T'= (¥V.,E ;) belonging
to the sequence (T, |5 _,.

The convergence u,, —u implies that, for every € >0,
there exists large enough #/ such that 7CT, and

[An ()4 *(0)] <€/3, (46)
for every n’ > n/, and ieA V. (here the brackets represent the
Euclidean distance in %7~ ). Due to the continuity of @ °
and @ °, the relation above can be extended to every i€V for
n' greater than a certain n; >n(. On the other hand, the PC
property implies that, given Ac#%~ ', for every % > O there
exists large enough m(A ) such that

(8 (A )igm- (A)] < (47)
foreverym’' > m(A Jandm” > m(A ). This means that, given T,
for every € > 0 there exists large enough n; (4 ) such that
TCT, and

[Ax @A ()] <€/3, (48)

forevery n' > nj(1), ieV%., and jeV 5 (now A is the boundary
condition on 4V, ). Relations (46) and (48) imply

[A @A *DI<[A XA, ()]
+ [An @A ()]
+ [A- 052 *0)] <e, (49)

forevery € >0, ieV %, and jeV'%.. By Lemma 4 it follows that
the restriction & on R of the probability measure 2 on R is
MGI on T for every T belonging to { T, } > _ , . Therefore
Lemma 3 applies, thus completing our proof. |

Remark that every point of the graph of g is a fixed
point of the system, since A * = g(1 ) satisfies

A*=gd¥) (50)
for every A%~ . In general we expect a finite set
{A *}2 _, of distinct solutions for (50), i.e., g is a step func-
tion on %~ ". This means that there exists a partition
{D,}s_, of #¢ ' (in domains of attraction) such that every
seed A goes into the same fixed point 4 * = g{1 ), for every
AeD,;a = 1,...,a. As a consequence of Theorem 1, Theorem
2, and Lemma 4, we state the following.
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Corollary 2: If the recursive relations (35) are PC, the
fundamental probabilities which define z are given by (45) at
each fixed point of the system.

The proof that the PC property holds in the special case
of the ferromagnetic or antiferromagnetic Ising and Potts
models is reported in Appendix D. We do not give here a
general proof that the iterative equations (35) are PC.>° How-
ever, it is easy to see that the pointwise convergence g,, —g
holds at least in a domain DC %%~ . Notice that the func-
tions @ ; defined by (36) have finite upper bounds for all real
K7 and H7. This implies that there exists a hypercube U,
={AeR%~ "' : A (r)<b; r =2,...,q}, and large enough b > 0,
such that g,(4 JeU, for every A€U,. Therefore, Brouwer’s
theorem®’ applies, and there is at least one fixed point satis-
fying (50) in U,, whose domain of attraction is the above-
mentioned set D. This fixed point is certainly unique (and
D = #%7 ) in the infinite temperature limit, since our solu-
tion must recover RT Bernoulli measures associated to ran-
dom distributions of states. As a matter of fact, when K % —0
for every x,r,s, relations (36)—(38) give*?

AXr)=PAs) = exp(H — HF),
X,y =260 or o,e, rs=1,..,9 (51)

(where H 7 is the infinite temperature limit of H %), and rela-
tions (45) become

x_ o AT
TR EnE

X,y =e,0 or o, rs=1,.,q. (52)

The existence of several fixed points (corresponding to the
same set of coupling terms and external fields, and distinct
sets of boundary conditions) is related to distinct orderings of
the system. Each of them corresponds to a pure thermody-
namic phase described by a certain MRT probability mea-
sure. This would be the typical case at low temperatures.

Now we briefly consider the case of thermodynamic
limits with nonuniform boundary conditions. It is easy to
convince oneself that, when (35) are PC, this procedure does
not give rise to new pure phases. This is mainly due to the
mixing/damping properties of the functions ¥’s defined by
(33). When (50) admits only one fixed point, it is clear that
any choice of nonuniform boundary conditions will generate
in the thermodynamic limit the same state for the system
through the ¥’s. When (50) admits several fixed points, two
cases arise. The mixing/damping properties may prevail
over the nonuniformity of the boundary conditions, and
then bring the system into one of the above-mentioned fixed
points. Due to the branching structure of the trees T, we
can also find certain boundary conditions whose nonunifor-
mities evolve towards distinct fixed points and do not mix
until the center (or any finite central zone) of the tree is
reached. In the thermodynamic limit this corresponds to the
breakdown of rotational and translational invariance asso-
ciated to phase mixing. The appearance of these mixtures
has the maximum physical relevance when they describe ac-
tual first-order transitions between pure phases, i.e., when
each component pure phase is characterized by the same free
energy.”>*?

Using the terminology introduced in Sec. II, we say that
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every probability measure corresponding to a fixed point of
the system is an extremal point of .%;. Other extremal
points describing non-RT Gibbs states will be found in the
set of all the mixtures.

Finally, we remark that (a preliminary version of) the
present procedure has been applied by Peruggi, di Liberto,
and Monroy** to solve the Potts model. The reader is re-
ferred to that reference for a simple realization of our general
results. Connections with the solution of the Potts model are
given in Appendix D, while addenda to, and some remarks
on, the results of Ref. 34 are given, respectively, in paper II
and in the following section.

Vil. FINAL REMARKS

From the physical point of view it is interesting to com-
pare the results obtained by means of the present approach
to the solution of Hamiltonian models on Bethe lattices, with
the results given by the methods described in the introduc-
tion.

For what concerns type (ii) approaches, simple checks
show that there is general agreement with our procedure.
Here we focus mainly on those type (ii) methods which re-
duce to adaptations of the Bethe—Peierls cluster approxima-
tion** (BPCA) on Bethe lattices, and on the BPCA itself on
regular infinite lattice graphs®® of coordination number
o + 1. Notice that the above-mentioned “cluster” and the
relative Hamiltonian are, in the present terminology, the sys-
tems (T, + AF)) or (T, 7%, + AF,) with uniform
boundary conditions. The state of these systems is character-
ized by imposing m-step consistency conditions on the re-
spective “magnetization(s),” i.e.,

(8 ) = il B ) ]r—l (53a)

Pl 8 ) = o 1), vl (53b)
The physical idea under (53} is that they would select GI
probability measure(s) which describe approximately the
translationally invariant equilibrium state(s) of the regular
lattice. In particular, (53a) is used when {39) holds and the
system (T, 5, + A7) is expected to be described by a
one-step GI probability measure. By means of Lemma 4 we
deduce that every MRT solution on the Bethe lattice is a
solution for the BPCA. Conversely, it is easy to see that (53a)
implies 4,(u,r) = 4,(v,7) for r =2,...,q; i.e,,

A*=DAH. (54)

m=1

m=2

In regard to (53b), it could be satisfied at nonfixed points,
too. One expects that these solutions (if any) do not corre-
spond to physical states. The uncertainty can be removed by
substituting condition (53b) with (41) for n = 2.

In conclusion, these results imply that the probability
measure u (i.e., the exact solution obtained for a MRT—4SS
Hamiltonian model on Bethe lattices with the present meth-
od) is the same as the MR T extension of the probability mea-
sure i, (4,) (i.e., the approximate solution obtained for that
model on regular lattices with the BPCA).>* Let us empha-
size the fact that we have not introduced just a formally more
satisfying version than BPCA and type (ii) methods: our pro-
cedure is a substantial improvement. In fact it gives in a very
simple way the free energy?>~* of the system under investiga-
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tion in terms of the fundamental probabilities, which in turn
provides complete information about the physical properties
of the system. Furthermore, the knowledge of the probabil-
ity measure describing a system allows us to solve almost all
problems concerning that system, not only thermal ones
(see, e.g., the topics studied in paper II).

The above proofs also suggest that our results and those
of type (i) approaches do not agree. Notwithstanding this, in
the following we will study in detail the problems concerning
the thermodynamic limits of extensive functions on Bethe
lattices. In fact, the decomposition rule {9) makes more
transparent the underlying reasons for the above-mentioned
disagreement, and also suggests the way to follow in order to
obtain limits consistent with the probability measure ap-
proach. First, we add some definitions and remarks to the
general formalism introduced in Sec. II. Let an m-step Mar-
kov ¢SS Hamiltonian model be defined on an infinite, con-
nected, and locally finite graph?® G = (V,E ) with a countable
set of sites. We say that the sequence { ¥, };°_, of finite sub-
sets of ¥, tends to Vin the sense of Van Hove if the boundary-
to-bulk ratiop,=|4V,|/|V,| of its components satisfies the
condition

lim p, =0. (55)

The thermodynamic formalism for translationally invariant
systems (typically d-dimensional hypercubic lattices;

d = 1,2,...) requires the use of sequences which satisfy Van
Hove’s convergence condition when the thermodynamic
limits of extensive functions, as the entropy or the free ener-
gy, are taken.? This assures their existence, their uniqueness
{in the sense that the limits obtained do not depend on the
choice of the sequence), and their consistence with the limit
of Gibbs probability measures. [We remark again that no
requirement as (55) is needed when the n— oo limit of prob-
ability measures is taken; see Secs. I-II and Ref. 23.] Rough-
ly speaking, the convergence in the sense of Van Hove as-
sures that we do not retain systematical errors when the
thermodynamic limit is used to find the per site expectation
values of extensive functions. When condition (55) does not
hold for the sequence [V, }7_,, we expect that the n—
limit of

= ZT S(E v a(E ) (56)
# eV,
in general is not equal to
fr=| fau, (57)
It

where fis a per site extensive physical observable defined on
the configurations of ¥, (V'), and 4 = lim,_, _ u,,. Simple
checks may be done by looking for the internal energy,
whose expression (57) for (one-step) translationally invariant
infinite systems reduces, for every i€V to

Bu = ———(1(5f )2 (58)
# < RFwani |A]

Let us apply the arguments above to the Bethe lattice L.
We see that no sequence {7, } _ , of finite trees tends to L in

the sense of Van Hove, since, for every m-step Markov sys-
tem, one finds
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lim p, >(o — 1)/a, (59)

where the equality holds for m = 1. For major clarity let us
assume that both the interaction /on R (which characterizes
the Hamiltonian model on L ) and the probability measure &
on R (which describes that model) are MRT, one-step trans-
lationally invariant, on L. Then (58) and (22) or (25) give

q 1 q
Br=— 3 Hp.— T3-S Kpp (60

r=1 rs=1
where we have used the fact that 5v,5 (6,,)is the indicator
of the event &,n& (& ,), i.e., the functlon defined on ||V ||
which is 1 on the configurations belonging to & ,n% (& ),
and 0 elsewhere. On the other hand, on 7, we have

1 1
B ,=——(B#,)
[Vl [Val "
q
= - zHrﬂn(gl‘r)
| |iEV,,r=l
|E,| 1 g
K u (% ,.nE )
RTATAR A R

(61)

Note that this relation holds in both cases of free boundary
conditions [Hamiltonian (22} or fixed boundary conditions
[Hamiltonian (25)]. In fact, the interface Hamiltonian (24)
does not “belong” to the system [definition (25) was intro-
duced for notation convenience only], and has influence on
its state only through the values of site and bond probabili-
ties. Relation (61) implies

1 q g
n = - 2 Hr r z Krsprprs‘ (62)

n—o0 IV l r=1 rs=1

As was expected in view of (59), we see that 5% and the
thermodynamic limit of 5% ,, are not equal. This result can
be extended to the case of non-RT u too,**” since the terms
p, and p,p,. in (60) and (62) may be considered, in such a case,
as the averages of u(%,,) and u(& ,n& ), respectively, over
allieVand (ij)€E;r,s = 1,...,q. It is easy to see that the above
disagreement is due to a discrepancy [related to (59)]
between the asymptotic topological properties of { T, }:_ ,
and those of L. Let us define the local number of bonds per
site i, (G *), relative to the site / of alocally finite graph G *, as
half the coordination number of i in G *, and let the mean
number of bonds per site (G *) be the average of ,(G *) on
G *. We have

(o + 1)72, ieV, — AV,
Y(T,) = [5 AV, (63a)
1
T,) = )= , 63b
4| |V|,§ Y(T,) = anI (63b)
(L) = (o + 1)/2= lim ¢/(T,), iV (63c)
YL ) = 9,(L)# lim YT,). (63d)

Relation (61) depends on ¢(T, ), while (60) depends on ¥{L ):
(60) and (62) do not agree because of the “surface effect”
(63d). The entropy on T, (which is explicitly calculated in
paper II) depends on ¢{(T,): this implies that (63d) affects its
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n— oo limit, too, and therefore the limit of the free energy.

In conclusion, in this section we have found the follow-
ing results: (a) the BPCA and type (ii) methods agree with the
probability measure approach, while type (i) methods do not;
(b) Yan Hove’s convergence condition, in its standard form,
is not satisfied by Hamiltonian models on Bethe lattices; and
(c) the thermodynamic limit of the free energy, as is calculat-
ed by type (i) approaches, is affected by a topological discrep-
ancy. In agreement with the point of view which we ex-
plained in the Introduction, our interpretation of (a)—(c} is
the following: (1) Van Hove’s convergence condition can be
extended to, and is meaningful on, Bethe lattices; and (2) the
probability measure approach should be seen as the canoni-
cal method for the solution of models on Bethe lattices, since
it is the unique method which is, at the same time, rigorous
and unaffected by surface effects.

The above picture seems to imply that we are unable to
find the correct free energy of systems defined on Bethe lat-
tices, which, in fact, is the common lack of all type (ii) meth-
ods except for one special case,® where an integration proce-
dure, starting from the equation of state, is used. However, in
the context of a type (i) method, Baumgirtel and Miiller—
Hartmann'® found the generating function of the random
cluster model and its corresponding form in a BPCA con-
text. Their assumptions, in the present terminology, can be
expressed as the heuristic rule

lim YT, )=y(L ). (64)

Furthermore, for the solution of the Potts model with (a
preliminary version of) the present method, Peruggi, di Li-
berto, and Monroy>* also introduced (64) to find the free
energy, and verified that it was consistent with the probabil-
ity measure approach. Although the present results and (64)
can be used to find the free energy of any MRT Hamiltonian
model on ¢SS Bethe lattices, the procedure is formally unsa-
tisfactory. In paper II we will take full advantage of the de-
composition rule (9), which allows us to proceed to the local-
ization of extensive functions (i.e., the association of bond
terms to the sites). The main point of interest of the localiza-
tion procedure is that the thermodynamic limit of local
quantities is not affected by topological discrepancies, as can
be seen by (63c), thus providing a rigorous limit procedure
which has no need of heuristic rules as {64).
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APPENDIX A: CAYLEY TREES, BETHE LATTICES, AND
RELATED TOPICS

In the physical literature concerning trees, i.e., the
graphs of main interest in this paper, many distinct, and
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somewhat confusing, terminologies are used to denote the
same objects. In order to make easier the connections and
comparisons of our results with those of other authors, we
give here our definitions®® of such objects, together with
those usually found in other works.

A tree is a connected graph without polygons. In the
mathematical literature a tree is a Cayley tree, and vice
versa. We follow this convention, and always drop the name
“Cayley.” A tree T = (V,,E;)is finite if the set V,.(E;) of its
sites (bonds) contains a finite number of elements. The sur-
face of a tree is the set of all the sites whose coordination
number is equal to 1. The interior of a tree is the set of all the
sites which do not belong to its surface. Given a sequence
{T,, ] _, offinite trees, we say that it is strictly increasing if
the interior of T, , | contains V,, for every index m. Any
strictly increasing sequence of finite trees defines an infinite
tree, namely,

LE(V,E)E( ule, UlE'")E U]Tm. (A1)
To be concise we say that { 7', } 2 _, tends to L. This type of
convergence may be used in thermodynamic limit proce-
dures (see Sec. 1), where the knowledge of the behavior of a
model on growing finite systems (e.g., T,,,; m = 1,2,...) allows
one to deduce its properties on an infinite system (e.g., L ).
Actually this is done in all the papers concerning the present
subject, where strictly increasing sequences of trees are al-
ways used. Remark that relation (A 1) implies that every ieV’
is an interior site of L: in fact, by definition, it belongs to
infinitely many trees in the sequence {7} _,. Although
obvious, this fact clearly shows that the surface or the
“boundary” of the infinite (Cayley) tree, which are often
mentioned in the physical literature, are not real topological
objects: their authors refer only to the retaining of surface
effects when the thermodynamic limit of extensive func-
tions, defined on the elements of sequences as {7, 5= _, is
taken (see Secs. I and VII).

Let us consider, now, the connection between other ter-
minologies and ours. Some authors reserve the label “(finite)
Cayley trees” to denote those finite trees whose interior sites
have the same coordination number o + 1. As a trivial con-
sequence of the remark above, we see that all the sites of the
tree, generated by a strictly increasing sequence of such
graphs, have the same coordination number o + 1, i.e., in
the present case, the ““(infinite) Cayley tree” is exactly the
same as the Bethe lattice (see the definition at the beginning
of Sec. III). Other authors reserve the label “(regular) Cayley
tree” to denote those finite trees whose interior sites have the
same coordination number o + 1, except the “central” site,
whose coordination number is o. The “‘(infinite) Cayley tree”
or “regular Bethe lattice” generated by a strictly increasing
sequence of such graphs may be called, in our terminology,
single-defect Bethe lattice. In fact, it is a Bethe lattice of
coordination number o + 1 which has one site (the defect)
with coordination number o. It is physically intuitive that
the defect has no relevance with respect to the properties of
the mode! under investigation: actually, the authors who in-
troduce these graphs use them only in order to make easier
calculations.
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APPENDIX B: THE DIMENSIONALITY OF BETHE
LATTICES

Throughout this paper, graphs and trees are only used
as topological supports for abstract Hamiltonian models.
However it is customary for physicists to think of these ob-
jects in more concrete terms, i.e., to consider realizations of
the graphs (=drawings of sites and bonds as points and seg-
ments) in a Euclidean space where the interactions defining
the models have proper spatial distributions. Since the set of
sites of a Bethe lattice L is countable (see Sec. III), and any
finite tree is planar,® it follows that one can consider realiza-
tions of L in the plane (see Fig. 1), and actually in every d-
dimensional real space . In this connection, the question
arises concerning the effective dimensionality of Bethe lat-
tices.

One can provide answers from the topological point of
view (notice that topology and interactions are strictly relat-
ed here). The fact that no polygons are present in the Bethe
lattice seems to suggest a one-dimensional character. On the
other hand, the dimensionality can be defined as the smallest
positive integer 4 such that a regular representation of L can
be drawn in . Since it is known that (for every o> 1) the
angles between bonds, and the lengths of bonds, in a repre-
sentation of L in % cannot be bounded below by any posi-
tive constant for every d,*® one may deduce that L has an
infinite-dimensional character. Also the method described
by Baxter,?® which gives correct results for the dimensiona-
lity of all the regular two- and three-dimensional lattices,
gives d = 0. In both cases the result obtained is due to the
fact that the number of sites of L at distance / from a given
site (see Sec. III) grows exponentially when / increases.

Other suggestions about the dimensionality of Bethe
lattices may be argued by analysis of solutions. For conve-
nience we refer to the class of models which satisfy the sym-
metry condition:

q q
Y explKy)= Y expKi), x=e0;r=2,.,4. (Bl

s=1 s=1
In such a case, at zero external fields and for any tempera-
ture, Eqgs. (37) admit the fixed point 4 ¢(2) =4 ¢(3) = ...

FIG. 1. Finite portion of a realization on the plane of the Bethe lattice with
coordination number o + 1 = 3. Lexicographic ordering of the sites is
shown.
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= A %(q) = 1. By means of (38) and (45) we see that it de-
scribes the disordered state of the system, and by means of
(34) we see that it is always obtained with free boundary
conditions (H{" = 0; ¢t = 1,...,¢; n = 1,2,...). In a sense we
can say that it is the “natural” phase of the system, thus
deducing a one-dimensional character of Bethe lattices. (Let
us remark that, for o = 1, our formalism recovers the one-
dimensional chain, which is always found in such a phase, in
agreement with Ruelle’s proof®® of absence of phase transi-
tions in a class of models which includes those studied here.)
However, for o > 1 and sufficiently low temperatures, the
“natural” phase may correspond to a repulsive fixed point,
i.e., (arbitrarily small) fixed boundary conditions bring the
system into attractive fixed points that describe ordered
phases which actually minimize the free energy (see Sec. III
of paper II). Therefore, we are led again to an infinite-dimen-
sional character of Bethe lattices, associated to solutions de-
scribed by “classical” exponents at the critical point(s). This
is supported by the equivalence of our results and the Bethe—
Peierls cluster approximation on standard lattices (see Sec.
VII), since it is known that the latter belongs to the same
class of approximations, and actually is an improvement, of
the mean field theory (further details about these topics will
be found in the works by Domb* and Baxter’®). Another
connection between the infinite-dimensional character of
Bethe lattices and the classical values of the critical expo-
nents ¥ and v is discussed by Peruggi, di Liberto, and Mon-
roy.*

In conclusion, we think that the effective dimensiona-
lity of Bethe lattices, at least for the MRT-¢SS Hamiltonian
models studied here, is neither “subjective,” as stated by
Hughes and Sahimi,*® nor “quasi-one-dimensional,” as stat-
ed by Moraal,'” but actually isd = «. The doubts about this
fact may be related, in technical terms, to the unusual pres-
ence of the “natural” phase at low temperatures, too. In fact,
such an extremal point of %, is not expected on hypercubic
lattices,?® and certainly does not exist for the Ising model on
the square lattice.*® This subject is discussed extensively, in
connection with the free energy properties, in Sec. III of
paper 1L

APPENDIX C: SOME RELEVANT MODELS RECOVERED
BY THE PRESENT FORMALISM

A large class of Hamiltonian models can be expressed in
the form (22). Complete characterization of a certain system
is obtained by means of proper assignments of symmetry
conditions and/or relative ratios to the coupling terms K .
As regards to the external fields H 7, no special prescriptions
are needed since they were introduced in order to make
accessible the largest set of values for the fundamental pro-
babilities (from a physical point of view they can be seen as
chemical potentials which govern the relative densities of
states).

The Potts model is recovered by the following special-
ization of the general formalism:

K> =K§b,,, x=e0, rs=1,.4 (C1)
The ferromagnetic (antiferromagnetic) model is character-
ized by K > 0 (K < 0); (a model isomorph to) the Ising model
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is found for ¢ = 2.

The vector (or planar) Potts model is recovered through
the choice

K% =K cos(2m|r — s|/q), rs=1,.,q (C2)
[remark that for ¢ = 2 (g— ) one obtains the Ising model
(the classical Heisenberg model)]. The solution of the models
(C1) and (C2) can be found in the series of papers on the Potts
model by Peruggi, di Liberto, and Monroy.**!4

Another interesting model contained as a special case in
the present formalism is the Ashkin-Teller model. This is
defined for ¢ = 4 and is characterized by the following inter-
action matrix:

K, K K, K,
ki _|B Ko K K
KZ K3 KO
K, K, K, K

X = e,0,

x=e0, rs=1234.
(C3)

The Z (g) (or clock) model, which has recently attracted
great attention in field theory, is also recovered. Its interac-
tion matrix is cyclic:

K:s =K{r—sl’ X =e0, rs= 1""’q (C4)

[note that (C2) is a special case of (C4}].

APPENDIX D: PROOF OF THE PC PROPERTY FOR THE
POTTS MODEL

We limit our considerations to the Potts model with
only one external field, which is recovered by adding to (C1)
the following relation:

H7=Hé,, (D1)

In view of (C1) and (D1), the iterative functions (36) have no
sublattice dependence, and reduce to

D, (A 7(s)
_ e_H( 1+ A% + 2?=Z(t;ér)/1 () )a
X+ 31_,A%)

x=e0 r=1,..4.

r=2,..4. (D2)

Remark that the model of Ref. 34 was constructed with the
total equivalence between the states = 2,...,q. Although its
Hamiltonian is exactly the same, the present model is the
Potts limit of a general model and retains (possible) distinc-
tions. These will be disregarded, and complete identification
will be achieved, if we also set

A ) =A"3)==A%g=1% x=eo0. (D3)
This implies that all the relations (D2) become
¢(/{x)___e—H(l+K(eK+q_2M )0’ (D4)
e +g— 14~

and that the definitions of Sec. VI are relative, now, to the
positive (nonnegative) real line 72 _ (%, ). A little algebra
shows that the function g:#, —% _ is monotone increas-
ing and has finite positive lower and upper bounds for every
real K and H. As a consequence, Eq. (50) admits at least one
solution, i.e., there is at least one fixed point for the system.
Let {4 *}2 _ bethesolutions of Eq. (50) in increasing order.
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We consider the open intervals (0,4 ¥); (A ¥, A ¥); ...; (A ¥, ).
Let (b,c) be one of these intervals. Observe that we have
814 )> A forevery Ae(b,c),org,(A ) < A forevery Ag(b,c). Sup-
pose the first (second) case is true. The definition of the func-
tions g,,,, and the monotoneness of g, imply that, for every
A€lb,c), {gmA)] 2 _, is an increasing (decreasing) sequence
of points in (b,c) whose least upper bound is ¢ (greatest lower
bound is b ). It follows that g,, (1 }—g(A ) = ¢[g,, (4 }—>g(A)
= b ] for every A€(b,c), i.e., the PC property holds.

The classification of every A * as an attractive, repul-
sive, or mixed fixed point, and the partition {D, }% _, of 7
follow trivially from the preceding results. Furthermore, al-
though our proof does not depend on the number of fixed
points, we can also see that in the present case a<3.

A numerical study of the general relations (D2), with-
out the one-parameter condition (D3), can be found in Ref.
41.
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Probability measures and Hamiltonian models on Bethe lattices. II. The
solution of thermal and configurational problems
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In a previous paper we introduced a method for the construction of rotationally and
translationally invariant probability measures generated by one-step Markov Hamiltonian
models on g-state-site Bethe lattices. Here, the corresponding thermal problems are solved by
finding the relative free energy, which gives complete information on the properties of the models
under study. Configurational problems also can be solved with the present tools. As an example,
the solution of polychromatic correlated-site/random-bond percolation models is found.

PACS numbers: 05.50. - ¢, 02.50. + s, 64.60. — i, 05.70.Jk

1. INTRODUCTION

The interest of Bethe lattices and hierarchical lattices in
statistical mechanics is related to their iterative topological
properties.! In particular, the very simple structure of Bethe
lattices suggests that Hamiltonian models on these kind of
lattices can be solved with a reduced number of technical
problems.

In a previous paper? (which will be called paper I, from
now on) we studied the properties of general Hamiltonian
models defined on g-state-site (¢SS) Bethe lattices, and char-
acterized by one-step Markov (M), rotationally and one- or
two-step translationally invariant (RT) interactions. We
showed that these models generate at least one RT Gibbs
probability measure, and that only RT Gibbs probability
measures, or their mixtures, are obtained if a certain
piecewise contracting (PC) property holds. Furthermore,
any RT probability measure was explicitly calculated in
terms of a small number of known fundamental probabili-
ties.

All previous methods of solution of Hamiltonian mod-
els on Bethe lattices® do not use explicitly probability mea-
sures. They must tackle the common technical problem that
no sequence of finite trees tends to an infinite tree in the sense
of Van Hove?** (roughly speaking, this means that the bulk
properties of Hamiltonian models on a finite tree are domi-
nated by its surface). As a consequence, each of these meth-

- ods can be classified according to whether, in the calculation
of thermal extensive functions, (i) it takes into account the
non-neglegible surface effects, or (ii) it deletes them by means
of proper artifices. The distinguishing feature of our ap-
proach is the exclusive use of Gibbs probability measures.
This is very important when the limit towards an infinite
system is taken. In fact the thermodynamic limit of probabil-
ity measures does not depend on the topological properties
of the sequences of finite subsystems chosen to take the lim-
it.* On Bethe lattices this implies that our approach is (A} a
rigorous limit procedure, which is (B) unaffected by surface
effects. On the other hand, type (i) approaches satisfy only
property (A), while type (ii) approaches satisfy only property
(B). Our interpretation of these facts was extensively dis-
cussed in Secs. I and VII of paper .

In the present article the results of paper I will be used
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for the solution of thermal and configurational problems
(concerning models which satisfy the PC property). The lo-
calization procedure of extensive functions, which was sug-
gested in paper I in order to obtain thermodynamic limits
not affected by topological discrepancies, is introduced and
applied. This provides a rigorous limit procedure which
gives the internal energy, the entropy, and the free energy®in
terms of the fundamental probabilities. The analytic expres-
sion of the free energy provides, in turn, other thermal func-
tions of interest. Furthermore, a configurational approach is
used to reduce the evaluation of the pair correlation function
to the diagonalization of a known matrix.

As compared with other approaches, our procedure has
two striking advantages: the properties of the fundamental
probabilities are physically intuitive and their use is very
simple; the free energy is easily obtained and gives complete
information about the behavior of the models under investi-
gation. As a matter of fact, the solution of the Potts model
obtained by Peruggi, di Liberto, and Monroy’ with (a pre-
liminary version of) the present method can be compared
with other papers® where both type (i) and (ii) approaches are
followed.

A generalization of our method is considered in the fi-
nal part of the present paper. It is used to solve a special
configurational problem, i.e., polychromatic correlated-
site/random-bond (CS/RB) percolation models, whose
physical relevance in several theoretical and experimental
contexts has been recently investigated.’

The outline of this paper is as follows. The entropy of M
systems on ¢SS finite trees is found in Sec. II. The free energy
of every MRT-¢SS Hamiltonian model on Bethe lattices is
calculated in Sec. III. Any thermal function of interest can
be found by means of the free energy, except the pair correla-
tion function (because of the RT property). However, it is
found directly in Sec. IV by means of an alternative ap-
proach. Some applications of the preceding results to the
Potts model, which also show another useful property of the
general procedure, are collected in Sec. V. In Sec. VI we
consider general infinite connected graphs, introduce g-
state-site/two-state-bond events and the relevant probability
measures, define formally the characteristic functions of per-
colation models, and prove a useful sum rule relating them.
These subjects are used in Sec. VII, where MRT polychro-
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matic CS/RB percolation models on Bethe lattices are
solved. A sort of user’s guide is given in Sec. VIIIL

Finally, we remark that the present work is the natural
continuation of paper I, whose reading must be considered
as a prerequisite. The same notation will be used here, but, to
avoid unnecessary repetitions, we shall not give again the
definitions. However, reference to the relative sections (and
to the formulas) of paper I will be made (the symbol I is
added before their identification numbers).

II. THEENTROPY OF MSYSTEMS ON gSS FINITE TREES

Let T = (V;, E;) be a finite tree, R, be the semiring of
all ¢SS local events on ¥V, and - be a M probability mea-
sure defined on R ; (I/Sec. II). We introduce an ensemble 2 -
formed by w copies of T. Let us consider an assignment of
one configuration to each element of £2;.. The most probable
distribution of configurations (MPDC] in £2; is realized by
all the assignments such that every configuration & ,,_
€|}V || CR appears wu - (£ ) times in the ensemble. Start-
ing from one of these assignments we can generate all the
others using the »! permutations of its configurations over
the elements of 2. Since the permutations which inter-
change identical configurations do not generate new assign-
ments, the total number of distinct assignments satisfying

the MPDC on {2 is given by
Z= ! : (1)
our(€, )1
ffvrle-#l’ﬂl{[ r# )1

Therefore the expected number of ways to obtain the MPDC
for one copy of T'is = '/, and the entropy of the system (7,
Hr)is

Fr=Alnz®

- f(ln(w!) -3 ln{[a),uT(g,,T)]!}), 2

# y eVl

where # is the Boltzmann constant. Letting w— o0, and ap-
plying Stirling’s formula and the normalization condition

,)=1, 3
?VTZWVHI#T( vy (3)
relation (2) gives
Fr=—4 Z /‘T(gvr)ln,ur(gn)- (4)
# vyel Vel

Obviously, this expression is the same as the formal defini-
tion of the entropy.* Using [I/(9b)] we have

lnluT(ghv,,ngkvk)

(hkYeE,

ln,ur(gvr) =

- zoj lnl-‘r(gjvj)- (5)

28

On the other hand, the definition of conditional probabilities
implies

“rl® V,-) = #T(gjvj)ﬂT(gV:rl gjvj)
=luT($hvhngkvk)ﬂT(gV’7’.,ghvhngkvk)’ (6)
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where V4=V, — {j}; V=V, — {hk |; %V,ngjv/s?f”
n&,,,N& ., =%, . Inserting (5) and (6) into relation (4), and
introducing the function . (a)=a In g, the entropy of (7,
M) becomes

q
YT=A(~ 2’ > L(wrl€h,nE )
(hkYeEvpvg = 1

X z Iu‘T(ngl’_lghvhmgkvk)

el
q
+ X0, Y L(nrl€)
&V vi=1
X Y wurl®,.1%,)) (7)
el

The conditional probability that everything happens on V4
(¥ 7) provided that is in the state v; (k is in the state v, and
k in the state v, ) is equal to 1. Therefore (7) reduces to

f7=é(~ S P prl# 0B )

(hk YeEprs=1

+363 f(ma@,»). )

Py r=1

lil. THE FREE ENERGY OF MRT HAMILTONIAN
MODELS ON ¢SS BETHE LATTICES

Let us consider the sequence { T, }7_, (I/Sec. IV} of
finite trees tending to the Bethe lattice L = (V,E ). Suppose
that the interaction I (I/Sec. II) defined on R generates the
Hamiltonian with boundary terms [I/(25)], and letz,, on R,
be the Gibbs probability measure (I/Sec. I1) associated to the
system (T, #°, + A%, );n = 1,2,.... According to [1/(56)],
and proceeding as for the calculation of [I/(61)], the internal
energy on 7, is given by

BU, = — 5 3 Kiu,(8,0%,)

£
{i)eErs =1

— 3 S Hu, (%, 8

ieV,r=1
We see that the entropy (8) and the internal energy (9) rela-
tive to M Gibbs probability measures on finite trees are
formed by bond and site terms. As suggested in (I/Sec. VII),
we proceed to their localization associating bond contribu-
tions to the sites. As a matter of fact, we can write the inter-
nal energy relative to the site ieVX (x = ¢, 0) as

( C o
- ; bn(ll]) Z Krs#n(girﬁgjs)
Ji{ij}eE,, rs=1

9
- zH:ﬂn(girL iEVn _AVn’
pr,={ 10
- bn (lx]) z K:s#n(girngjs

rs=1

q
- zH:lu'n(gir)r iGAVn’
\ r=1
wherej in the third row is the unique site adjacent toiin 7,
and the topological weight factors b, (7,/) were introduced for
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maximum generality in the assignment of bond terms. Three
obvious physical requirements are imposed to the weights.
They are non-negative. They must be normalized, i.e., b, (ij)

+ b, (j,i)=1 for every n>1 and {ij)eE,. Furthermore, for
every (jj)eE, we want that the n— oo limit of b, (ij) exists.
Notice that these hypotheses and the rotational and one-step
translational invariance of the Bethe lattice itself (I/Sec. III)
imply

lim b, (i) = }. (11)

Similar weight factors (possibly the same) can be used for the
entropy associated to the site /, which is

4 q
Ji{iHeE,

rs=1

1

== +oS LW(#,), iV, -4V, (12)

r=1

g
“br’l(ltl) zlf(lu‘n(girngjs))’ ied Vn'
\ rs=
Now, suppose that the recursive relations [1/(35)] are PC (I/
Sec. VI), and that the probability measure 4, obtained in the
thermodynamic limit, describes a pure phase, i.e., it is MRT
on L. In the case of two-step translational invariance, for
every ieV*, we have

q q
BU* = — ——"jl S Kippi— S Hp (13a)
rs=1 r=1
— == > Lpps) toy ZL(pr), (13b)
rs=1 r=1
X = e,0.

It follows that the mean internal energy, the mean entropy,
and the mean free energy on L are given by

BuU = \B%*+B%°),
AT = Y A1+ £, (14)
BF = YBF* +BF°),

where the sublattice free energies are defined as
ﬂyx#@x _ /é_lf",

If I and p are one-step translationally invariant on L, there is
no sublattice dependence, and all the upper indices disap-

pear 10,11

x =e,. (15)

The main features of the models under investigation
will be obtained by studying the properties of the free energy.
It is useful to consider also (a) its first derivatives, which
(because of formal deductions) must satisfy the following re-
lations:

PBF [constant temperature,
— Fr

OH; x=e0, r=1,.q
(16)
PBF
——— =B%, constant fields;
ap p

and (b) the second derivatives with respect to the fields or the
temperature, i.e., the generalized isothermal susceptibilities
and the specific heat at constant fields. Since the “magnetiz-
ations” and the internal energy are known functions, we see
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that an analytical or numerical check of relations (16) pro-
vides a test of internal consistence for our procedure. Fur-
thermore, the second derivatives may be used to verify
whether the usual convexity properties are satisfied by 5.7 .
These controls where done in Ref. 7, where (a preliminary
version of) the present method was applied to solve the Ising
and Potts models: (16) were verified analytically; and evi-
dence of nonconvexity of the free energy was found, because
the “natural” phase (I/Appendix B) below the critical tem-
perature is characterized by negative susceptibility. Actually
we expect that, given a certain set of external fields and cou-
pling terms, several phases characterized by distinct values
of BF may be found in the system, for more general models
too. We classify these RT Gibbs states (I/Sec. II) as unstable
states (negative specific heat and/or susceptibilities, high
free energy), metastable states (positive specific heat and sus-
ceptibilities, intermediate free energy), and stable states
(positive specific heat and susceptibilities, the lowest free en-
ergy). We will give analytic expressions of the second deriva-
tives of the free energy, and will study their properties, to-
gether with those of the above-mentioned phases, in a
following paper I11. Here we focus on the nonconvexity of
the free energy, which would be irrelevant in the context of
an approximation method, but needs special consideration
in the present case, where we are dealing with a rigorous
approach. From a mathematical point of view, this unusual
property is easily understood. Remark that standard proofs
of existence and convexity of the free energy on hypercubic
lattices** make use of the thermodynamic limit on sequences
of nested boxes, and subsequently are extended to any se-
quence which converges to the infinite lattice in the sense of
Van Hove. On the other hand, we know that such sequences
do not exist on Bethe lattices (I/Sec. VII), so that the pre-
viously described localization procedure must be introduced
to avoid the topological discrepancy [I/(63d)]. As a conse-
quence, generalization of the usual convexity proofs to the
free energy on Bethe lattices is prevented. To understand this
fact from a physical point of view, we remind the reader of
the following exclusive properties of any Bethe lattice L.

(A) for every finitetree T = (V, E;)CL wehave |dV|
> |4Vy| > |Vy — AV, ie., any fixed or free boundary con-
dition on T (I/Sec. Il and IV) actually is a “bulk” condition.

(B) No closed walk exists on L, i.e., no correlations
propagate from a site to itself along external paths.

(A) and (B) imply that on a finite tree one has the maxi-
mum sensitivity to the boundary conditions, which means
that, in the thermodynamic limit, the Bethe lattice may be
forced into Gibbs states which would be “unphysical” on
standard lattices.

In conclusion, we deduce that the properties of Bethe
lattices, which allowed us to solve MRT-¢SS Hamiltonian
models, also imply some peculiar features. Their study will
be useful for intrinsic interest and in connection with non-
equilibrium statistical mechanics. Furthermore, we empha-
size that use of Bethe lattices as suggested in the Introduc-
tion of paper I, i.e., as a tool to extract information
concerning models of interest on standard lattices, will also
be fruitful. In such a case it is sufficient to concentrate one’s
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attention on the stable state(s) of the system, in order to find
the nature of phase transitions, their location, and the com-
plete phase diagram of the model under study. The equiv-
alence with the Bethe-Peierls cluster approximation (I/Sec.
VII) assures that our exact results, although described by
classical critical exponents (I/Appendix B), will be good ap-
proximations on (bipartite) d-dimensional lattices for every
d>3, with increasing accuracy for high d (as a matter of fact
see Ref. 7).

IV. THE PAIR CORRELATION FUNCTION OF MRT
SYSTEMS ON ¢SS BETHE LATTICES

Let us consider the Bethe lattice L = (¥, E ), andaMRT
probability measure u on the semiring R of all ¢SS local
events on L. The pair correlation function relative to the sites
iandj of L, in the states v, = r and v; = s, is defined as

9u(r,s)E,u($,,n$ﬁ) _ﬂ(gw)’u(gﬁ) (17)

LetW = ({i,h.k,...2j}, [{ih },{hk ),....(2) }) = (Vw,Ew)CL
be the walk connecting i toj. Then, using [I/(9a)], we find

9.»,(r,s)=u<$i,)( Sl Bl s | E )

1V — Ll

X418 )~ 1(5,)) (18

If u is one-step translationally invariant on L, we see
that the function (18) does not depend on i and /, but on their
distance ! =/ (i,j) (I/Sec. III). Moreover, defining the matrix

(r|T|s)=p,, rs=1,..q (19)
we find
G (rs) = p,({r|(T) |s) — py). (20)

Thus the evaluation of the pair correlation function reduces
to the determination of the / th power of T, i.e., toits diagona-
lization. This can be done numerically with standard proce-
dures, after calculation of the fundamental probabilities [1/
(45)], or analytically in some simple cases (an example is giv-
en in the next section).

If i is two-step translationally invariant on L, it is use-
ful to preserve the dependence of the pair correlation func-
tion by the distance /, only, defining

9 (rsi=3[ Filrs) + F(r)]. 1)

Here the upper indices mean that the relative (partial) corre-
lation function must be calculated by choosing the site / on
the corresponding sublattice. This time we introduce

(rITIs)=pr, x=ewp0, (22a)
q
(r|T®|s)=P,= Y p,.p, (22b)
t=1
rs=1,..4,
so we find
P [{rI(T)2)s) — ps ],
even [
Gilrs)= ’ 23
l(r’s) p: [ (rl(-l-eo)(l— 1)/2Te|s> __p?], ( )
odd |/,

and similar relations for &% (r,s). Therefore the calculation of
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the pair correlation function reduces again to the diagonali-
zation of a matrix.

V. SOME APPLICATIONS TO THE POTTS MODEL

The Potts model is recovered by our general formalism
if we set

K:s =K6rs’ Hszarl’
x=e 0 rs=1,.4q. (24)

We limit our considerations to the one-parameter model (I/
Appendix D and Ref. 7). Its properties and the normaliza-
tion conditions between the fundamental probabilities imply

pp=01-pVg—1, pi,=01-pL)Vig—1)

xX=e0, r=2..4,
Pn =D, Prn=D%;
(25)
x=e0, r=3,..q;
Py =(1—p3 —pn)/g—2)
x=e,0, r#s, rns=2..4.

In other terms only eight fundamental probabilities may be
used to define each probability measure u associated to the
model, namely: {p?,p%, .03, .p% }+ e These often reduce to
four (when sublattice dependence disappears): in fact, a pro-
cedure similar to that in Appendix D of paper I can be used
to show that two-step translationally invariant probability
measures arise only in the antiferromagnetic (K < 0) model at
sufficiently low temperatures. [Actually, (I/Corollary 1) also
shows that the above-mentioned fundamental probabilities
are not independent, but this fact will not be used here, since
it is more convenient to follow the same notation as in Ref.
7]

Relations (25) allow us to find explicitly the pair corre-
lation function for the Potts model. It is easy to see that the
matrices (22), in the present case, can be partitioned as

T= (yac ;xg Tgﬂ)’ e
R R e

A, 78R )
, m=12,.;
1.7C £.8+&7
where | is the (g — 1) X (¢ — 1) identity matrix, R is a row

vector whose ¢ — 1 elements are equal to 1, Csﬁ, and
S$=CR. The equalities

(Teo)m — (

(Teo)m= (TEO)M—]TE():TEO(TEO)’H*I (27)
imply
a,=aa, +q—18ym,_,, (28a)
N =a,_, + [(q_ l);] +§]77m—l
=a177m-1+(q_1)§m—1+§m_1’ (28b)
Sm =BV 1+ g— 15, +EVp_  +EE™ (28c)
Since (28b) gives
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om_1=[1/(g— 1)]{am—1 — [,
—lg—=05 =&, —£E77 1Y, (29)

(28c) can be neglected.'? Therefore our problem reduces to
the diagonalization of a 2 X 2 matrix X, because (28a) and
(28b) imply

(D))

where
xz(“‘ 7= Ly ) (31)
I g—1)¢,+¢
Expressing all the terms as functions of the jump probabili-
ties p,, defined by (22b), and applying elementary algebra,
one finds

(r|(T)"|s) = p¢ + [1/(g — V] [7(rs)d ™
+ 7(rslg — 261, (32)
(r|(T)™Te|s)y = pg + [1/lg — V)] [#(r,s)4 "4 ¢
+ mr.s)g — 2)5 "6 <],

where
4 =p,, — P
s§=llg— 1)pr, + P>, — 11/(g — 2
A7=pi, —p3»

§=[lg—1p5 +p5 — 11/a—2)
w(r.s)=(qd,, — 1)(6r1 —-Pi)
ars)=(1—6,)(1—6,,)/[(lg — 1)6,, — (g — 2],

X = e,0. (33)

Finally, noticing that A = 4 °A °, £ = £ °£ %, and introducing
(32) in (23) we obtain

(1 —p°
o i [erspiiaa g
= ep o\l /2
g;’(r,s) — 4 1 + e(er’s)(g 5 ) ]’ even Iy (34)
( ﬂ;) [elr.sipt (4 9+ 172a ot =12
q —
L FErs)E) T VHE) V], odd ),
where
6(r’s)Eq25r1515 - q(‘srl + 51s) + 1’ (35)

érs)=lg — )5, — 46, + (6, +6,) — 1.

Besides its physical interest,'® the pair correlation func-
tion is relevant since it gives another check on the internal
consistency of our method. As a matter of fact, using the
standard and staggered fluctuation relations

X=zg,(l,1),
¥s= L+ 3 T (L), (36)

it is easy to verify that one recovers the standard and stag-
gered susceptibilities obtained in Ref. 7 through differenti-
ation of the free energy.
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VI. SITE/BOND EVENTS AND CHARACTERISTIC
FUNCTIONS OF PERCOLATION MODELS

In this section we consider the infinite, connected, and
locally finite graph G = (V,E ) of (1/Sec. II), and make the
auxiliary hypothesis that it has no multiedges.'* We intro-
duce more general events on G than those defined in (1/Sec.
II) and studied up to now. Besides the g states assumed by
each site in ¥, also bonds in E are allowed to take up two
states, which we call “active” and “nonactive,” and label
with the indices 1,0, respectively. Bond configurations are
represented by the ordered partitions { E”, E®} of E in two
subsets (of nonactive and active bonds), whose collection will
be denoted by ||E ||. Given two finite subsets B,, B, of E, the
local bond event { B,, B,} is formed by all the configurations
in ||E || such that every (ij)€B, is nonactive, and every
(ij)eB, is active. The same procedure as in (I/Sec. II) can be
used to define the null and global events, and the semiring R
of all local bond events. Site/bond configurations (site/bond
local events) on G are the elements of the set
IGlI=|¥|l®||E|| (of the semiring R =R @ R ).

Let us introduce, now, a percolation model'> on the
graph G. We consider a (self-avoiding) walk of length />0 in
G, i.e., a subgraph W, = ({vo,v,,...,0; ],
{1y (0 13) e (0, 1 01)}) = (Vi .E ). We say that W, is
an r-walk in each configuration of G such that all the sites in
Vyu arein the state r, and all the bonds in E,, are active.
Given a configuration in |G ||, we define an r-cluster as each
maximal subgraph'* of G such that all its sites are connected
by r-walks. The size m of a cluster is, by definition, the num-
ber of its sites. The following events are needed to define
percolative functions:

& "'=/{ce||G||:icV belong to a cluster of size m},

Fr= L &, (37)
m=1
#r=lG| - #*,
& f=/{ce||G ||:icV and jeV belong to the same finite
cluster}.

Note that these are generalized local events or nonlocal
events which belong to the smallest o-field'® containing R.
Therefore they are fi-measurable events'® for every probabil-
ity measure i defined on R. The percolation probability, the
pair connectedness, the mean size of finite clusters, and the
mean number of finite clusters are, respectively, defined as

P,=p(87|8,)=1-A(EE,),
Pijrzﬂ(ggﬂg,-r),
5= 2n_ mi(&ME,) , (38)

Ix_((EMNE,)
© 1 . ™
NirEmz:l;#(gi n& ),

eV, jeV, r=1,..4.

Clearly, each cluster species 7 can be regarded as a color,
thus justifying the name of polychromatic percolation mod-
el.'” Also note that the dependence of the functions (38) by
the choice of the site ie¥ is due to the absence of hypotheses
about the spatial symmetries of G and/or ji. Furthermore,
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we remark that, here and in the following, no requirements
are made about the properties of Z (e.g., there is no need that
[ is m-step Markov on G }.

Finally, we prove a useful sum rule which relates the mean
size of finite clusters to the pair connectedness and the perco-
lation probability. Let 7 and ¥, be, respectively, the indica-
tors of the events £7'n& , and £4n& ,,, i.e., the functions
which assume the value 1 on the configurations contained in
those events, and the value 0 on the others. The following
relation holds for every site/bond configuration of G and for
every ieV:

Sm—1yr= % 7 (39)
m=1 jeV = {i}
Averaging over all the configurations with respect to the
probability measure /i (see the definition [I/{57)]), we have

o

Smm = S+ 3 () W

m=1
which is equivalent to

EJGV~ {1} Pijr (41)

3o i (ETNEL)

The events { {&7'n& , 17_, ], _ are mutually disjoint.
Therefore, using the countable additivity'® of &i, we obtain
the normalization condition

Sir=1+

> AUETNE,) =pEINE ) =pE,AE|E,) (42)

m=1

which implies

S —1 2pev Py (43)
i A& N1 — Py)
This relation was already obtained by Essam'® for random
systems.

Up to now we have considered standard site/bond perco-
lation. However the definitions and results above may be
easily generalized to ./ & site/bond percolation mod-
els.’®?° Let us subdivide the set { 1,2,...,q} of site states in two
disjoint classes & and #. For every walk W, = (V,,
E,)CG, of length >0, we will say that it is an &/ % -walk in
each configuration of G such that the sites in (the ordered set)
V, are alternately in states belonging to .2 and %, while all
the bondsin E,, are active. Given a configurationin ||G ||, we
define an ./ # -cluster as each maximal subgraph of G such
that all its sites are connected by .« & -walks. Relations (38)
can be used to define & % -percolation functions, too, when
the following changes are done in their interpretation. The
index r now stands for the classes & or & ; in the definitions
of & and & the word cluster must be replaced by .« % -
cluster; the event & ,, is defined as

&, =lce|G|:vier}, r=o.%. (44)

It is clear that the sum rule (43) remains true for &/ % -perco-
lative functions. We remark again that in standard polychro-
matic percolation models we can find simultaneously in G
g distinct colors of clusters labeled by the index 7. On the
contrary, in any o/ 4% -percolation model the graph G is
completely filled by the unique species of .« % -clusters de-
fined above.
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VII. THE SOLUTION OF MRT POLYCHROMATIC CS/RB
PERCOLATION MODELS ON BETHE LATTICES

Suppose that the site/bond events, just introduced in
the preceding section, are defined on a Bethe lattice
L = (V,E) of coordination number ¢ + 1. We make three
hypotheses about the structure of the probability measure /i
on R. The first one is that site states do not depend on bond
states, and vice versa. Therefore we have

A=pep, (45)
i.e., fi is a product measure whose components are two inde-
pendent probability measuresz onR and i onR. The second
hypothesis is that 2 is MRT. The third one is that bond states
are randomly distributed, and are rotationally and one-step
translationally invariant on L. This gives explicitly j:

E({Bo.B\}) = pi7(1 — py)*!, D+#(Bo,B,JeR,  (46)

where the external parameter p,, is the probability that a
bond is active. The physical interest of the associated CS/RB
percolation models in several problems is discussed else-
where.® Here we solve only standard (polychromatic) perco-
lation models, assuming that u is one-step translationally
invariant. The solution of &/ % -percolation models, in the
case of a two-step translationally invariant probability mea-
sureu, is given by Peruggi, di Liberto, and Monroy.?° Mixed
cases follow easily.

From a *“percolative” point of view we are interested
only in connectivity properties, which will be completely de-
scribed by means of the site probabilities {p,}?_,, and the
transition probabilities

trrprprr’ r= 1""’q' (47)
Asamatter of fact, let us evaluate the probability of afinite -
cluster. In formal terms: given the finite connected subgraph
T = (Vr5,Ey) of L, we want to calculate the measure of the
generalized localsite/bond event & ;, ={ce||L ||:Tisar-clus-
ter}. The perimeter of T is by definition the pair (dV, dE ),
where dV - is the perimeter of ¥ as defined in (I/Sec. IV),
while E C E is the set of all the bonds which connect sites
in ¥ to sites in gV . For fixed size m = |Vr| = |[E;| + 1,
we have |9V | = |0E| = m(o + 1) — 2(m — 1) for every
shape of T. Applying a simple generalization of [I/(9a)] we
have

la(gTr)=prt:l—_l(l _trr)mwvl)_*—z‘ (48)

The percolation threshold of our model can be found by con-
sidering the realization of an infinite r-cluster as a branching
process*! which gives rise to at least one r-walk of infinite
length. Suppose this ~walk has reached the site ic¥V: the pro-
cess does not extinguish if at least one of the following o steps
reaches a site in the state 7 passing through an active bond.
Therefore infinite 7-clusters exist if

ot >1. (49)

The equality gives the condition which characterizes the r-
threshold.

Now, we calculate the percolative functions defined in
the preceding section: to do this we use the generalization of
a method previously introduced for random systems.'® Let
u, v be two adjacent sites of L, and consider the nonlocal
event & ={ce||L ||: the r-walks (r = 1,...,¢) starting from u
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towards v extinguish in a finite number of steps }. The knowl-
edge of the probabilities

0,=AE¥|E.) r=1l.g (50)

is essential, because they allow us to distinguish the contri-
butions of finite r-clusters to the percolative functions. Each
Q, can be obtained by the corresponding recursion relation

g =(-1,)+1,0Q7 r=l..4, (51)
which means that a finite r-walk starting from the site u
(provided v, = r) towards v extinguishes at the first step, or
after a finite number of steps in the o branches departing
from v. Equation (51} always admits the solution Q, = 1.
However, when condition (49) is satisfied, another solution
0, <1 appears, which is the physical one in that range since it
goes to 1 for ¢,,—1/0, and goes to O for 7,,—1.

In terms of Q, the percolation probability is given by

P=1-0°*" r=1,.4 (52)

{we omit the index representing the reference site because of
the one-step RT property of & and L itself).

Let us consider two sites /, j of L at distance /. The
perimeter of the walk connecting / toj is formed by
(I — 1)(o — 1) + 20 sites (bonds). Then the pair connected-
ness is

P, =pt QU Vv r=1,.4q (53)

The mean size of finite r-clusters can be obtained by
using the preceding results and the sum rule (43):

37 o+ 1o p @l e v

S =1+ pngH

_ +eort

1— o.ter:,_ !

The mean number of finite r-clusters needs a special
procedure. We will use the relation which gives the cycloma-
tic number'® C;. of any finite graph G = (¥,E)in terms of
|Vl, |Er|, and the number M. of its components'*:

Cr= |EF| - lVF| + M. (55)
Let us consider the tree T, = (V,,,E,,) of the sequence
{T,}=_, (I/Sec. IV), and the configuration c,€||L || of the
Bethe lattice. We denote V,, (E,,) the set of all the sites
(bonds) in V', (E,) which belong to finite r-clusters in ¢, Ap-
plying (55) to the graph G,, = (V,,,.E,,) we have

Mnr = |Vnrl - |Enr| (56)
(C,, = O because G,, CL has no cycles'). Let y}; and 7{;,,
be the indicators of the events &/n&,, and &{,n%,,
={ce||L ||:{i) belongs to a finite r-cluster}, respectively.
Then, introducing topological weights as in Sec. I1I, (56) be-
comes

M, =3 (r” -3 :(i,i)rf.ﬁ,). (57)

Averaging over all the configurations of L, we obtain the
expected number N,, of finite 7-clusters on L having at least
one site in T',. At local level this is written as

Nnir =la($fh$”) - bilzl(lii)ﬁ(gZJ)nglr)’ (58)

Ji)EE,

1,....q. (54)
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which, in the n— oo limit, gives
Nr =prQ:',+l_ [(a+1)/2]Prtrr 30’
for every ieV.

It is easy to check that all previous solutions? of perco-
lation models on Bethe lattices are recovered.

r=1..q9, (59

Vill. FINAL REMARKS

This section is devoted to those physicists whose main
interest is related to the use of our procedure in practical
cases, rather than its mathematical details. For maximum
clarity and concision we give the following menu concerning
the utilization of the general results contained in paper I and
the present paper IL.

(1) Write the one-step Markov, rotationally and one- or
two-step translationally invariant (MRT) Hamiltonian of in-
terest in the form [1/(22)]. (Boundary terms as in [I/(25)] are
not needed. Note that site-diluted annealed Hamiltonians
may be considered, too.)

(2) Verify the piecewise contracting (PC) property de-
fined in (I/Sec. VI). (When this control is done numerically,
check that any seed introduced into the recursive relations
[1/(35)] tends to a fixed point as defined by [1/(37)] and [I/
(38)].)

{3) Find the fixed point(s) corresponding to the given set
of coupling term(s) and external field(s). (Note that both of
them depend on the temperature via the included Boltz-
mann factor.)

(4) Evaluate the fundamental probabilities [I/(45)].
[This gives the MRT probability measure(s) describing the
system in the prescribed conditions.]

(5) Evaluate the internal energy, the entropy, and the
free energy of the system, as given by relations (13)-{15).

(6) Evaluate other thermal functions of interest. (If this
is done analytically, use Egs. [1/(37)] and [1/(38)] to find the
derivatives of the fixed point parameters with respect to the
external fields and the temperature.)

(7) Diagonalize the matrix (22b) or (19) and find the pair
correlation function (20) or (21)—(23).

(8) Define the active bond probability p,, evaluate the
transition probabilities (47), and solve equations (51). The
percolative functions are given by (52)—{54) and (59).

Finally, let us emphasize again that the knowledge of
the probability measure(s) describing a certain system is suf-
ficient, on principle, for the solution of every problem con-
cerning that system. The procedure needed in such a case is
the same we applied for the solution of thermal and percola-
tive problems. One has to write all the “questions” in terms
of local and/or generalized local events, and to find their
probability measures by means of relations [1/(9)] {the mea-
sures of nonlocal events must be expressed in terms of the
above probabilities, directly or through iterative equations).
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We present a rigorous, nonperturbative derivation of a lattice version of the Faddeev—Popov
integral. This derivation shows that Gribov copies can occur in the lattice theory for certain
gauges, but these copies do not affect normalized functional integrals in the lattice theory.
Furthermore, taking the formal limit as the lattice spacing tends to zero leads to the usual

continuum Faddeev~Popov integral.

PACS numbers: 11.15.Ha

I. INTRODUCTION

The gauge-fixed functional integral for nonabelian
gauge field theories as formulated by Faddeev and Popov'
and generalized by ’t Hooft” appears to provide a suitable
starting point for the rigorous construction of such a theory.
However, the discovery of Gribov copies® has shown that
there are difficulties with the Faddeev—Popov (FP) method
even at a formal level.*

The simplest reworking of the FP argument which
takes into account Gribov copies unfortunately leads to a
replacement of the elegant FP functional integral with an
unwieldy expression involving the inverse of a sum of inverse
determinants.’ Several other modifications of and alterna-
tives to the FP technique have also been put forward.®

The references just cited amply demonstrate that Gri-
bov copies have an effect on the functional integrals of the
theory, but so far no one has been able to say in any genera-
lity what that effect is. Part of the difficulty arises from try-
ing to work in the continuum theory where many of the
fundamental quantities are not well defined.

In this paper, we formulate the FP technique for lattice
gauge theories and give a rigorous proof of a FP formula in
that setting. We show that Gribov copies can also occur in
the lattice theory and determine what their influence on the
relevant functional integrals is. Our work is based on some
observations of Hirschfeld,” who argued that the FP formula
is correct in spite of the existence of Gribov copies.

Our analysis supports this conclusion. Specifically, we
show that in lattice gauge theories, the functional integral of
a gauge invariant function differs from the value it would
have if there were no Gribov copies only by a multiplicative
constant. This constant, which we call the gauge degree, de-
pends only on the choice of the gauge-fixing condition. As a
consequence, the FP formula, because it involves a ratio of
such integrals, is not affected by Gribov copies.

This conclusion, that Gribov copies do not invalidate
the FP formula, is of course a very desirable one. However, it
should be noted that it depends in an essential way on cancel-
lations between positive and negative contributions to the
FP integral and the lack of a positive density would be a
hindrance in numerical studies of these integrals. The ap-
proaches taken in the articles of Ref. 6 do not share this
difficulty. In particular, in the last article of Ref. 6, the FP
integral is truncated in such a way that the density that re-
mains is manifestly positive.
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In Sec. II we give a more detailed explanation of the
claim that the unmodified FP formula is correct and present
an intuitive argument for this conclusion. A rigorous deriva-
tion of the lattice FP formula is given in Sec. III. In Sec. IV
we discuss various examples and applications. As a partial
justification of our choice of definitions in the lattice theory,
we show in Sec. V that the formal continuum limit of the
lattice expressions leads to the usual continuum FP formula.
We derive an expression for the gauge degree in the Appen-
dix.

Il. FORMAL DESCRIPTION

In this section, we give the idea of our lattice argument
using the more familiar language of the continuum theory.

The quantity of central interest is the formal functional
integral for the expectation of a gauge invariant function. In

the Euclidean theory this is

_Jfl4)det M{A)EoF(d)e ="' 94

()
S det M(4)EoF(d)e 5“2 4

(1)

Here, fand the action § are invariant under the gauge
transformation A—#4. The measure &4 is the {nonexis-
tent) infinite product of Lebesgue measures II, , ;d4 /(x).
The gauge-fixing function F might be for example F(4)

= d,4,, (Landau gauge) or F (4 ) = 4, (axial gauge); the fac-

tor EoF (4 )istypically a gauge-fixing term §(F (4 )) oradamp-
ing factor exp(aSTr F (4 )* dx). We are denoting by M (4 ) the
usual FP operator, which arises as the Jacobian for a change
of variables determined by F. We shall refer to Eq. (1) as the
“FP formula.”

It is the FP formula which has been cast into doubt by
Gribov’s discovery® that when the gauge group G is nonabe-
lian, there can be distinct gauge-related solutions in4 (“Gri-
bov copies”) of a gauge-fixing condition such as F{4}=0.
More pictorially, this is described by saying a gauge orbit
{ ¥4} can intersect a gauge-fixing surface {A4:F(4)= 0}
more than once. The conventional derivations of the FP for-
mula’® assume that this is not the case.

Our aim is to show that the FP formula is nevertheless
“correct” in the sense that it is equivalent to the naive func-
tional integral expression for { /). That is, we show
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Sfid)e 94
fe= g4
_ ffld)det M(A)E°F(A)e "9 4
fdet M{(A)EoF (A )e "9 4

Let G denote the global gauge group. Equation (2)is a
consequence of the following.

Theorem 1: There exists a constant 7 such that for any
gauge invariant function f|

nUE(C).@C)(Jf(A )e—s‘".,@A)

=(J o g)( f(d)det M (4)E°F (4 )e‘s“’@")’

(2)

(3)
where &g denotes the infinite product of Haar measures on
G. a

We obtain Eq. (2) by normalizing Eq. (3),
7S E(C)ZC)sfld)e” *“'DA)
NS E(C)DC)fe 5D 4)
(fZg)s flA) det M (4 )E°F(A)e D 4)
(FDg)f det M(A) EoF(d)e D A)

and cancelling identical factors. As in the original FP argu-
ment, the volume of the gauge group cancels in the normali-
zation. What is different in our derivation is the factor 5

which appears in some of the intermediate steps.
The constant 7 is given by

>

7;=fdetM(8A \6( F4) — C) Dg, (4)

where the integral extends over all gauge transformations g.
It would appear from Eq. (4) that 77 depends on 4 and C, but
one of the main results of this paper is to show that this is not
the case. Assuming for the moment that 7 is indeed a con-
stant, we can obtain Eq. (3) by integrating both sides of Eq.
{4) against E(C) f(A4 ) exp( — S (4 )), which gives

" UE(C)@C) Uf(A )e—SML@A)

= f f fld)det M (A \EoF Ed)e =S DA Dg.  (5)

Now change the integration variable on the right-hand side
of Eq. (5) form A to 4. Because f; S, and the measure & 4
are invariant under this transformation, the result is Eq. (3).

As we have just seen, the crux of our argument is the
assertion that 7 is independent of 4 and C. We now discuss
the reasons why this assertion is true. For the moment, we
shall use the notation 7(4,C ) instead of 7. Suppose that for

each copy *4 for which F{¥*4)= C, we can find a small
neighborhood U, of g, which contains no other g;. Then by

Eq. (4),
74,C)=3 | detMEA)S(F(4)—C)Zg.
k U,

Within each neighborhood U, we need only integrate over
those g which are infinitesimally close to g, . Such g can be
written as g = (1 + ¥ + O (y%))gx and the measure &g as
Dy = . ,dy/(x), where y(x) = Z¢(x) ¢; is an element of the
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Lie algebra of the gauge group written in terms of the genera-
tors {t;}. Also,

F(gA ) _ C =F((1+7’+0(72))8kA ) _F(gkA )
=M®Ay+0(),
by the definition' of M (¥4 ). Consequently,

det M (FAS(F E4 ) — C)Dg

— det M(#A) f S(M (A 1) Dy
Uk
 det M(*A)
" |detM(®*4))
Thus
7(4,C) =Y sgndet M (*4) . (6)

k

As Hirschfeld” has pointed out, in discussions involving the
FP formula, one cannot afford to be careless about absolute
value signs. For example, in deriving Eq. (6} it is essential not
to neglect the fact that in a change of variables the volume
element changes by the absolute value of the Jacobian deter-
minant [in this case, | det M (*4)|].

Hirschfeld uses Eq. {6) to argue that 7(4,0) is indepen-
dent of 4 by identifying it with the oriented intersection
number of the gauge orbit {44 } with the gauge-fixing sur-
faceZ = {A:F (4 ) = 0}. Tohavethisidentification, however,
one must make assumptions about the gauge-fixing surface
[i.e., assume that C = O is a regular value of F (4 )] and about
the orbit-surface intersections (i.e., that they are transver-
sal).

We offer a different interpretation of 77 based on Eq. (6),
namely that it is the oriented degree® of the map g—F (4 ).
This requires neither of the assumptions mentioned above
and allows us to show easily that 7(4,C) is independent of
both 4 and C.

There is a simple geometric interpretation of Eq. (6)
which shows intuitively why # has this property. Consider
the simple case of a lattice model with only one point and
gauge group G = U(1). The function g—F (¥4 ) is then a map
from U(1) to U(1) [see Eq. (9) below] and its graph can be
drawn in the unit square with opposite edges identified (Fig.
1). In this case, sgn det M (¥4 )is + 1 (resp., — 1) when the
slope of the function g—F (4 ) is positive (resp., negative) at
8k-

Figure 1 shows that 5(4,C) is independent of C because
as the horizontal line determined by C moves up or down,
the corresponding points of intersection are created and de-
stroyed in positive—negative pairs. Thus the value of the sum
in Eq. (6) does not change.

Moreover, given two gauge fields 4 and B, change 4
into B in a continuous way so that the graph of F (24} is
continuously deformed into that of F(¢B). Using the same
reasoning as above, we see that 7(4,C) = n(B,C),i.e.,5(4,C)
is independent of 4.

The notion of degree allows us to carry out the preced-
ing argument in general. We do so in Sec. I1I where we give a
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rigorous derivation of a lattice version of the FP formula.
Besides providing a regularization so that the relevant inte-
grals are well defined, the lattice model fits the framework of
degree theory more closely than does the continuum theory,
the main difference being that the space of gauge fields is
compact on the lattice.

(ll. THE FP FORMULA IN LATTICE GAUGE THEORIES

We now give the version of the argument presented in
Sec. II for a lattice theory in s + 1 space-time dimensions.

The gauge group G is taken to be a compact, connected
Lie group which for simplicity we assume is a group of uni-
tary matrices. Its Lie algebra is denoted by L. Let A be a
finite lattice of points of the form x = (nge,...,n,€) with
n,ef —N,,—N, +1,..,N,]. The gauge fields are func-
tions a(x,y) from the bonds {x,p} in A into G. They satisfy

alxy)=a(yx)~". (7)

The gauge transformations are functions g(x) from A to G,
and they act by

(Fa)(x,y) = glx)alx.p)g(y)~" . (8)
We usually think of a gauge transformation g as a point in the
product group & =I1,G. Similarly, a gauge field a is regard-
edasapointin & *=II,, , G. We denote by .%" and .Z"* the
Lie algebras of & and ¥ *, respectively.

The expectation of a function f(a) of the gauge fields is

given by
_ §flae 5da
(ry =B

where da denotes the product over all bonds of the normal-
ized Haar measures da(x,y); S (a) is the lattice action. The
action is a smooth, gauge-invariant function of a.

The lattice gauge-fixing function F will have the form

F(a)(x) =[] alxy)™”, )

where m(x,y) is an integer. [When the gauge group is nonabe-
lian the order in which the product is taken in Eq. (%) must be
specified.] For example, to obtain the lattice verison of the
Landau gauge with

EcoF(4) = exp (a f Tr(d, A,) d“x) ,
one can choose

Fa)(x) = a(x,x + eplalx,x — eg)-—alx,x + e;)alx,x —e,),
(10a)
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E(c)= exp<2a/1 —2 Y Trc(x) — 1 )) , (10b)
For the axial gauge, take
Flajix) = alx,x + e, (11

which is defined for those x for which — eNy<x, <€N,,

Given a gauge-fixing function F and a gauge field a,
define the map ¢: ¥ —Y by

@ (g)=F(%a)F (a)~" .
The lattice Faddeev—Popov operator is the map M (a): ¥ — %
defined by M (a) = dg, . This operator plays the role of the
Jacobian at g = 1 for the change of variables from g to F (%a)
in a Haar integral. The lattice Faddeev—Popov determinant is
det M (a).

Examples of the FP determinant are discussed in Secs.
IVand V.

Theorem 2: (Lattice FP formula) There is a constant 7
depending only on F such that for any smooth gauge-invar-
iant function fon ¥ * and any smooth function Eon ¥,

n (fE (c)dc)(f Sfla)e =% da)

:fdetM(a)f(a)EOF(a)e”S“" da. (12)
Hence if 5(SE (c)dc)#£0,

_ Jflale”*“da
Sy =t

_ _Jdet M (a) f(a)E°F (a)e 5" da ' (13)

§ det M (a)EoF (a)e ' da

The proof of this theorem is based on the notion of the
degree of a map. Recall that if M and N are compact, con-
nected and oriented manifolds of dimension » and £M—N
is a smooth map, then the degree® of fis the number for
which the equation

[ rro=cas)| o

holds for any n-form on N.
Lemma I: Let n(a) be the degree of the map 9 —Y
defined by f'(g) = F (%a). Then for all smooth functions E on

3

(14)

j det M ((a)E°F (%a)dg = n(a) f Eh)dh. (15)
k4 £4

Proof: This is essentially the same as Proposition XIV of
Ref. 9. O

The connection of Eq. (4) with Eq. (15) can be made by
taking E (#) = 8(hc ™) in the latter equation.

Hirschfeld’ considered the oriented intersection num-
ber of the orbit and surface manifolds. This quantity is close-
ly related to 77(a). As he pointed out, its utility depends on the
following lemma.

Lemma 2: The quantity 7(a) defined in the preceding
Lemma is independent of a.

Proof: This is a consequence of the fact that degree is a
homotopy invariant. By assumption, G is connected and
hence so is ¥ *. Thus if @, (i = 0,1) are any two gauge fields
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there is a path in & * from q,, to a,. This path yields a homo-
topy of the two maps

fg)=F(a;) (i=0,1).
Hence deg( f,) = deg(f})- a

The proof of the lattice FP formula is now simply an
adaptation of the original continuum argument.'*

Proof of Theorem 2: The upshot of the lemmas is that for
some constant 7 depending only on F,

7 f E(h)dh = f det M ((a)E°F ((a) dg . (16)
@ ¥
Multiply both sides of Eq. (16) by
flaje=*"da,
g.

and apply Fubini’s theorem to obtain

7 (L Eh)dn )(fy‘f(a)e - St da)

_ (L det M (a)E°F (%a) dg) (L.f(a)e—sm)da)

=J J- det M (%a) f(a)E°F (fa)e ~ 5" da dg . (17)
g Joe

Now make a change of variables on the right-hand side
of Eq. (17) a to %a. Because the Haar measure is translation
invariant and fand S are gauge invariant, we obtain

f det M (%a) f(a)E°F (fa)e ~5'“ da
Al
= f det M (%a) f(fa)E°F (fa)e ~ stal gg
G

= f det M (a) f(a)E°F (a)e 5 da ,
KAl

and Eq. (17) becomes

n(J; E(h)dh ) (fy.f(a)e — St da)

- f J- det M (a)f(a)E°F (a)e ~*' da dg
g Jg»

= f det M (a) f(a)E°F (a)e =S da ,
LA

where we have used the fact that [, dg = 1. O

Definition: The gauge degree 7 associated with the
gauge fixing function F is the degree of the map £ 9 -9,
flg) = F%a) for any qc G *.

IV. EXAMPLES AND APPLICATIONS

(@) Formula for the gauge degree: Although 7 does not
appear in the expression (13) for normalized lattice expecta-
tions, it is worth knowing because it contains information
about the orbit-surface intersections. We shall use this infor-
mation to analyze gauge-fixing on the lattice for the axial
and Landau gauges. Also, we wish to know when % = Osince
in that case the gauge-fixing procedure described in Sec. I11
breaks down.

For gauge-fixing functions F of the form given in Eq. (9)
we have
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F(1)x) = [T &( )™, (18)

for some integers n(x,y). [We are ignoring the noncommuta-
tive nature of group multiplication in Eq. (16}; the value of 7
is the same regardless of the order in which the product is
taken.] We show in the Appendix that

7=(det N)", (19)
where NV, , = n(x,y) and r is the rank of G. [The rank of a Lie
group is the dimension (as a manifold) of a maximal abelian
subgroup.]

(b) Axial gauge: Axial gauge [Eq. (11)] is the easiest to
handle with these methods. We show first that the FP deter-
minant is identically 1.

One way to calculate M (a) is to use the fact that if

g=1+7+0(),
FEa)Fla '=1+M@y+0). (20)

[We are suppressing indices to simplify the formulas
somewhat. For example, the matrix M (@) actson .¥ and so s
indexed both by the lattice points x and color indices i. Thus,

M (a)y stands for [M (a)y], = 2,;, M (a),¥|»).] For axial
gauge, we have

F(%a)(x) F (a)(x)~"
= glx)alx,x + eo)g(x + eo) ~'a(x,x + €5) "
= (I + y)x)alx,x + eo)I — ¥(x + &)
Xaxx +e) ™' + 0¥
=1+ y{x) — ad(a(x,x + eo))yx + eo) + O (),

where ad(a)y = aya™'. Thus

Mia),, =1,
M(a)x,x+ 6 — ad(a(xrx + eO))’
M), =0, if y#x, or x+e¢,.

( Iis the identity operator on L.) Since M is an upper triangu-
lar matrix whose diagonal elements are equal to 1,
det M(a)=1 (axial gauge),

for every gauge field.
Now we show that the gauge degree for axial gauge is
also equal to 1. In this case,

F(a)(x) = a(x,x + ¢),
s0 that

F{E1)(x) = glx)glx + e) " .
The matrix elements of N are

N.,.=1,
NX,X+eo= -1,
N,.,=0, if y#£x or x+e,.

By an argument similar to that used for the FP determinant,
det N =1 and so 5 = 1. Note that if we take E to be a &-
function, we obtain the formula of Ref. 10

ff(a)e —S@ dg = fH Sla(x.x + eg)) fla)e = Stal 4g |
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(c) Landau gauge: The lattice FP determinant for the
Landau gauge [Eq. (10}] is discussed in Sec. V. For the mo-
ment, we calculate just the gauge degree.

When F'is given by Eq. (10a), the matrix V is given by

5

W)= 3 [ =Sl +e,) +2 ) —flx —e,)] .
(21)

We have not yet said how to define F (a){x) when x is on the
boundary of A. For such, x, the definition (10a) does not
make sense since some of the bonds referred to are not in A.
It takes some care on this point to arrange that 7#0.

We shall proceed as follows. Define F(a)(x) as in {10a)
but only for x in the interior of A. In integrals such as the one
defining 7 {Eq. {(12)], integrate over II, dg{x) only for x in the
interior of A. This is equivalent to requiring that all gauge
transformations be the identity on the boundary of A. The
result is that V is given by Eq. (21) with the convention that
f(y)=0when yison the boundary of A. In other words

N=é€4},
where 4 {, is the finite-difference Laplacian operator on A

with Dirichlet boundary conditions. The eigenvalues of 4 2,
are (e.g., see Sec. 9.5 of Ref. 11)

s k
A= 4e2sin?{—~), 22
, ,;::o S (4N ) 22)

"

with &, = 1,2,...,2N, — 1. In particular, no eigenvalue is 0
so det N #0 and 7 #0.

We remark that if the boundary values of F (a) had been
defined by imposing periodic boundary conditions or by sim-
ply omitting any terms a(x,y) for which the bond {x,y) is not
in A, 4 2 would have been replaced by the Laplacian with
periodic or Neumann boundary conditions respectively. In
both cases, we would have n = 0.

(d) Existence and uniqueness of orbit-surface intersec-
tions: We now use our knowledge of % to answer for the
lattice theory two questions raised by Gribov* for the contin-
uum theory. This analysis is based on an alternative formula
for the degree of a map®: if ¢ is any regular value of f, then

deg(f)= Y €lfg), (23)
gef (o)
where €( f,g)is + 1if fpreserves orientation at g and — 1if
freverses orientation at g.

The first question is, given a gauge field @ and an arbi-
trary function ¢, does the gauge orbit {%a] intersect the
gauge-fixing surface F = ¢? In other words, does there exist a
gauge transformation g so that

F{a)=c?
It follows from the definition of 7 that the answer is yes if
7#0, for by Eq. (23) any map which is not surjective has
degree O.

The second question is, are there any Gribov copies?
That is, if

Fla)=c,
are there any nontrivial gauge transformations g for which

Fl(4a) = c?
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Again the answer is yes if |7|#1 as can be seen from the
definition of % and Eq. (23). If |5|#£1, there must be more
than one term in the sum {23). Moreover, because 7 is the
same for all @ and ¢, if |7 5% 1 or O then every orbit intersects
every surface more than once. (If 7 = O there may be some
orbit-surface combinations which do not intersect.)

For Landau gauge as discussed in part (c) we have from
Eq. (22)

detN=H62/1k,
k

from which it can be shown that det N— « and hence 77— o
as N,— 0. This shows that for the Landau gauge at least,
Gribov copies occur in the lattice theory.

{e) Gauge invariance of the FP determinant: In the origi-
nal formulations of the FP formula it appeared that the FP
determinant was gauge invariant. The discovery of Gribov
copies has made this doubtful. We now show that in the
lattice theory, gauge invariance holds only in very special
cases.

Of course, one such case is that where G is abelian, for
then M (a) is independent of a [see Eq. (20)] and the FP deter-
minant is a constant. If G is nonabelian, take £ = 1 in Eq.
(15) to obtain

7 =J- det M {¥a) dg .
4

If det M (a) were gauge invariant, then we would have
n =det M (a),

for every field @, and the FP determinant would be a con-
stant. Moreover, suppose X is the dimension of G. By substi-
tuting Eq. (18) into Eq. (20) we find that

MQ1),,=N,1I,
but det M (1) = 7 = (det N)" and r = k if and only if G is
abelian. Hence it must be that det N =0or |det V| = 1. To
summarize, if G is nonabelian, then the FP determinant is
gauge invariant if and only if it is a constant and that con-
stantis 0, + 1, or — 1. In particular, the Landau-gauge FP
determinant is not gauge invariant.

V. CONTINUUM LIMIT

In this section, we illustrate how the continuum FP for-
mula can be obtained formally by taking the limits N,,—cc
and €—0 in the finite-volume lattice expression (13). The
limit is taken assuming that we obtain the lattice gauge field
from a smooth continuum gauge field 4,, by the relation

a(x,x + e“) _ e:t/lsA“[x-#(l/Z]e“] , (24)
where A is the coupling constant.
For concreteness, we treat the case of Landau gauge
[Eq. (10)]. The continuum expression in this case is
_ ffld)detMA)e” " 94

= : 25
o sdetM(d)e ' P4 2

in which

1

S.d)= - tr(F,,) d*x +a J tr(d, 4, d*x, (26)
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where F,, =d,4, — 3,4, +4 [4,,4,] and M (4)acts on
Lie algebra-valued functions B by
M{A)B)= —4AB—A44,[4,.B]. (27)

To begin, take Eq. (13) for the finite lattice and let
N, — w0, so that all expressions now refer to an infinite lattice
with spacing €. We assume that the action S (a) has been cho-
sen so that, as e—0,

S(a}— — % J tr (F,, P d*x. (28)
A simple argument based on Eq. (24) shows that

EoF (4 )—exp (a f tr(d,4,) d‘x) (29)
as €e—0 so that

EoF (4 )e~S"—e™ %1,

The remainder of this section is devoted to showing that
the matrix € ~2M (a) converges to the operator M (4 ) defined
by Eq. (27}. In the following, the summation convention for
repeated indices does not apply.

Given a point x in the lattice, define

ad( + p)=ad(a(x,x + egla(x,x — e,)
Xa(x,x +e)-alx,x te,).
For F given by Eq. (102) and g = 1 + ¥ + O(y?) we have
F (a)(x)F (a)(x)~"
= (1 + ¢x)) alx.x + o) I — ¥{x + €g))
X (I + vix)alx.x — e)( I — px — eg)) X -
X1+ yix)alx.x —e (I —yx —e))
X [alx,x + eg)-alx,x —e)] ™' + O(y?)

=1+ {I—ad(—s)+ Y [ad(+p)+ ad(—p)]}rix)

— Y ad(+ulylx +e,)— Y ad( —plyix —e,)

P
+0().
The matrix element M (a),, is the coefficient of #{ y) in

the above expression. Thus if B is a Lie algebra-valued func-
tion,
€ (M (a)B)x)=€"* 3 Mla),, B(y)
y
=€ [ 1—ad(—s)] B(x)

+€7?Y ad(+p)[B(x) — B(x +e,)]

+€2Y ad(—p)[Bix)—Blx—e,)]
=€ 2[ I —ad(—5)] B(x) (30)

— €'Y ad(+u)s, B (x +—;—e,‘)

+e 'Y ad(—p)s, B(x——;—eﬂ),
where 5, fix)=e~'[ fix +1e,)—flx —1e,)].
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We now wish to expand the right-hand side of Eq. (30)
to O (¢), using Eq. (24) to write

_ + AeA [xj;(l/Z)e ]
axxte,)=e » “

=1+ Aed, (x +}e,)
+}[Aed, (x £}e,)]>+ O(€),
so that, for example,
alxx +e,)alxx —e,) =1+ 18,4,x)+ 0(€).
The result for the terms appearing in Eq. {30} is
(i) e *[I—ad(—s)]Bx)

— —A3 [8,A4.M.B(X)] +0(6),

(i) —e 'ad(+u)s, Bix+1ie,)
= —€'5,Blx+1le,)
—A[4.x+1e), 6,B(x+1)e,)]
+Ole),
(iii) e 'ad(—pu)s, B(x—}e,)
=¢e"'6,B(x—1}e,)+Ole).
Putting these equations into Eq. {30), we get
€ *(Ma)) B (x)

=3 {~A4[6,4,(x),B(x)] —5,5, Bx)
ifi [4.x+1e.)8,Bx+4e,)]] + Ole)
——4B(x) -1 Y 8, [4,x).B(x)],
as 0. ’
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APPENDIX: FORMULA FOR THE GAUGE DEGREE

We indicate here how one obtains the expression (17) for
the gauge degree for gauge-fixing functions F of the form
given in Eq. (9). The gauge degree is the degree of the func-
tion f defined by

flg)=F{1). (Al)
Thus the problem to be solved is that of finding the degree of

a function fon the product group G* = I1¥ G of the form
[cf. Eq. (16)]

S818i) = (f1(81538k s-vos S (810484 )) » (A2)
where
k
figr-8i) = T[ & (A3)
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[The order in which the multiplications in Eq. (A3) occur
does not affect deg /]
Theorem 3: With fas described above,
degf=(detN),

where 7 is the rank of Gand N; = n;;.

The proof of this theorem requires some knowledge of
the cohomology of compact Lie groups. The relevant points
are reviewed very briefly below following the notation of
Ref. 9 to which the reader is referred for more information.

Let I1; denote the projection map

II,(gy,...8x) =8 »
and M the multiplication map

Mg .8c) = 81828 -
An element w of the cohomology algebra H (G} is primitive if

k
Mty = > fo. (Ad)
=t
It follows from Eq. (A4) that if P,, is the m-power map

P, (g} = g™ and w is primitive, then

P¥ =mo.

Any primitive has odd degree [as an element of the
graded algebra H (G )] so if w, and w, are primitive

W10, = — Wy . (AS)
Moreover, there are primitives @y,...,@, so that
@ Wy, (A6)

is a nonzero element of the top cohomology group of G.
The degree of fis given by the equation

ffo =deg(f)w,
where w is any member of the top cohomology group of G *.
To prove the theorem we shall construct a particular non-
zero @ and show that

fio =(detN)yo .
Suppose w is primitive and consider
({Iof Vo .

Now
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”i°f= MoQi ’

where

Q/lg1-84) = (87" 82"
Consequently,
k

(Hiof)# =Q?°M“ = z (IIjQi)“w

=1

k k
= Z} (P, ol ffw = .Zl n, M. (A7)
J= J=
Equations (AS5) and (A7) imply that
S Folk) = det(N )™, (A8)

where 0! = (IT¥ )T w)--(IT% w).
Define

Pt }

& = @)

K7

’

where the w; are those of the expression (A6). Then by Eq.
(A8),

¥ = (f ol ))...(f#a)‘rk N=(detN)a,

which proves the theorem.
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Casimir invariants for the eight-dimensional subgroups of the Poincaré group

P(1,4)
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The generalized Casimir operators of all eight-dimensional subgroups of the Poincaré group
P(1,4) are found. These operators include polynomials in the enveloping algebra of the considered
eight-dimensional Lie algebra, quotients of such polynomials, and also more complicated

functions of the infinitesimal operators.
PACS numbers: 11.30.Cp, 02.20 + b

The existence of invariants (Casimir) operators is one of
the most important properties of Lie algebras mainly be-
cause of the role the operators play in representation theory.
They are well known only for semisimple Lie algebras. Every
invariant operator of a simple Lie algebra is a polynomial in
certain basic ones. The basic invariant operators are homo-
genous of known degree' and their number is equal to the
rank of the algebra. For nonsemisimple algebras the invar-
iant operators have to be found by lengthy computations and
not all of them can be written as polynomials in the elements
of the Lie algebra. It is known that the number of the basic
invariant operators is equal to the dimension of the algebra
modulo 2.

An abundant source of physically interesting
nonsemisimple Lie algebras is found in the Lie algebras of
groups of inhomogeneous transformations, in particular the
Liealgebra P(3,1) of the Poincaré group which is a semidirect
product of the Lorentz group with a four-parameter abelian
group of space-time translations. A complete (infinite) list of
conjugacy classes of subalgebras of P (3,1) exists.” The corre-
sponding invariant operators were found in Ref. 3 using the
method of Ref. 4. In a number of applications it is useful to
consider also the Lorentz and Poincaré groups in larger
spaces. Thus Fedorchuk®S found the subalgebras of the
Poincaré Lie algebra P (4,1) in (4,1)-dimensional space-time.
In this article, besides a large number of entries found in
P(3,1) and those which are of the splitting kind, the most

interesting ones are the nonsplitting subalgebras of larger
dimensions. Reference 6 contains all eight-dimensional
nonsplitting subalgebras of P (4,1). The purpose of this paper
is to find the invariant operators for the Lie algebra of Ref. 6
and those whom are eight-dimensional of Ref. 7. The alge-
bras of Ref. 7 are of the splitting kind. Our method is esssen-
tially that of Ref. 4 with some improvements from Ref. 7.
The eight-dimensional algebras of Ref. 6 and 7 are, re-
spectively, those of Tables I and II. The generators G, L,, P;,
C, X, (i=1,2,3;v=1,2, 3,4) which occur in these alge-
bras are linear combinations of the 15 generators
M, = — M, and the Py {&,v = 0,...4) satisfy the follow-
ing commutation relations:
[PLPL]=0 [M,P;] =8P, ~8uPl 0
[M#V’Mpa ] = g#PMva + gWMup - gVPMFG - g/"oMVP’
whereg,,, is the metric tensor with components gy = — g,
=landg,, =0(fu#v)(oc=1,.4;u,v=0,..4). The gen-
erators of the algebras are explicitly

G=M,, L, =M, L,=—M,,
P,=M, —My,, L,=M,+M,,
Xo=1(Py—Py), Xs=43(Po+Py) X=Xy

where q, k = 1,2,3.
The commutation relations in terms of the generators of
the algebras are

L:u :M21:

TABLE I. Subalgebras of the Poincaré algebra of dimension 8 of the nonsplitting kind.

Range of the
Generators parameters Invariants
G+ aX;, Ly + bX;; P, Py, Py X\, X, X, b #0, Va none
G+GXO,L3;P,,P2,P3,X1,X2,X4 a;é() X4exp( _P3),P1X2_P2X1“2X4L3

24X, X,

Ly + Xo, Py + hoXo; Py, Py, X, X, X, X, vh, Xy X)X, — 2P) + Xo(X, + 2P)) — 4X,(L; + X,) + X3
Ly — Xy, Py + hoXg; Py, Py, X, X, X, X, vk, Xy X)Xy + 2P) + XX, — 2Py) + 4X,(Ly — Xo) + X}
Ly, P, + Xy, X;; Py, Py, X, Xy, X, e= 41 X, PX, — PX, - 2L X,
G+0X3, L3+dX3§ PI)P2:X{)’X1’X2)X4 Va;, ds X% +X§ _4X4X0» [P1X2_P2Xl ‘2X4(L3+dX3”/X4

A=L; — (e/2)(P; + C3) + poXo;
B=L, +(e/2)P, + C.), X, X5, X35, X, — X,

fo#0, €= +1 X2 + X2+ X7 + (X, — X,
i=123

(By + A + (12/2]Xy — XXy — Xo) + X3 + X3 + X7)
+ 26(X, — Xo)(X,B, — X,B,) + 2X,(X3B, — X,B))
+2X,(X,B, — X,B,)
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TABLE II. Subalgebras of the Poincaré algebra of dimension 8 of the splitting kind.

Range
of the
Generators parameters Invariants
G Ly, Ly, Ly, Py, Py, Py, X, (PP)/X,, (P-L)/X,
G Ly P, Py, P, X, X,, X, Py/X, (X\P, — X,P, 4 2X,L,)/X,
Ly, Py, X33 X\, X, X, P, P, Xo X, P, —X,P, + 2X,L,
G L, Ly, Ly, X, X,, X, X, X-L, X-X
G Ly, Ly, Ly, X1, X, X5, X, XL, X-X
G X, X3, X5, X, Py, P,, P, none
GrL3+bG;Xer2’X4:P1s PZIPJ b>0 none
G, Ly Xo, X,y X, X, Py, P, Xf + X% —4X,X,, (X1P, —XoP + 2X4L3)/X4
G, L; X5 X, X,, X,, P,, P, X, (X\P, — X,P, — 2X, L/ X,
P],Pg,P;yXo;Xl,Xz,X3,X4 X“,X% +X§ +X§ —4X0X4
G, L;; Xy, X1, X, X5, X,, Py X} + X3, X —4x,X,
G, X5 Xo, Xy, Xp, X, P, P, Xy, X2 4 X2 - 4X,X,
Xo X5, Lyy X, X, Xy, P, P, Xy, Xy X Py — X, P+ 2X,Ls, X2 4+ X3 — 4X.X,
Xo, Ly + €P5; P, Py, X, X, X, X, e=+1 X X3+ X2+ X2 —4XX,
X3, L; + ¢G; X, X, X5, X, Py, P, c>0 X, X+ X2 —4X X,
Xoo X Ly, Ly, Ly, Xy, X, X, Xo» X4 X-L, X-X
[GL:]=0, [GP]=—P, [GX]=0 (i=123), We now have a set of differential operators which act on real
variables. Our problem i i i
[GXo] =Xo [GXe] = — X, Ir pr blem is translated 1nt9 one of ﬁnc%mg aset
) of F(x,) satisfying the system of partial differential equa-
[LisP] = €l (k] =1,23), tions:
[L3X,] =X, [LyX,]1= —X,, .
X Fix,)=0, i,k=1,..,n, (6)
[La»Xsl =0, [L3,X4] =0,

[PnX,] =2X,5,, (m=123;v=1234),

[X/.t ’Xv ] = O (/l,V - 0’1!2’394)y

[B:.B;] = 26,4 B,, where B,.=L, + (e/2)(P; + C,),
[B,.,‘Z:] = (e/2)uoX;, where _

A=L; — (/2)(P; + C5) + poX,. (2)
These commutation relations allow us to determine the
structure constants for each algebra. The structure constants
cf; are defined by

[X:i:X; ] =;c§Xk. (3)

Let us give a brief outline of the method used to calcu-
late the Casimir invariants. For a more detailed description
of the method we refer to Refs. 3 or 4. Let {X; } be a basis for
the Lie algebra. We attempt to find a function F (X;) of the
generators, such that

[X.F(X,)] =0, 4)
where the “/”’ subscript sums over all basis elements. The
way to proceed is to replace the X; by differential operators

n ! a
Y ciwx; .
Ix,

Lk =1

(5)
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where we are dealing now with real variables. In the solution
of the system (6), we replace the real variables x,, by the
generators X, . However, we must symmetrize the results to
take into account the noncommutativity of the X, ’s in the
substitution. The resulting expressions are the Casimir in-
variants satisfying (4). Table I lists all the invariant operators
for the subalgebra of Ref. 6. In the first column we find all
eight-dimensional subalgebras classified in Ref. 6. In Table
II we find the eight-dimensional subalgebras of Ref. 7. The
generators which appear at the right of the semicolon belong
to the derived algebras.

The second column is the range of the parameters of the
algebras of the first column which in fact may represent sev-
eral of these classified in Ref. 6. Our result, the full set of
invariant operators for each algebra, is contained in the last
column.

Remark: In all cases encountered when the invariants
are not polynomials, the operator products occurring in the
invariant expressions commute among themselves. In the
last algebra of Table I, one of the polynomial Casimir opera-
tors involves noncommutative products of operators. It
seems that this phenomenon arises when the algebra has a
nonabelian subalgebra as is the case here for the generators
B, satisfying the commutation relation

[B:B;] = 2€,B,. (7
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In Ref. 4 such a case arises under similar conditions: the
algebra in question being denoted 4 5 4.
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Finite- and infinite-dimensional representations of the orthosymplectic

superalgebra OSP(3,2)
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The shift operator technique is used to give a complete analysis of all finite- and infinite-
dimensional irreducible representations of the orthosymplectic superalgebra osp(3,2). For all
cases, the star or grade star conditions for the algebra are investigated. Only two finite-
dimensional representations are grade star representations, if the representation space is required
to be a graded Hilbert space. When the even part is so(3) ® sp(2,R) =~ su(2) @ su(1,1), an infinite class
of infinite-dimensional star representations is found. One of them can be realized in terms of two-
valued functions of a complex variable. This representation reduces to the sum of two metaplectic
representations of sp(2). We show that it is precisely this “metaplectic representation for osp(3,2)”
which gives the spin-energy eigenstates for the one-dimensional harmonic oscillator with spin }

states.

PACS numbers: 11.30.Pb, 02.20. + b, 02.90. + p

I. INTRODUCTION

Since the simple Lie superalgebras were classified by
Kac' and other authors,”* they have been the subject of sev-
eral papers. Finite-dimensional representations of superal-
gebras have been studied in general.* There are also several
works in which representations of specific Lie superalgebras
were investigated (see Ref. 5 and references therein). Much
less is known about infinite-dimensional representations of
superalgebras.

In the present paper we analyze both finite- and infinite-
dimensional irreducible representations (irreps) of the ortho-
symplectic superalgebra osp(3,2). We use the shift operator
technique, developed by Hughes and Yadegar,® and used by
Hughes to classify representations of the superalgebra
osp(1,2).”

The even part of osp(3,2) is the semisimple Lie algebra
s0(3) @ sp(2), isomorphic to su(2) & su(2). Hence, the shift op-
erators are su(2) @ su(2) shift operators, which change both
su(2) labels by certain numbers when acting on a basis state
of an su(2)®su(2) representation. The reduction osp(3,2)
D so(3) @ sp(2) is considered and we show that in general any
osp(3,2) irrep decomposes into eight irreducible representa-
tions of the subalgebra, a result which was proven in a more
general way by Kac* for the finite-dimensional representa-
tions. In the present paper, we show that this property is true
also for the infinite-dimensional osp(3,2) irreps. The two in-
dependent invariants of osp(3,2), I, and I,, are explicitly con-
structed and their eigenvalues for an osp(3,2) irrep (p;q) are
given in terms of p and g. We show that the I, and 7, eigenval-
ues do not specify the superalgebra representations unique-
ly.

¢ The generalization of a Hermitian operation for a Lie
algebra is a star or grade star operation for a Lie superalge-
bra.® The study of star and grade star operations is in fact
equivalent to the study of the real forms of the complex su-
peralgebra osp(3,2).> We investigate all possible star and

* Research assistant N.F.W.O. (Belgium). Permanent address: Seminarie
voor Wiskundige Natuurkunde, R.U.G., Krijgslaan 281-89, B-9000
Gent, Belgium.
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grade star operations of osp(3,2), and find that each of the
four Hermitian operations on the even part osp(3,2); can be
extended in two possible ways to a star or a grade star oper-
ation. Then we consider whether the osp(3,2) irreps are star
(respectively, grade star) representations, which is the analog
of anti-Hermitian representations for Lie algebras. It turns
out that this problem is closely related to the choice of a
nondegenerate Hermitian form (|) on the representation
space ¥. Moreover we prove that if one requires the Hermi-
tian form to be positive definite, then the finite-dimensional
representations are not grade star (nor star) representations,
except for the five-dimensional irrep (0;}) and the eight-di-
mensional irrep (4;1) [the notation (p;q) for an osp(3,2) irrep is
explained in Sec. V]. It is possible, however, to choose a non-
degenerate Hermitian form which is not positive definite,
such that all the finite-dimensional osp(3,2) irreps are grade
star representations.

We prove that a class of infinite-dimensional osp(3,2)
irreps are star representations, which are consistent with a
positive definite Hermitian form on the representation
space. These representations are finite-dimensional with re-
spect to the so(3) part, but infinite-dimensional with respect
to the sp(2) part in the reduction osp(3,2)-—»so(3) & sp(2). Else-
where,” this algebra has been denoted by Osp(3|2,R). It is the
algebra of transformations in a five-dimensional space with
one “bosonic” degree of freedom (the coordinate x and the
momentum p) and three “fermionic” degrees of freedom
(C,,C,,C,). The transformations generated by Osp(3|2,R)
leave the (anti-)commutation relations

{(:j’ck ] = 25jk’
[Cj)x] = [q,P] =O’ (j,k€{1,2,3}) (11)
[xap] =i;

invariant. One of the representations of this algebra decom-
poses into only two subalgebra irreps, for which the so(3)
label is § and the sp(2)=su(1,1) label is — } or — 3. We call
this representation the “metaplectic representation” of
o0sp(3,2), since on restriction to su(1,1) it yields the direct sum
of two metaplectic representations of su(1,1). Metaplectic re-
presentations of SU(k,/) have been studied in general by
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Sternberg and Wolf.!° For the metaplectic representation of
osp(3,2), we give the explicit actions of the superalgebra gen-
erators on the basis states. We show how the basis states can
be realized in terms of elements of #°(C,C?). This is the space
of holomorphic functions £:C—C?, with components f; and
/>, which satisfy

JUri@0 + 1 Ata)renpt — ke ) < o,

where A is the Lebesgue measure on C. The Lie superalgebra
generators are then realized as operators acting on #°(C,C?).
The results are similar to the properties obtained for the me-
taplectic representation of osp(1,2).”

The metaplectic representation for osp(3,2) leads to a
physical interpretation: we show that the energy eigenstates
of the one-dimensional harmonic oscillator, which are si-
multaneously spin } states, are precisely the basis vectors of
the metaplectic representation. This implies that osp(3,2) is
the spectrum generating algebra for the harmonic oscillator
with spin 1 states.

In a final section, we discuss the Jordan structure of
osp(3,2), and give the explicit form of its underlying Jordan
superalgebra.

Il. THE LIE SUPERALGEBRA OSP(3,2) OR B(1,1)

The even part osp(3,2); of the Lie superalgebra osp(3,2)
consists of the direct sum Lie algebra so(3) ® sp(2), which is
isomorphic to 4, ® 4,. We denote the generator basis by
58 . and £, , respectively, which have the following
commutators:

[SO’sj: ]= isiy [S-f-’s—]:zs()’
[tO’Ij; ] = iti9 [t+’t—] =2t()1
[5.,]=0 (,v=0,+)
The odd part osp(3,2); consists of the tensor product of a
three-dimensional tensor operator of so0(3) and a two-dimen-
sional sp(2) tensor. We denote its components by

R, gla= —1,0,1;,8= —1}, + }); these satisfy the following
relations:

(2.1)

[SosR.p] =R, 4,
[s:t 9Ra,ﬁ] = [(1 ¢a)(2 i a)]”zRai 1,8*
(2.2)
[toRap] =BR,p,
[t:t 9Ra.ﬂ] = [(% ?B)(% iﬂ)] l/thz,ﬁj; 1

The multiplication in a Lie superalgebra L = Ly & L; satis-
fies!

[4B]= —(—1)*[BA], (2.3a)
(— 1)[4,[B,C]] +(— 1)*[B,[CA]]
+(—1P"[C,[4,B]] =0, (2.3b)
and
[LoLg1CL,, 4, (2.3¢)

where AeL,, BeLg, and CeL},(a,B,ye{a,T} ). The Cartan
subalgebra H of osp(3,2); is spanned by {s,,%,]. A form acH*
is a root of osp(3,2) if and only if
L, = {Xeosp(3,2)|[1,X ] = a(h )X, VheH }#{0].
(2.4)
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Obviously, the roots of osp(3,2) are the roots of so(3) ® sp(2)
and the weights of the tensor representation R "2, If @ and
B are two roots of the Lie superalgebra, and if XeL, and
YeL,, then we have'

[X,Y]eL, , 4. (2.5)
In order to obtain the multiplication table for osp(3,2);, we
make use of (2.5) and the graded Jacobi identity (2.3b). This
determines the product on osp(3,2); unambiguously (up to
an overall multiplicative constant for the tensor compo-
nents). The nonvanishing products among the tensor com-
ponents are

[Rii2Ro, _12] =(1/2)s,,
[Ro12:Ro12] =204,

[Rii2R 1] = —2t,,
[Roi2:Ro,—12] = — 2t
[Rii2R 1 1] = — S0+ 20
[RowasR_\_1p] = — (1/42)s_,
[Ri,_12:Ro10] = — (1/2)s,,
[Ro,—12:Ro,—12) = — 2L,
[Ry, —12:R _112] =50+ 20,
[Ro—12 R _11n] = (1/42)s_.
[Ri,—12:R 1 _1p]=2t_.

The Lie superalgebra osp(3,2) is then completely determined
by (2.1), (2.2), (2.6), and (2.3a).

(2.6)

IIl. INVARIANTS AND SUBALGEBRA SCALARS

In this section we shall consider some special elements
of the enveloping algebra of osp(3,2), namely the invariants
and some scalar operators with respect to the osp(3,2); su-
balgebra. The subalgebra osp(3,2); is isomorphic to the Lie
algebra su(2) @ su(2), and its Casimir invariants are given by

S?=5,5_+ 5t — 5,

3.1)

T?=t,t_+1t3—t,

In order to determine the subalgebra scalar operators, we
define

(R XR)G5' =¥ (1a,1a,ka) (4 B BlIB YR 5, R4 p,, 52)

where (.--|-) is an su(2) Clebsch—Gordan coefficient. The
second-order invariant Z, of osp(3,2) must be a linear combi-
nation of %, T2, and (R X R )\%", and we find

L=V6[R XR)$" + 82— 4T?,
or, explicitly
L=2R,,,R_, _,,— Ro1Ro, 11
=Ry 1R _ 1 +50—1t)+85*—4T% (3.3)

The following subalgebra scalars of fourth degree in the gen-
erators are defined in terms of (3.2):

! 2
Cc2o2 — _ _‘/_E_(R X R )([),260](s+s_ — 2-5% - SO)

+ (R XR)>Ys, (255 + 1)
— (R XR)%s_(255— 1)
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+ (R XR 2% + (R XRES ., (34)

CM = 2R XR I sofg +VE[(R XR 2
— (R XR)}i't_]so
+V2[(R XR ) s, — (R XR )6 s_ 11,
+ [(R XR JEP sy — (R XR ){f'llls_]t+
— [(RXR)Lis, — (R XR)Ss e,
(3.5)

CO% = 5 (222 — a|00)(R X R )R XR)Z%,.
: (3.6)

The fourth-order invariant of osp(3,2) is a linear combina-
tion of fourth-order subalgebra scalars (which include pro-
ducts of I,, §2, and T?), and we obtain a solution for the
coefficients of the linear combination by requiring that the
invariant must commute with all the tensor components
R, 5. We find (up to an overall multiplicative constant) two
independent solutions, one of which is precisely (/,)°. The
second solution gives the fourth-order invariant 7:

Ii=3 [6C%%Y 4+ 24C"12 1 141,82 + 241,T7
—5(S%)? + 852T? 4 48(T%? + 30S* — 36T].

(3.7)
For completeness, we also mention the first relation:
(P = — -2 com L ors? 4T — (S
5
+8S2T2 — 16(T*? + 6S? + 12T (3.8)

The operators I, I,, S %, and T'? are four independent com-
muting operators. From (3.7), one would have the impres-
sion that one of the scalars C *%? or C!""? is still indepen-
dent of the four operators mentioned. However, there is a
relation, namely
9 [ C(Z,O;Zi] 2 + 12 [ C[I,I;Z)] 2 + 3c(2.0;2)

X{I{ —4S* +4T* + 15) + 452}

+ 16(T%? — 208 2T + 76T — 1552 + 18}

+6C (20, — 10S? 4+ 4T% + 9]

1

0 — 1L, —-1/2,-1/2 _
s,tLn e

+ (I,)’S?4S* +4T% - 3)

+ 21,8 — 4(S?¥? + 128°T?

+ 16(T?%? + 382 —4T?}

+ S2{4(S?)P —28(S T2 + 328 4T¥?

+64(T?)> — 3(S?% — 1845°T?

— 128(T%? — 144S% + 204T* + 108} =0, (3.9)
which shows, together with (3.7), that neither C*%? nor
C "2 are functionally independent of I,, I, S 2, and T2 This
is consistent with the fact that there is no missing label prob-
lem in the reduction osp(3,2)—su(2) @ su(2), as we shall see in
Sec. V. Actually, the method of Sec. V showing that there is

no degeneracy for osp(3,2)—su(2) @ su(2), provided the clue
to the existence of a relation of type (3.9).

IV. SHIFT OPERATORS FOR osp(3,2) Dsu(2) & su(2)

The Lie algebra osp(3,2); is a subalgebra of osp(3,2),
hence every irreducible representation of osp(3,2) is also a
representation of osp(3,2); =~ su(2) @ su(2). Consequently, the
su(2) ® su(2} labels can be used to classify the basis states of an
osp(3,2) irrep. In Sec. V we shall see that there is no degener-
acy in the reduction osp(3,2)—su(2) & su(2). Hence the states
of an osp(3,2) irrep are completely determined by

|s,;m,t,n), (4.1)
where s(s + 1), m, ¢ (¢t + 1), and n are the eigenvalues of the
operators S %, 5o, T2, and t,, respectively. If m and n are irrele-
vant labels, which happens, for instance, in calculations
which contain exclusively su(2) @ su(2) scalars, whose eigen-
values are independent of m and n anyhow, we summarily
denote the kets |s, m, ¢, n) as |s,t ). Formulas containing this
shorthand notation should be understood as being valid for
all permissable m- and n-values.

The shift operators we shall need in order to analyze the
irreps of osp(3,2) are su(2) @ su(2) shift operators. Their ex-
plicit forms follow from the general analysis of su(2) shift
operators by Hughes and Yadegar® and the method to obtain
suf2) ® su{2) shift operators from them.!' The following ex-
pressions are obtained:

—R_, s s+mlt+n)+R_\ st (s+m)

—R, 1,5 (s—mi(t+ n)+ Ry, ,5_t (s —m)

+‘/§[Ro,71/2(t+n) —Ro,l/zt—](s+m)(s_m)y (4.2)
05’:,1/2,1/2 =R _, 5. s+mit+n+1)+R_, _ 12840, (s +m)
+ R, s _(s—mt+n+ 1)+ Ry 1285ty ls —m)
- \/E[RO.I/Z(t +n+ 1)+ Ry _ it ]ls + mils —m), (4.3)
Og’,; V212 =R_ Lo1aSilt+n)—R _ps. 0 — Ry _ s _(t+n)
+ Ry, .5 t_, (4.4)
O(S)::’/'z,l/z = —R_, ,p5:t+n+1)—R_ | _ 5,1,
+ Ry s (t+n+ 1)+ R _ sty (4.5)
Osl,'z,; 2=12=R_ LS —m+ 1)t +n —R_ aSii_ls—m+1)
+R, _ps_(s+mANt+n—R,,ps t s+m+1)
+ ‘/Q[Ro,_ wnlt+n)—Ro pt _YHs+m+ ljis—m+ 1), (4.6)
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O 2= —R_ | ,ps.s—m+W)t+n+1)—R_, _\psitils—m+1)
—R, 5 s+m+1)t+n+1)—R, _ st (s+m+1)
- \/E[Ro,l/z(t +n+1)+Ro_iptylls+m+ 1)s—m+ 1) (4.7)

Note that in the right-hand sides of (4.2}-{4.7) the labels s and ¢ could have been replaced by operators § and t respectively,
whose actions on su(2) ® su(2) states are given by

Sis,m,t,n) = s|s,m,t,n}, ;|s,m,t,n) =t|s,m,t,n). (4.8)

The operators {4.2)-4.7) shift the eigenvalue s by — 1,0 or + 1, and shift fand n by + i
Oitl|smpn) ~|s +imt+jm+j) (=0,+1,j= 1} (4.9)

It is convenient to use the normalized operators whose actions on eigenstates |s,m,t,n) are related to those of the above
operators by

A :’,t:t /2 _ [(S +m4+ 1)(S —m+ 1)(t +n+ i + 5)]—1/20:’.’?:" 172, + 1/2,
A E,Ii 172 — (t + n+ % i %)—1/20?,)‘% 172, + 1/2’ (4'10)
A= L+ 1/2 _ [(S + M)(S _ m)(t 4+n4 % + %)]-—1/205;‘:.1 172, + |/2.

s,

If we consider the set of quadratic products of shift operators, it is easy to see that six scalar operators 4 %7/ A%/
belong to this set. Of course, these six product operators are not all independent. The relations which exist among those
products are the basis of our analysis. It turns out that for every two scalar products there exists a combination which can be
expressed in terms of the invariants I,, I, and the subalgebra Casimirs S ? and T 2. The relations are
(s +4r+ 34010 A T 24— DA A SN

s—1Lt—

—(2s— D2t + D{2L, — [s(s + 3)+ 42 (¢t + 1)]I, — Us — 2t )(s — 2t + 1)(s + 2t + 2)(s + 2t + 3)} =0, (4.11)
(4 + 34 200 AT+ (2 + 4+ 340 VRA 07

—2s(t+ 1){20, — [3s(s + 2) + 4e(t + 1) + 4st ]I, + As + 2t )(s + 2t + 2)(s — 2t + 1)(3s + 2t + 3)} =0, (4.12)
— (25— 4r = DA T RAL + (4t + 34 N 0407

+2(s+ 1)t + )20, — [3(s + 1)is — 1) + 4¢2 — 4st ]I, + 4s — 2t + 1)(s — 2¢ — 1)(s + 2¢){3s — 2¢)} =0, (4.13)

(2s+4t 4+ 34 75 0aA 0 — (2 =4 — VA N2 407

+ (25 + 3)2t + V){2L, — [(s + 1)is — 2) + 42 (¢ + V1L, — Ys + 2t + 1)(s + 2t )is — 2t — 1)s — 21 — 2)} =0, (4.14)
— (@t VAN p AP — (s 4+ 30,407

—2s+ 1)t {2, —[s+1)3s+ 1)+ 4t(e+ 1)+ 4e(s + 1)1,

+ s+ 2t + 3)s+ 2t + 1)(s — 2t — 2)(3s + 2t + 2)} =0, {4.15)
(25 — 4t — )40/ A2 — (4t + 1 .:,i/lz,t— Y Pl
25t {20, — [5(35 + 2) + 42 (¢ + 1) — dst 1T, + 4s — 2t — 2)(s — 2¢)(s + 2t + 3)(3s — 2¢ + 1)} = 0. (4.16)
]

Besides the.relations among scalar products, there are alsq 3 (s— 22— NAST2 ATV st 4+ A2,

set of relations connecting the nonscalar products of shift 411 12t + 114 =L —1/240172 _ @
operators. Their explicit forms will be extremely useful in XA s e 12+ VA 1A = ’4 24
the analysis of the osp(3,2) representations. We obtain (4.24)

AZSERA G P = AN A5 T =0, (A17)  (—s420)4%%,_ p Al = s+ WAL A B

stliFls s+ Lt—1/2 s+ 1Lt+ 172
(t+ 14 5502 45017 — (S22t + )4 112,49 12 =0, (4.25)
+ A B4 5N =0, (4.18)
=14, 15,740+ — s +20+240570 1045+ 2s + e+ 1 b1
Fls1A0E2 g ot (4.19) +(s+2)2t+ 1)4 7 724% 72 =0. (4.26)

(s + 204 SLE1240% 2 L sq0x)2  4L£12 -0 (420)  V.ANALYSIS OF osp(3,2) IRREPS
AFNENA " — (s — 1A% EVR402 12 =0,(4.2]) We analyze the osp(3,2) irreps in the reduction osp-
ASNER,ALE 4 (25 4 34 012 40120 (4.22) (3,2)—>su(2) & su(2). The su(2) & su(2) irreps which appear in

L the decomposition of an osp(3,2) irrep are denoted by (s,? ).
0,172 1,—1/2 0,172 — 1172 ’ 4
(s+20+ DA 1A 2450 A We shall also give a pair of numbers which label the osp(3,2)
+s— 1R+ 14254012 =0, (4.23)  irreps uniquely.
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We do not restrict ourselves to finite-dimensional re-
presentations of osp(3,2). Therefore, the su(2) @ su(2) irreps
in which such a representation decomposes may also be infi-
nite-dimensional. Hence, we must bear in mind that the
eigenvalues s and ¢ can take on negative values, or even com-
plex values.

We shall consider the representations of osp(3,2) for
which the states can be connected by consecutive actions of
the shift operators 4 %, (or O :%/). Since the matrix elements
of the shift operators are proportional to reduced matrix ele-
ments of the tensor R 1721 ¢ this method will give us all the
irreducible representations of osp(3,2).

The nonscalar equations (4.17) show that if (s,#) and
(s — 1,£ — 1) are parts of an osp(3,2) irrep [always in the re-
duction to su(2)esu(2)], then neither (s + 1, + 1) nor
(s — 2, — 1) belong to that representation, because the
squareof 4 *"*12iszero. Similarly, if (s, ) and (s + 1, — 1)
appear in the decomposition of an osp(3,2) irrep, then
(s — 1,t + i) and (s 4 2,t — 1) do not. Hence, we may assume
that in general the irrep contains the representations (s, '),
(s — 1,t" — 1), and (' + 1,¢" — 1), such that the actions of
A "V%and 4 ~"'/2 upon states |5',t ' > vanish. Suppose that
A %'2|s',t ') would not be zero, which means that (s',¢ ' + 1} is
a representation of the osp(3,2) irrep under consideration,
then the application of (4.20) upon the states |s' — 1,+' — 1)
and of (4.19) upon |s' + 1,¢" — 1) show that (s' — 1,') and
(s" + 1,2 ') are also parts of the osp(3,2) irrep. Obviously, the
actions of 4 *"'/? upon |s',t' + 1) states are zero. But now
also the action of 4 !/2upon |s',¢ " + 1) must vanish, because
otherwise the application of (4.20) upon |s' — 1,¢") or of
(4.19) upon |s" + 1,¢") would imply that the representations
(" — 1,t' + J)and(s' + 1,¢" + })arepartsoftheosp(3,2)irrep,
which contradicts our assumption. Hence, we have shown
that an osp(3,2) irrep always contains an su(2) & su(2) irrep
(p,g) = (s',t" + i) such that the actions of 4 + "> and 4 >'/*
upon |p,q) states vanish.

Let us first consider the cases where |p| >3 and |g] > 3.
Since the actions of 4 +"'/2and 4 *'/? upon |p,q) are zero,
the application of Egs. (4.12) and (4.13) immediately gives
the following solutions for the eigenvalues of the invariants:

Llp.g) = (p+29)(p — 29 + 1)|p.g), s

Lip.g) =4p+29(p—29+1)[3p(p+1)

+2(g + 129 — 3)]p.q)-
The states |p,g) are connected to states |p + 1,¢ — 1) by
means of the operator 4 ;.- /2. The action of the scalar rela-
tion (4.14) then implies
A pA+l,ll,;2— 124 ’1):; “*|p,q)
=2(p+1)2p + 3)29 + 1)(p +29)p.9), (5.2)

which shows that (p,q) and (p + 1,g — 1) are parts of the
same osp(3,2) irrep unless p + 2¢g = 0.

Now we proceed with the analysis starting from
(p + l,g — 1). The action of 4 *'/?> upon |p + 1,¢ — 1) states
vanishes, because otherwise the application of (4.26) upon
|p.g), namely

(P+2g+24077 1,457 pg)

=2p+ g+ 104770, 14,7 pa), (5-3)
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would imply that 4 "'/?|p,g) #0. Similarly, the action of
A" upon |p + 1,g —}) vanishes since otherwise (4.18)
would show that 4 "!/2|p,g) #0. Obviously, the action of
A"7Y2 upon |p+ l,g—1) vanishes because of (4.17):
Ay pA g gy = 0.But(p + 1,4 — }) can be con-
nected to (p + 1,4 — 1), and so we get from Eqs. (4.15) and
(5.1) the relation

A 2’!21@ 4 2‘I11,22_ 121+ Lg— %)
=4p+2/q2g — l)lp+ 1, — ). (5.4)

We continue our analysis by investigating which su(2) & su(2)
representations can be connected to (p + 1,4 — 1). The ac-
tion of Eq. (4.25) upon the states |p + 1, — 1) shows that
4,3, _1lp+ 1,g—1) vanishes. Similarly, the action
of Eq. (420) upon |[p+1g—1) implies that
Ay [lp+ 1,9 —1) =0, and the action of (4.22) that
A)7' |lp+ 1,9 — 1) =0. We then consider the action
A, 15 1 p + 1,¢ — 1). This is in general not zero, and the
scalar relation (4.16) shows

4 11);/3 3/2A p_+1'l,; i/% lp + l’q - 1)
= —4p+1)2p+3)g—Hp—20+1)
Xlp+1,g—1), (5.5)

implying that (p + 1,4 — 1) and ( p,g — 3) are connected to
each other unlessp — 2¢ + 1 = 0. Using some of the nonsca-
lar relations (4.17)-(4.26), it is then straightforward to show
that the actions of 4 "~ V2, 4%~ Y2 and 4 ="~ "2 upon
[p,g — 3) all vanish. Hence, the analysis of the enveloping
polygon (see Fig. 1) of the multiplicity diagram for the reduc-
tion osp(3,2)—su(2) @ su(2) is completed for the side s>p,
which consists of the points (pg), (p+ L,g—})
(P + 1’q - 1)’ and (P’q - %)

The analysis of the reduction of the osp(3,2) irrep for
s<p is quite analogous, and therefore, we do not enter into
the details of this investigation. The result is that on this side,
the enveloping polygon consists of the points (p,g),
(p—1,g—Y),(p—1,g — 1),and { p,g — 3). Hence, the enve-
loping polygon for the multiplicity diagram of the reduction
of an osp(3,2) irrep into su(2) @ su(2) irreps is completely de-
termined. This analysis also shows that the osp|(3,2) irrep
itself is uniquely labeled by the pair { p;g), which is the label
(s,¢) of the su(2) @ su(2) irrep with highest ¢-value and corre-
sponding highest s-value that appears in the reduction. The
correspondence with the Kac-Dynkin labels* (ay,
a,;b = a, — la,), for the finite-dimensional osp(3,2) irreps, is
given by

t

0 1 5

FIG. 1. Multiplicity diagram for a general osp(3,2) irreps in the reduction
0sp(3,2}—s0(3) ® sp(2), and the shift operators connecting the correspond-
ing s0(3) @ sp(2) irreps.
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P =ay/2,

g=b/2=(a, —}a,)/2.

Inside the enveloping polygon, there are only two
points which can correspond to an su(2) @ su(2) irrep of the
osp(3,2) representation, namely ( p,g — 1) and ( p,g — 1). The
states [p,g — }) always appear, since we find

ASY2, A%V p,g) =2p(p + 1)(2g — 1)(2q + l)lp,q>(. o
5.

Whether the representation ( p,g — 1) appears in the reduc-
tion or not, depends on the vanishing of p + 2¢ and

p — 29 + 1, since an appropriate use of the scalar relations
(4.11)—(4.16) shows that
4 2;;/-2 14 21{_1{52 lp.g — 1)

= —2(p+29)(p—29+1)lp,g—1). (5.7)
The multiplicity of the irreps (s,# ) which correspond to points
on the enveloping polygon is of course equal to one. But for
theirreps( p,g — i)and ( p,g — 1) there could appear a degen-
eracy. In order to investigate their multiplicity, we have to
consider in how many independent ways a |p,g — 1) state
(resp. a |p,g — 1) state) can be obtained from the “highest
states” |p,g). Therefore, let us define

457 p.g) = |@hp.g — 1),
(5.8)
A N AL a4 e = 1B heg — ),
where (a) and (b} are supplementary labels to distinguish

between different (p,g — 1) irreps if its multiplicity were
greater than one. The previous analysis then shows

6)pg — 1) ~4 5% b+ 1g—1).
From (4.23) and (4.24) we obtain the relation
2+ DA A 2 4 25t + 1A S MYRA 0

(5.9)

—{s+ 2+ DA S EiPA% =0, (5.10)
whose action upon the state |p + 1,¢ — 1) produces
294 21; 4 p“+1’11,22—— 2P+ 1,9 —14)
= —2p+1)g+i4 p_+l’11,;2— 14 2:11,;{ 172
X|p+1Lg—1. (5.11)

For the left-hand side of (5.11) we find
Aps AN plp+ g =1 ~407pg)

-~ |(a);P»q - p’
while the right-hand side gives
AN AT b+ g — )

~A4, 52+ 1g—1)

~|(b)ipg — 1),
from which we obtain that

\(a)p.g — 1) ~1(b)p.g — ).
This shows that the two ways defined in (5.8) are not inde-
pendent. It is easy to prove that all the other ways in which a
|p,g — 1) state might be defined are finally proportional to
A7 "*|p.g). Hence, the multiplicity of the (p,g — ) irrep is
equal to one. The same reasoning is valid for the irrep
(£, — 1), so that also for this representation the multiplicity
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is one. As a consequence, there is no degeneracy for the re-
duction osp(3,2}—su(2) & su(2), and the states of an osp(3,2)
irrep ( p;q) are completely labeled by the su(2) @ su(2) labels
|s,m,t,n), where (st)e{(p.gh(pg—14) (PExlg—14)
(pg— 1), (p+1g—1),(pg—3)} Figure I shows the re-
duction of a general osp(3,2) irrep, and the ways in which the
corresponding states can be connected by means of the shift
operators. Note that these eightfold patterns appear in the
finite-dimensional case (2p and 2¢ non-negative integers) as
well as in the infinite-dimensional case (wWhere p and/or g can
be negative real numbers). There are, however, two main
exceptions to this eightfold reduction pattern. Indeed, in the
analysis of the osp(3,2) irrep we have mentioned that if
P — 29 + 1 =0orp + 2g = 0, some states are not connected
to each other. In order to obtain a better insight into these
situations, we summarize the matrix elements of the scalar
product operators which connect the states to each other.
Their expressions follow from the scalar relations (4.11)-
(4.16):

~ 1172 1,-12
A P+ Lg— 124 Pg IP’q>

=2(p+ 1)2p + 3)29 + 1)(p + 29)|p,9), (5.12)

A7 1045, Vlpg) =2p(p + 129 — 1)29 + 1)lp.g),
(5.13)
4 ,l;’l—/%,qv VY Pviin “2|p.g)
= —2p(2p — )29+ 1)(p — 29 + 1)|p,q), (5.14)
4 2"{?,‘;_ 1A2'+_11,;27 120+ 1,g—1)
=4p+27q2q—1)lp+ L,g—b), (5.15)

A2 A5 e+ Lg—1)
= —2p(2p+3)2g—-1){p—29+ N)lp+ 1,9g—1),

(5.16)
A p7+1'11,¢;2v 14 ,lzfq_—lﬁz g — 1)
=4pq(2p + 3)(p + 29)|p,g — 1), (5.17)
Ay A0 lpg — D)
= —2(p+29)(p—29+ pg—1, (5.18)
4 ;la'l—/%,q~ 14 p:;1i_1/12/2 q — %)
= —42p—1)(p+lglp—29+ N)pg—1, (519
A pjil—'l{ZA ‘1,,:11’;2‘ 12lp—1g—1
=2p+1)2p — )29 — 1)(p + 29)lp — L,g— 1),
(5.20)
A 2’1/?,‘,_ 14 2'—_11,;1 1nlp—1g9-14)
=4p— 17929 - l)lp— 1,4 — 1), (5.21)
A4, b+ g — 1)
= —4(p+1)2p +3)ig — 1)
X(p—29+1)lp+1g—1), (5.22)

A, A0 7 Plpg — 1) =8p(p + l)glg — 1)|p.g — 1),
(5.23)

—~1L1/2 41,—172
Ap,q—3/2Ap—l,q—l —Lg—1)

=4p(2p — 1)ig — 1)(p+ 29)lp — L.g— 1). (5.24)

Now it is easy to see that if p — 2g + 1 = 0 (and p + 2¢#0),
the eightfold pattern decomposes into two irreducible repre-
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sentations of osp(3,2), since the actions (5.14), (5.16), (5.18),
(5.19), and (5.22) are zero. They correspond to two parallelo-
grams in Fig. 1. The first irrep, which we label by (p;g),
decomposes into the su(2) @ su(2) irreps (p,q), (p, ¢ — 1),
(p+ 1,4 —4),and (p + 1,¢ — 1), and the second osp(3,2) ir-
rep, which we label by (p — ;¢ — 1), decomposes into
(P—1g—H(p—Lg—1),(p.g— 1) and (pg —3). These
“fourfold” representations will turn out to be so-called
atypical representations,* whereas the “‘eightfold” irreps are
typical. In general, these two fourfold representations,
which we labeled by ( p,q) and { p — 1;,¢ — 1), are parts of a
reducible but indecomposable osp(3,2) representation,
where the representation space of ( p;g) is the factor space,
and that of (p — 1;g — }) is the invariant space.** Let ¥ be
the indecomposable (finite-dimensional) representation
space, and V' = V, @ V,, where V| is the factor space and V¥,
is the invariant space. When a basis is chosen in ¥, and ¥,
the indecomposable representation p is schematically de-
scribed by

pX— (/é ;) [Xeosp(3,2)].

What we find are the irreducible representations p,:X—(4 )
and p,.X—(D ). Note that for all the fourfold representations
the I, and I, eigenvalues are zero, sincep — 2¢ + 1 = 0. This
shows that the eigenvalues of the invariants do not specify
the finite-dimensional irreps of the superalgebra uniquely,
whereas for Lie algebras they always do. Analogously, if
P + 2q =0, the eightfold pattern decomposes into the two
osp(3,2) irreps, the first one labeled by { p;g) and containing
the su(2) e su(2) irreps (p.q), (p.g —4) (p— Lg— 1), and
(p — 1,¢ — 1), and the second labeled by (p + 1;¢ — }) and
containing the subalgebra representations (p + 1, — 1),
(p+1g—1),(pg—1)and(pg—3).

Until now we have supposed that |p| >3 and |g| > 3. The
analysis of the remaining cases is similar to the previous one,
and we shall not enter into the detailed calculations. An im-
portant difference, however, is that we shall have to distin-
guish between finite-dimensional and infinite-dimensional
representations of su(2) @ su(2). In order to understand this,
let us consider the finite-dimensional su(2) @ su(2) irrep (s,0)
(25€N), as part of a certain osp(3,2) irrep. Because of the fin-
ite-dimensionality the representation (5,0) contains the states
|s,m,0,0), wherem = —s, —s + 1,...,s. But then the expres-
sions (4.2)—{4.7) show that the actions of the shift operators
05 "»~i= —1,0,1) all vanish, since ¢, |s,m,0,0) =0
for 4 =0, + and (t + n) = 0. Hence, the values ¢ = 0, and
similarly s = O, are limits which cannot be exceeded by the
shift operators in the finite-dimensional case.On the con-
trary, if (s,0) is an infinite-dimensional su(2) & su(2) irrep, as
part of an infinite-dimensional osp(3,2) irrep, the actions of
the shift operators usually do not vanish. Suppose, for in-
stance, that the su(2) irrep labeled by s (s< — 1) is a discrete
positive series D * with minimum m-value m = —s, and
that the su(2) irrep labeled by Ois a discrete positive series D *
with minimum n-value n = 1. Then the states of the irrep
(5,0) are labeled by |s,1,0,n), where m and n take on an infin-
ityof values: m = —s, — s+ 1,..;n = 1,2,3,... . Obviously,
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the action of ¢, (u = 0, 1 ) or (# 4 n) on such states is in gen-
eral different from zero, and hence the actions of the shift
operators usually do not vanish. As a consequence, there are
no limits for the shift operators if we consider infinite-dimen-
sional representations.

In the case [p| >3 and |g| >3, we did not have to deal
with the problem of finite- or infinite-dimensionality, since
the eightfold patterns did not intersect the lines s =0 or
t = 0. Let us now consider the case |p|<3} or |¢[<3, and we
first investigate the finite-dimensional representations of
osp(3,2}, which, of course, decompose into finite-dimension-
al su(2) ® su(2) irreps (s,¢ ). Then s and ¢ are non-negative inte-
gers or half-odd integers. A detailed analysis by means of the
relations (4.11)—4.26) then shows that for pe{1,3} and ¢33,
or for g = 3 and p>1, we still have the common eightfold
patterns [or the fourfold patterns whenp — 2g + 1 =0, i.e,,
for (p.g) = (2,3)], and the expressions (5.12)—(5.24) are still
valid. Because the shift operators cannot exceed the s =0
and ¢ = 0 axes, the remaining cases will mainly consist of
“truncated” eightfold patterns. We summarize the results.

Al. g = 1,p> 1. The osp(3,2) irrep ( p;1) reduces to the
su(2) @ su(2})irreps ( p,1), (p4), (p = 1L,3), {p.0), and (p = 1,0).

A2.q=1,p=1. The osp(3,2) irrep (1;1) is an atypical
representation (a fourfold pattern) and decomposes into
(L,1), (1,3), (2,3), and (2,0).

A3. ¢=1,p =1 This representation reduces to the
su(2) @ su(2) irreps (1), (13}, (50}, (1), and (30).

A4. g = 1,p =0. The irrep (0;1) decomposes into the
subalgebra representations (0,1), (1,4), and (1,0). Hence, this
representation corresponds to the 12-dimensional adjoint re-
presentation of osp(3,2).

Bl.g =}, p>1. The osp(3,2) irreps { p;}) decompose into
the sum of only three su(2) ®su(2) irreps, namely (p,}i),
(p—1,0)and (p + 1,0).

B2.q =1, p = 1. Theirrep (};4) of osp(3,2) reduces to (4,4)
and (3,0).

B3. ¢ =4, p =0. This representation reduces to (0,})
and (1,0), and is the five-dimensional standard representa-
tion by which the osp(3,2) algebra is usually defined.

Cl. ¢ =0, p = 0: the trivial representation of osp(3,2).

Dl. p=1,¢> 1. The (Lq) irreps of osp(3,2) decompose
into the subalgebra representations (1,9) (1, — 1), (1, — 1),
(i’q - %)’ G’q - %)’ and (%’ q— 1)-

El. p =0,¢ > 1. These representations, finally, reduce

to the su(2)esu{2) irreps {0,q), (1,4 —14), {(Lg— 1), and
0.4 —3)-
These situations complete the classification of the finite-di-
mensional osp(3,2) irreps. It is obvious that all these cases are
“parts” of the general eightfold pattern, and it is worthwhile
remarking that for all these cases the corresponding parts of
(5.12)~(5.24) are still valid. For instance, if we consider the
representations B1, the expressions (5.2) and (5.14) which
correspond to the only possible ways by which the
su(2) @ su(2) irreps may be connected, are still correct. Also
note that (5.13), (5.15), (5.16), (5.20), and (5.21) would vanish
in the case B1, which shows again that the B1 series reduce to
only three su(2) @ su(2) irreps.

We still have to investigate the infinite-dimensional
osp(3,2) irreps in the case |p|<3 or |g|<3. These representa-
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tions reduce to infinite-dimensional su{2)esu(2} irreps.
Whether we have finite- or infinite-dimensional subalgebra
representations depends in fact on the Hermiticity condi-
tions we choose for the subalgebra generators. If we take the
usual conditions

ss =50, s, =5z, (5.25)
then this corresponds to the real compact forms of the two
su(2) algebras, and we find only finite-dimensional represen-
tations for which s = 0,4,1,... and ¢ = 0,},1,... . If we impose
the Hermiticity conditions

53 = Sp

th=t, tl, =1,

sty = —s4, (5.26)
then the first su(2) generators are a basis for the noncompact
form of su(2), while the second su(2) algebra is compact. The
unitary representations of this algebra, which we denote by
su(l,1) ® su(2), are infinite-dimensional with respect to the
first su(2)-subalgebra, and finite-dimensional with respect to
the second. This means that the label s can take on negative
real values (or, in the general case, also complex values
— 1 + ip, where p€eR), but for ¢ we still have: 2/eN. The two
remaining possibilities are denoted by the obvious notations
su(2) @ su(1,1) and finally su(1,1) & su(1,1).

Before continuing the analysis of the infinite-dimen-
sional osp(3,2) representations, we have to make an impor-
tant remark. It is known that there exists a relation between
the matrix elements of the shift operators and the reduced
matrix elements of the tensor.® Such a relation reads

O ds,m,t,n) ~ (s + i,t +j||[R 2 is,2 ) |s,m,t,n),

(5.27)
where the actual value of the coefficient is a well-known
expression ins, m, t, n, i, andj. Once a Hermitian operation is
chosen for the Lie superalgebra (which is a so-called star or
grade star operation), the matrix elements of the shift opera-
tors can be determined from the expressions of the matrix
elements of the product operators (5.12)-(5.24). We will do
this explicitly in Sec. VII [see Eq. (7.12)]. Then the reduced
matrix elements of R %V?! are known, and from the
Wigner—Eckart theorem'? all the actions of its components
are obtained:

, s 4 1
=g 54 1)

th=t, th, =1,

s,m' t'n'
o %t
X(—1 t —n( 2 )
(=1 “n B n
X (st "||R V3 |s,2 ) |s'm' ot ' om ),

(5.28)
where the symbols on the right-hand side are Wigner 3j-
symbols with one j equal to 1 or 4, for which explicit expres-
sions are given in the literature.’? In the finite-dimensional
case this procedure does not give rise to any problems. In the
infinite-dimensional case, the Wigner 3j-symbols are ““analy-
tical continuations” of the expressions for integral or half-
integral °s.'® Then problems might occur because of the ap-
pearance of factors like (25 4 1) or (2¢ 4 1) in the coefficient
for (5.27) or in the denominators of the 3j-symbols. Some-
times, these difficulties are solved because the same coeffi-
cients appear in the expression of the shift operator matrix
element (which contributes finally to the numerator), and
hence the singularities are dissolved by “taking the limit.”

A detailed study of the coefficients in (5.27) and the 3j-
symbols in (5.28) finally showed that we have to exclude the
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infinite-dimensional osp(3,2) irreps {p;q) for which the
su(1,1), label pis O, — Jor — 1, or for which the su(1,1), label
g is O or }, because in these cases singularities appear which
cannot be removed.

We can now give a summary of the remaining infinite-
dimensional osp(3,2) representations, where |p|<3 or |g|<3.

(1) su(1,1) @ su(2). It is sufficient to consider p <0, since
an su(1,1) representation labeled by s is equivalent to the
representation labeled by —s — 1.

For p<—1, —l<p<—} or —}<p<0, and
g>3(gelN), we still have the usual eightfold decomposition
diagram, except when p + 2g = 0, which gives the fourfold
decomposition pattern existing of (pg), (p.g—1),
(p—1g—1})and(p—1g—1)

Forp <0O(andp# — 1, — i),andq = 1 we have truncat-
ed diagrams, decomposing into ( p,1), (p,4), (p £ 1,4}, (2,0),
and ( p £+ 1,0), except for p = — 2, which gives again a four-
fold diagram decomposinginto ( — 2,1), ( — 2,3), ( — 3,3),and
{—3,0).

For p<0 (# — 1, — }) and g =}, the representations
reduce into the su(l,1) @ su(2) irreps (p.}), (p — 1,0), and
(p + 1,0). This completes the analysis for su{1,1) & su(2).

(2) su(2) @ su(1,1). Now 2peN, and because of the equiv-
alence for #— — ¢ — 1 we have only to consider g-values
which satisfy g <.

For p =1 or }, and g < (¢ #0), the representation de-
composes into the usual eightfold pattern, except when
P +2q =0. Then (p;q) = (3; — j) decomposes into (3, — 3),
(3 — ) b — 3 and (), — 3), and ( pzg) = (1; — Y into (1, — ),
(1, = 1), (0, — 1), and (0, — 3).

For p = | and g <4(¢+#0), the ( p;g} irrep reduces to the
su(2)@su(l,1) representations (i,g), (g —1), (Lg—1),
(1.9 — 3), 3, — 1), and (3,9 — 1). There is only one exception
to this, i.e., when p + 2¢ = 0. This is the representation
{; — 1), and it decomposes into a doublet of subalgebra ir-
reps, namely (4, — 1) and (}, — 3).

Finally, for p = 0 and ¢ <} (g#0), the ( p;q) irrep de-
composes into the su(2)esu(l,1) irreps (0.9), (1,4 — 1),
(l.,g — 1), and (0,g — 3).

(3} su{l,1)®su(l,1). Because of the afore-mentioned
symmetry, we can restrict ourselves to the values p <0 and
g <}. For all these values (p# — 1, — 4, ¢#0) the osp(3,2)
irreps (p;q) decompose into the usual set of eight
su{1,1) & su(1,1) representations, except when
P—29+1=00rp+2g=0.If p—29+1=0, the de-
composition contains only (p,g), (p.g — 1), (p+ 1, — 1),
and (p+ 1,g— 1), and if p+2¢ =0, it contains (p,g),
(pg—14), (P—149—14), and (p—1,g—1). Note that
P+ 29 =0andp — 2¢g + 1 = 0 cannot occur simultaneous-
ly, because we had to exclude the possibility p = — .

This completes the analysis of osp(3,2) irreducible re-
presentations. We would like to remark that the expressions
(5.12)5.24) are still valid for the above-mentioned represen-
tations if we first use them to obtain expressions like (5.28),
and then “take the limit.” In Sec. IV we will give an example
of this for the osp(3,2) irrep (}; — }).

VI. STAR AND GRADE STAR REPRESENTATIONS

Star and grade star operations for Lie superalgebras are

the equivalents of Hermitian operations for Lie algebras, and
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have been discussed in general by Scheunert ez @l 3 If L = L;
® Ly is a Lie superalgebra, then the operation’:L_—L,,
(@ = 0,1) is a star operation if

(@ad +bB) =a'd4*+b'B*,

[4,B]"=[B"4"],

(4N =4,
for all elements 4, B of L and for all complex numbers a,b
{the notation * denotes the complex conjugate). The oper-
ation®:L,—L, (@ = 0,1)is a grade star operation if

(@4 +bB) =a'4* + b’B?,

[4,B) = (- 1)?[B}47],

(A7 =(—1)4,
for all homogeneous elements A, B of L and for all complex
numbers 2,b. In {6.2) « (resp., 8} is the degree of 4 (resp., B ).
The definitions (6.1) and (6.2) imply that the restriction of a
star or grade star operation to the even part L is a Hermi-
tian operation of the Lie algebra L;. Hence, in the case of
osp(3,2) we have only to consider all possible Hermitian
operations on the even part, and investigate whether it is
possible to extend them to a star or grade star operation for
the Lie superalgebra. In Sec. V we have already mentioned
four independent Hermitian operations on the Lie algebra
su(2) ® su(2). For each of them we give the possible exten-
sions:

(1) su{2) ® su(2). No star operation can be defined for the
Lie superalgebra, when the adjoint operation on the even
part is as in (5.25). However, two grade star operations are
consistent with (5.25), and we find

(6.1)

(6.2)

st=

2 =5, th=t, Y =t_,

r —
sy =52,

(6.3)

R/il,;a — ( i 1),{+/-t+ I/ZGR T

whereeis + 1or — L.

(2) su(1,1) & su{2). Again, no star operation can be given
if the adjoint operation is as in (5.26), but the following two
grade star operations satisfy the definition (6.2):

Sb =50 S, = —so, th=t, t', =t_,

(6.4)

Ri,=(—1p*"%R_, _,,
where es{ + 1, — 1}.

(3) su(2) @ su(1,1). If the adjoint operation on the even
part is the one corresponding to su(2) @ su(1,1), the situation
is opposite to the previous ones, and only two star operations
can be defined:

so=50, St =5, tl=t, t'y=—1_,

(6.5)

Ri,=(—1'""R_, _, (e=+1or —1)

(4) su(1,1) ® su(1,1). The operations consistent with the
adjoint operation on the even part are two star operations

sb=50 S, = —s54, th=t, t' = —1,,

(6.6)

R},= —¢€R {e=+1or —1j

Let p be a representation of the Lie superalgebra L into
a graded representation space ¥ = V5 & V7. Suppose that a
nondegenerate Hermitian form (|) on V'is given such that

(Vs|¥1) = {0} (6.7)

—A—n
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If the nondegenerate Hermitian form {|) on ¥ is positive
definite, then Vis called a graded Hilbert space.® Let p/ (V) be
the space of linear mappings of ¥V into itself. It is known that
also pl (V') is a graded vector space.’ For every homogeneous
element 4 of pl(V), the adjoint operator A4 T, respectively,
grade adjoint operator 4 ¥, is defined by®

(Ax|y) = (x|dp), VxyeV, (6.8)
resp.,
(Aix]y) = (— 1)*(x|dy), VxeV, VyeV, (6.9)

where a = degree (4 ). Then, the representation p:L—V'is a
star, resp., a grade star, representation if

pldf)=(pld)), VAeL, (ax=0,1), (6.10)
resp.,
pAY) =)}, VdeL, (a=0,1) (6.11)

In the following sections we shall investigate which of
the representations, considered in Sec. V, are star or grade
star representations. In particular we are interested for
which of the irreps the representation space is a graded Hil-
bert space.

VII. FINITE-DIMENSIONAL GRADE STAR
REPRESENTATIONS OF osp(3,2)

The only possible adjoint operations are given in (6.3).
We first consider the general ( p;g) irreps with p>1 and ¢>3,
and p — 2g + 15#0, which reduce in su(2) @ su(2) irreps (s, ),
where

(S,t )EI = {(p,q),(p,q - %)’(P + l,q - %),

The representation space V is then spanned by
{Issmt.n)|(st)elm= —s, —s+ 1.5
n=—t,—t+1,..,+1}. (7.2)

The adjoint operation on the even part of the superalgebra
implies that the nondegenerate Hermitian form on Vis of the
form

(7.3)

where g(s,7 JeR. By appropriate rescaling of the basis states,
the Hermitian form can be chosen such that for all (s, )/ the
factor gis,¢) satisfies [g{s,z)| =1, hence g(s,t)= + 1. If
gls,t) =1 for all (s,¢ ), then Vis a graded Hilbert space.

Using some general properties of the shift operators®
and making use of (6.3), we can show that the operators (4.2)-
(4.7) satisfy

(0 1, +1/2, + 1/2)1(2§ + 1)(2} + 1)

— i E(O — 1,I1/2,$1/2)(2§ _ 1)(2; + 1; 1),
(0 0, + 172, + 1/2)x(2’t‘ + 1)

= + 6(00,11/2,:]:1/2)(2;+ 1 F 1)’
(0~ 1,4+ 1/2, + 1/2)1(23. + 1)(2; +1)

= + O FVETVYE 4 321 + 1T 1),
We did not write the indices s,z,n for the shift operators,
because they are supposed to be expressed in terms of the
osp(3,2) generators $ and ¢ [i.e., in the expressions (4.2)-4.7),

s,m,t, and n are replaced by §, s,, ¢, and #,, respectively], and
hence they can act on any state of V. The first relation in (7.4)

<S,ymlyt '3’1’ |s,m,t,n) = g(S,t )5s‘.551’.18m',m 6n',n ’

(7.4)
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implies:
(s — Lt Fild 7 "F 20 )25 — 2t + 1F )

= €25+ )2t + 1){s — Lr T3 575, s2),
(7.5)

and similar expressions are obtained for the rest of the rela-
tions in (7.4). Since the shift operators are represented by odd
operators, we deduce by means of relations like (7.5)

(st | TS T, A 5= st)

el lad@ealel)
(2s+ 1)2t+ 1)
X|{s + L+ 44 4=V s,0)]% (7.6)
(st|ASTNRA2E st )

R R VT .
—+€————-(2t+1) (—1)gls,t +3)

X | (5,2 + 314 215,837, {(7.7)
(s, |4 BT A 5= )
(2s+1F2)2t+14+1) (= 1)
(2s+ 1)2e + 1)
XQsF Lr+ PAsF Lr L34 FHEs,e) % (7.8)
where o is the degree of state |s,¢) [sometimes denoted as

ols,t))-
Equations (7.6)-(7.8) are applied on the irreps ( p;q) un-
der consideration. We deduce from (5.12) and (7.8} that

2(p+ 1)(2g + 1) p + 29)8( P,q)
=(—1)""%(p+ 1,9 -}

1)°gls + 1t +3)

=¢6

X (29)[{p + Lg =34 5.7 Vo) /(20 + 1)(2g + 1)

(7.9)
We first consider the operation with € = -+ 1. For the degree
of the states |p,g) there are two possibilities:

(a) ofpg) =0,
(7.10)
(b) olpg)=1,
If we are in case (a) [resp., (b)), Eq. (7.9) implies
(@) glp+Lg—4) =2glpg)
resp., (7.11)

(b} glp+1lg—4)= —glpg)
and

TABLE 1. Degrees of the states |s,z ) and of the factor g{s, } in (7.3}

[(p+ Lg—il4,7 b
—2p+ 12+ l)a—qii(pa-zq).

From (5.14} and (7.6), we obtain
—2p(2q + 1)(p — 29 + 1)g(P:9)
=(— 1)"P9%(p — L.g — })29)
X[(p — Lg— 114"~ b |*/(2p + 129 + ).
(7.13)
This shows that the sign of p — 2¢ + 1 plays a significant

role. If p — 2g + 1 <0, we have [(a) and (b) are referring to
(7.10)]

(@) glp—1lg—3=glpqg).

(7.12)

(7.14)
(b) glp—Lg—4= —glpg)
whereas for p — 2¢ + 1> 0, we obtain
(a} glp—lg—3= —glpg)
(7.15)

(b) glp—Lg—1) =8(pg).
In this way, the whole pattern is analyzed. We do not give the
details of the calculations, but summarize the results for
€ = + 1in Table L. For the “highest states” |p,q) we have
chosen, without loss of generality, g(p,g)= + 1. For
€= — 1, we obtain the same table where all 0 and T are
interchanged. The remaining finite-dimensional osp(3,2) ir-
reps, i.e., the irreps ( p;q) for which p —2¢ + 1 =0, p<j or
g<1, are known to be “parts” of the general eightfold pat-
tern, and a detailed investigation shows that for such repre-
sentations we can just copy the corresponding parts of Table
L

The main conclusion is the following: For none of the
general osp(3,2) irreps ( p;g), which reduce in the usual eight
su(2) @ su(2) irreps, is the representation space a graded Hil-
bert space. There always exists, however, a nondegenerate
Hermitian form on V which is not positive definite, such that
all the irreps ( p;g) are grade star representations.

A closer look at the “truncated” representations Al-
El, considered in Sec. V, and their corresponding parts in
Table I, shows that there are only two exceptions, namely
the five-dimensional irrep (0;1) and the eight-dimensional ir-
rep (§;1) (the situations B3 and B2, respectively). For
€ = + 1, the first representation is spanned by the even
states [0,0,4, + 1) and the odd states |1,m,0,0) (m =0, + 1).
The second representation is spanned by the even states

irreps (s,t) pP—29+1<0 p—29+1<0 p—29+1>0 P—29+1>0

ofl p;q) deg|s.?) glsit) degls,t) gis.t) deg|s,z ) gis:t) degls,? ) gist)
(P.9) 0 +1 1 +1 0 +1 1 +1
(p—ta—Y 1 +1 0 -1 1 ~-1 0 +1
(pg—4 I +1 0 ~1 i +i 0 5
(p+1g—4 I +1 0 -1 1 +1 0 -1
(p—1g—1) 0 -1 1 -1 0 +1 1 +1
(pa—1) 0 -1 1 -1 0 +1 1 +1
(p+1g-—1) 0 -1 1 -1 0 -1 1 -1
(pa—3) 1 -1 0 +1 1 +1 0 _1
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|{m,},n) (mn= +1) and the odd states [3,m,0,0)
(m = + 3, + }). Itis only for these two cases that the Hermi-
tian form of the grade star representation is positive defi-
nite.™

It might seem rather strange that even the adjoint repre-
sentation is not a grade star representation if the Hermitian
form is required to be positive definite, although it is possible
to define a grade star operation for the Lie superalgebra.
Therefore, we consider this in a second way. From Sec. VI
we deduce that a grade star representation p satisfies

(plA xly) = (— 1) (x|p(d ), (7.16)
for AeL,, xeV,, yeV. Let us apply this for p = ad. Then the
space Vis osp(3,2) itself, and we can choose the basis states of
V proportional to the generators of Sec. II. For 4 =R, ,,,,
x=R,,»,andy =5_, {7.16) becomes

€/V2s_[s_) =V2ZRo12|Ro112 ); (7.17)
ford=R,,,,x=t, andy=R_,,,, weobtain
6<R—1,1/2 |R—1,1/2) = —2(t+|t+)- (7.18)

These two relations show that, whatever choice of € we make
in (6.3), the grade star representation is not consistent with a
positive definite Hermitian form.

The main reason why the general grade star representa-
tions are not consistent with a positive definite Hermitian
form is the following. For grade star representations we have
the rule that a minus sign is placed “whenever two odd ob-
jects are interchanged.” But a Hermitian form on V satisfies

Olx) "= x|y,
for all x and y, and hence does not distinguish between “in-
terchanging” even or odd states.

Finally, we give the relations between matrix elements
of the shift operators and reduced matrix elements of the
tensor R !"'/2), They follow from the general analysis of shift
operators®):

(s + Lz + J[R V5,1 )

_ 2543 (t+1+
s+ 225+ 1) (2t+1)

X{s+ L+ 44 5" st ),
(s,¢ + 3[R V2 [s,2 )

1) 1/2
] gls+ Le+)

7 22541 @reli1)]
Tl st @2+l ] gist 1)
X{s,t + 3|4 55 st ), (7.19)
(s — Lt + 4[|R "||s,2 )
_[s—y ety
=l er) @+ RCEEEY!

X (s — Lt + 4|4 ", ).

Now all the necessary elements are given to deduce explicit
expressions for the actions of all the generators of osp(3,2)
upon the basis states of an irrep ( p;g). Indeed, (5.12)-(5.24)
give the matrix elements of the shift operator products, from
which the absolute values of the shift operator matrix ele-
ments are obtained by means of (7.6)—(7.8). The actual choice
of the phase factor ( + 1 or — 1) for the shift operator matrix
elements is determined by the nonscalar relations (4.17)-
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{4.26). Then (7.19) gives the expressions for all the reduced
matrix elements of R (/2] and finally the actions of the
tensor components are obtained from (5.28). The actions of
So» S 4 » tps and £ are, of course, no problem. The only rea-
son why we do not write down the explicit expressions for
theactions R, 4 [s,m,t,n ), is that this would be a tedious sum-
ming up of 48 formulas, which the reader can easily obtain
himself by following the above-mentioned procedure.

VIiL. INFINITE-DIMENSIONAL STAR AND GRADE STAR
REPRESENTATIONS OF osp(3,2)

Before analyzing the star and grade star conditions on
the infinite-dimensional osp(3,2) irreps, we give a brief view
of infinite-dimensional unitary representations of su(l,1),
which is the Lie algebra generated by jo,j, ([jo/+ ]

= +j,,[/,.j_]1 = 2j,) whose basis elements satisfy the ad-
joint condition j§ =j, and j', = —j. . Those representa-
tions are grouped into four series {see Ref. 13, p. 182-188):

(a) The principal series D*, where j= —1/2+ip
( peR), and m takes on an infinity of values. Here, of course,
Jlj + 1) is the eigenvalue of the Casimir J 2, and m is the j,-
eigenvalue. No principal series will occur for osp(3,2), since if
Jj=s(resp.,j=t)isanirrep, then alsos + 1 (resp., f 1 1) are
irreps appearing in the osp(3,2) representation, which would
give complex numbers that cannot characterize su(l,1) ir-
reps.

(b) The continuous series D °, where — 1 <j<0, and
me{ — o0,...,mq— l,mgmg+ 1,..,+ }. Here, mR
satisfies —j—1l<mo<j+1 if —1<«j<—}, and
J<my< —jif —1<j<0.

(c) The discrete positive series D *, where jeR and m is
bounded from below: me{m,m + 1,m + 2,..., + o }. Ifj>0,
thenm=j+ 1,if j< —1thenm= —j, and if —1<j<0
we have two possibilities:m =j+ lorm = — .

(d) The discrete negative series D ~, where jeR and m is
bounded from above: mef — «0,....,7n — 2,m — 1,7/}, if /50
then m = —j—1,if j< — 1 then # =, and if —1<j<0
we have again two possibilities=m = —j— lorm = + .
The basis states of an su(1,1) irrep are the simultaneous ei-
genstates of J  and ji,, and therefore they are rather charac-
terized by j{ j + 1) and m instead of ( j,m). This shows that we
have the symmetry j— — j — 1, and consequently we can
restrict ourselves to representations for which j< — 4.

For the infinite-dimensional cases, we shall analyze
only the representations for which the representation space
is a graded Hilbert space. Hence, the Hermitian form on Vs
positive definite, and we may assume

(8.1)

We shall investigate whether the star (resp., grade star) oper-
ations are consistent with this Hermitian form.
We use the shift operators O %/, rather than the normal-

ized operators A4  because the internal structure of infinite-
dimensional su(2) irreps is somewhat more complicated.

(s,m,t,n|s'\m',t' 0"y =68, 8y O

A. The case su(1,1) ® su(2)

The grade star operation (6.4) implies that the Hermiti-
city properties for the shift operators are finally the same as
in (7.4). From this we obtain
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(25 + 1)t + 1{s,m,t,n|0 FH TR0 0= V5= smtn)

= Tel— 1025+ 1+2)2t 4+ 1+ Y{s+ Lmt + 4,0 + 302> 22 s,m,t,n) |, (8.2)
(26 4+ 1){s;mtn|0 0TS T, 005 V5= 2 s,m,t,n)

= Te(— 102t + 1 + 1)|{s,m,t + 4,n + }|O%E V22 |s,mt,n)|?, (8.3)
(2s + 1)1 + Is,myt,n|0 KN TYV50 L3 20 Lo = V5% 12 s,m tn)

= Fel— 125+ 1F2)2t+ 1+ Y{sF Lmt £ 4n £ 30 F 0=V 12 smtn)|?, (8.4)
where o = degree (|s,? )). Let us consider the situation where € = — 1. Since in this case r€lN, Egs. (8.2}(8.4) imply that
O, TR 3,00E "% has the sign of +(—1)7 if s<—§ or s> — 14, [resp, of F(—1)7 if —3<s< —14];

(8.5)

OYF VAT, 022172+ has the sign of +(—1)7 for all 5 (8.6)

O NT0h a0 =2 £ 12 has the sign of +(1)7 if s< —4 or s>4, [resp, of F(—1)if —j<s<i]. (8.7)

We shall also make use of the general property

i —j—J

(s,m t”|0s+u+1n+1

where i€{0, + 1} and je{ +1}.

,,,|smtn) = (s + i,m,t +j,n +]|Ostn s+llt+1n+j|s+lm t+jn+j), (8.8)

Let us first consider the osp(3,2) irreps ( p;q), where p < — 1 and ¢3>3, which always reduce to eight subalgebra irreps
unless p + 2¢ = 0, in which case they decompose in only four irreps. Equation (5.14) implies

(p,m,q,n|

Because of (8.7), this should have the sign of — ( — 1)°P9. If
o{pg)=0 then (8.9) should be negative, hence
(p — m)( p + m) should be negative for all m, which gives
two possibilities for s = p, namelya D * withm = —pora
D ~ withm = p.Ifo{ p,q) = 1, then(8.9),0r (p — m)( p + m),
should be positive for all m, which cannot be satisfied be-
cause of the adjoint condition on su(1,1),. So we must have:
o{ p,g) = 0. Now Eq. (5.13) gives

Pm,g |0 17 100"~ 2 pim,g,n)
=(g+n)2p)(p + )29 — 1)2g + 1), (8.10)

which is always positive. But according to (8.6), this should
have the sign of — ( — 1)°®9, and this leads to a contradic-
tion. This shows that for the osp(3,2) irreps under considera-

(2s + 1)2t 4+ 1){s,;m,t,n |0 57000 0% |s,m,t,n)

= + €25+ 1+ 20)(2t + 1 + 2)|{s + i,m,t + j,n +j|O P, |s,m,t,n) |

If we choose € = + 1, then (8.12) requires that (if s>4):

0 -5 —1/2,— 172
s+ it+1/2,n+4 172 s.n

O 1,208,212 is positive for t< — 1/2 or ¢>0, and negative for — 1/2<#<0.

0¥V is positive for 1< — 1 or £> — 4, and negative for — 1<t< —1,

O 2 van 120 355V~ Plpmagn) = (p— m) p + m)ig + ) — 2)2p — 1124 + 1)2g + 1}p — 29 + 1)

(8:9)

r
tion the grade star condition is not consistent with the posi-

tive definite Hermitian form. A detailed analysis of all the
other cases { — 1 <p <0 or g<1) showed that none of the
representations ( p;g) are grade star representations for the
choice (8.1) of the Hermitian form. The situation € = + 1
leads to the same conclusion.

B. The case su(2) 2 su(1,1) or Osp(3|2,R)

The star operation (6.5) implies the following Hermiti-
city properties of the shift operators:

(099128 + 1)(2F + 1)

Let us first consider the osp(3,2) irreps for which p = 1,3,2,..,, and g < — }. Eq. (5.14) shows

1,1/2,172 —1,—~1/2, —
<p9m9q9n|0p —1,¢—1/2,n - 1/2 Op,q,n

and according to (8.14) this should be positive. This implies
q + n>O0 for all n, and hence we have a D * representation
withn = — ¢.If — 1 <g < — § wehaveasecond possibility,
namely a D * with n = ¢ + 1. Equations (8.8) and (8.15) im-
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= 460 AB+ 1 =202 +1—2), (8.11)
where ie{ — 1,0, + 1}, je{ — 4,1}. Then we obtain
]
(8.12)
(8.13)
(8.14)
2|p.g,n) = (p — m)(p + m)lg + n)( — 2p)2p — 1)2¢ + 1)(p — 2 + 1), (8.15)

ply that also for (p — 1,¢ — 1) and su(1,1) part is a D * with
n= —gq+}. Since g — } < — 1 we have only one possibil-
ity, and hence also for ( p,g) the situation » = g + 1 must be
excluded. Equation (5.13) gives
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0,172,172 0,—1/2,—1/2
(p!m’q’n | Op,q —1/2,n— 172 0 na.n [PJ";%”)

=g+ n)2p)p + 1)2g — 1)2g + 1), (8.16)
which shows again that g + n>0. Because of (8.8) this also
implies that for ( p,g — 1) the su(1,1) partisa D * representa-
tion with n = — ¢ + 1. A similar investigation of (5.21) and
(5.19) shows that also for (p — 1, — 1) we havea D ™ repre-
sentation withn = — g + 1. Hence, if p + 29 = 0, this com-
pletes the analysis and we find that the four (s,z) irreps, in
which such an osp(3,2) irrep (p;q) decomposes, all consist of a
finite-dimensional su(2) irrep s and a discrete positive su(1,1)
irrep t for whichn = — ¢

If p + 2950, the osp(3,2) irrep reduces to eight (s, ) re-
presentations, and we have to continue our analysis step by
step. Application of (5.12) gives

Pmgn|0 N0, 500 pmg,n)
=(p—m+1)(p+m+ l)g+n)
X2(p + 1)2p + 3)29 + 1)( p + 29).

Because of (8.13) this expression must be positive. Since we
have a D * for t =gq in (p,q), g + n is positive, and (8.17)
implies that p 4+ 2¢ must be negative. In this case the analysis
can be continued, and we find that none of the Egs. (5.12)-
(5.24) leads to a contradiction. We conclude: If p + 2¢ <0,
the osp(3,2) { p;q) is a star representation decomposing into
eight su(2) @ su{l,1) irreps (s,¢) all consisting of a finite-di-
mensional su(2) irreps s and a positive discrete representation
f with n = — . On the other hand, if p 4 2¢ >0, the star
conditions are not consistent with the Hermitian form (8.1).
The analysis of the remaining cases for su(2) @ su(1,1) shows
that the only other representations which are star, are the
irreps { p;q), where p = J and ¢< — }. If g < — 1 they decom-
poseinto thesix (s,z ) irreps, summarized in Sec. V, all consist-
ing of a finite-dimensional su(2) irrep s and a positive discrete
su(1,1) representation ¢ with n = — ¢. If g = — 1, the repre-
sentation reduces to only two subalgebra irreps, namely
(3, — 1) and (4, — 2). Then we have two possible solutions; a

(8.17)

D* fort= —}withn=1connectedtoaD * fort= —}
withn = 3,oraD *fort = — Jwithn = jconnectedtoaD *
for t= —3 with n=]}. Because of the symmetry

t— — t — 1, these two solutions are equivalent. This is the
case of the “metaplectic representation,” which we shall
consider in detail in Sec. IX.

For € = — 1, we obtain the same selection of osp(3,2)
irreps which are star representations. The only difference is
that all D * representations ¢ with n = — ¢ are replaced by
D ~ representations ¢ with 1 = ¢.

In order to obtain general expressions for the actions of
R, 5 upon the states |s,m,z,n), we can use the method de-
scribed at the end of Sec. VII, except that we have to take
more care of the signs of the factors appearing under the
square root, as in (7.19).

C. The case su(1,1) & su(1,1)

The star conditions (6.6) on the Lie superalgebra imply
that exactly the same relations (8.11) and (8.12) are valid in
this case. The positivity and negativity conditions for the
shift operator products follow from (8.12). For instance:
OV 120y V27 is positive if (s< —1 or
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s>} and (t< —}Jort>0)orif —l<s<jand —i<t<0
and negative in the other cases. Similar conclusions can be
made for the remaining shift operator products. We consider
the general osp(3,2) irreps ( p;q) withp< — 1 and g < — §.
The expressions (5.13) and (5.12) show that the following
relations are valid:

(P’m’q’n|og:3;/~2'i;%,n - 1/202:.,3."2’ ~2p,m.g,n)
=(q+n)2p)(p+ 1)2¢ — 1)2g9 + 1), (8.18)
(p,m,q,n|0 p~+l'11.;2;1<32,n —120 ;a:q;;l/z’ -2 lp,m,q,n)
=(p+m+1)(p—m+l)g+n)
X2p + 1)(2p + 3)(2¢ + 1)(p + 29). (8.19)
From (8.18) it follows that ¢+ n>0, since
O, 1,02, >~ "2 must be positive for 1< — L.

The  positivity and  negativity conditions on
O 22 1,20k "~ 172 show that it should be posi-
tive fors < — § (and £ < — 1) and negative for —3<s< — 1
{and # < — ). In both cases, (8.19) implies

(p+m+1)p—m+1>0 (8.20)

for all m-values. Obviously, such a condition is only satisfied
by a finite-dimensional su(2) representation, and never by an
infinite-dimensional su(1,1) irrep. Consequently, the repre-
sentations are not star representations.

The remaining representations are analyzed in a similar
way. The conclusion is that for none of the osp(3,2) irreps
( p;q), where p and g are su(1,1) labels, are the star conditions
on the Lie algebra consistent with the Hermitian form (8.1).

IX. THE METAPLECTIC REPRESENTATION

In this section we consider the osp(3,2) irrep(}; — ). We
refer to this irrep as the “metaplectic representation,” since
in the reduction osp(3,2) Dsu(2) ® su(1,1) Dsu(1,1), it decom-
poses as the sum of two metaplectic representations of
su(1,1).1°

The states of this representation are [}, + 1, — L,n),
where n=41+13+2,., and |}, +1, —3n), where
n=33+ 1,3+ 2,. . We used the method described at the
end of Sec. VII in order to obtain the explicit expressions for
the actions of R, upon the basis states. They are given by

Rl,il/2|%’12‘1 "}vn> =0, 9.1)
Ry iplh =4 = = £ (1/V2)dn £ )24, — 3n + ),
9.2)

Ro 10 |%,m, - }p”)
= FTmidn+ 1)"|4m, —3n+1) (m= +}), 93)
R_ 1+ 172 |%’%: - %,n)

= F(V24n £ 1)'2)L, -4, —3n £ 1), (9-4)
R_ .02l _%’_i:'ﬁ =0, (9.5)
R, 1.2 '%’%’ - i:”) =0, (9.6)
Rl,;t 172 |%’ — 3 3»’1)

= + (I/V2)4n £ 1)'244, — hn £ 1), (9.7)

RO, + 172 B’m’ - 4’n>

= Fmldn + 12 4m, —4n£4) (m= +4), (9.8)
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R —1,+ 172 |%’%: - 3:”)
= F(IMV2)4n + 1)'2)}, — 4, — Ln + 1), (9.9)

R_y inlh—%—3m =0 (9.10)
The actions of the subalgebra generators are

soll,m,t,n) = m|i,m,t,n), (9.11)
s, bmtn) = [BFmE£m)] ?lim £ Len),  (9.12)
tol},m,t,n) = nj},m,t,n), (9.13)

t, bmeny =+ [ —(t Fot+n+ )] |Lmen £ 1),
(9.14)
wheret= —Jort= —3.

The metaplectic representation of SU(1,1} has been
studied by Sternberg and Wolf,'° and by Hughes’ in the case
of Osp(1,2) DSU(1,1). It can be realized in terms of the space
F7°(C,C) of all holomorphic functions f:C—C such that

flf(Z)lz exp( — |24 (2) < oo, 9.15)

where A is the Lebesgue measure on C. In the case of osp(3,2),
the irrep under consideration decomposes into two meta-
plectic representations of su(1,1), and therefore it will be pos-
sible to realize the basis states as elements of #(C,C?), the
space of holomorphic functions :.C—C? which satisfy

f(wz)lz T U2)expl — [2]2)dA (2) < oo,

where £ and f, are the components of /. We shall denote f by
(). The generators of osp(3,2) are then operators acting in
the space #°(C,C?). If z is a complex variable, then the
osp(3,2) generators can be realized as

-0 o) s =0 o ©=2(T5 V)
S+=\0 o) TV o T\ 0 /)

t_j(fO)t_i(dz/dzz 0)
T2\ 2/ T2\ o d?*/dz2)

(9.16)

1 d 1
to = AR 1 :: A
0 14,1
fmeof )
Rl,vl/z:eiﬂi/“(d;)dz 8)’ (9.17)
Ry = _%e—anm(-(z) (;)’
Ro 102 ——\/%e‘"f/“(_‘é/dz d;)dz)’

(0 d/dz
R“‘-—‘”:_e_mﬂ(o o)‘

It can be immediately verified that

3/4 0)
2 __
S _(o 3/4/

—3/16 0 )
2 __
T“( 0 —~3/16)°
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L=1I= (g g), (9.18)
hence only the metaplectic representation can be realized in
this way.

The states of the representation are the following ele-
ments of #°(C,C?) (neN):

2"/[(2”)!] l/2)

y V4
/2 372
‘%’—%:—}v}t‘l'n) =€'(ﬂ fin + )( 0

. 0
[ — b4 + ) = et *””(Zzn/[(zn)u )
(9.19)

{120+ ]2
b—b =33+ m = " )

} 0
|%)%9 - %y% -+ n) = e( 72 (zZn+1/[(2n + 1)!11/2)'

The normalization is chosen to correspond with the actions
of the operators (9.17) as given in (9.1)—(9.14). The star condi-
tions (6.5), with e = + 1, reduce to the Fock condition
d/d2)f =z. If

2 a,;z

lay =|7"7°
S ay .2
k=0

and (9.20)

S b,,2

by=|"""
S by 2t
k=0

are general states of the space spanned by (9.19), then the
inner product is given by

2 ©
(a‘b) pramed Z Z k!a;,kbj,k.

j=1k=0
The expressions (9.19), considered as functions from C to C2,
form a complete orthonormal set in 5#7(C,C?), and the inner
product which corresponds to (9.21) can be expressed as

(flgy =+ fﬂz)*g(z)exp( |2 (2).
m

(9.21)

= ‘71; J‘[fl(z)‘gl(z) + fol2)"g(2) 1 exp( — |z]|%)dA ().
9.22)

In the case of osp(1,2), one of the infinite-dimensional
dispin representations, investigated by Hughes,” could be re-
alized as a metaplectic representation. It is interesting that
we find a similar result for a particular infinite-dimensional
osp(3,2) representation. This extends the general result of
Sternberg and Wolf, who show that the metaplectic repre-
sentation of Sp(2m) can be considered as an irreducible re-
presentation of Osp(1,2m).'°

X. THE HARMONIC OSCILLATOR WITH SPIN } STATES

The Hamiltonian H of a one-dimensional harmonic os-
cillator may be written as (see, for instance, Ref. 13)

H=a%a+}, (10.1)
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where @™ and a are the boson creation and annihilation oper-
ators which satisfy

[aa*]=1 (10.2)
Suppose we also have the disposal of a pair of fermion cre-

ation and annihilation operators (in this section, anticommu-
tation is written as { }):

fbb*} =1, {ect}=1,
b2=b == ()P =0, (10.3)
{bH'),CH')} =0,
which commute with the boson operators
[@,6 P = [0, =0. (10.4)
The fermion operators give rise to an SU(2) algebra
s, =b%c, s_=c*b, so=ib*b—c"c). (10.5)

Itfollows that b * and ¢ * (resp., band c) can be interpreted as
creation (resp., annihilation) operators of spin + }and —}
states.

Let us define a vacuum state by means of

al0) =b|0) =¢|0) =0. (10.6)
We are interested in those states which are simultaneously
eigenstates of the Hamiltonian H and of the total spin
§?=5s.5_ +55 — s, with eigenvalues s(s + 1) =} (i.e., the
states with nonvanishing total spin). We find

(@*)"6 *|0) and (@*)%c*|0) (n=0,1,2,.). (10.7)
But this is precisely the metaplectic representation, consid-

ered in Sec. IX. Indeed, the osp(3,2) algebra is realized by
(10.5) and

t,=4a*PN, t_= —4a®N, t,={a*a+ N,
(10.8)
where
N=4S?=b*b+c*c+2b*crbe,
and
R1,1/2 = —a*b +C, R_ ,—12 — — ac+b,
1
R =—at(b —+—b . +C,
012 = 5 a*( cte)
Ro_1p= ———alb*b—c*c), (10.9)

+
R_,,,=a%c*h, R,_,,=ab" c

The identification with the states of Sec. IX is given by

+12
S =20,
227 4’4 J@n)

“+\2n
L,_i,__l_,i+,,>=(“) c*]0y, (10.10)
2’ 27 44 J@2n)l

+\2n+1
L,_L,_i,_3_+n>=_ﬁ_)__b+|o>,
2’2 44 J@n + 11

+\2n+1
_1_’__1_,__:3_’1-}-}1}:_&—04"0),
2 2 4 J2n F 1)

The energy and spin eigenvalues are determined by
H B’ j: i» - i’i + n) = (2’2 + %)B’ i 5’ - A’i + n>’
Hlh+h—33+n) =Qn+3h 5 -3 —3+n),
(10.11)
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S, t 4t —t4+n) =3} £ 41, —t+n),
Solb £ 46 —t+n)= xi|L, £ 48 —1+n),
(t= —4—3n=0,12,.)
Consequently, osp(3,2) is the spectrum generating algebra
for the one-dimensional harmonic oscillator with spin }
states.
XI. FINAL REMARKS

We think it is useful, finally, to illustrate some proper-
ties, which are well known by pure mathematicians, in the
case study of 0sp(3,2). In this section, (¥ ) denotes the linear
span over C of the subset ¥ of a linear space W.

We recall the definition of a Jordan superalgebra.’ Let
J = J; ©J; beaZ,-graded algebra with bilinear product xoy,
which satisfies

xop = ( — 1§¥7yox (11.1)
for xeJ,, yeJ,. Then J is a commutative superalgebra. Let
L, be the element of End{/ ), defined by

L,.J—J
x—L,(x) =a°x.
Then J is called a Jordan superalgebra if
( - 1)(17[1‘006 ’Lc ]
+(—af*[LyoesLo] +(— 1P [LeogsL, ] =0, (11.3)

for all aeJ,,, beJg, and ceJ,.

We give an example of Jordan superalgebra by means of
the following: Suppose that e is a basis for J; and [a,b ] is a
basis for J;. We define a nondegenerate bilinear form( , Jon
J by (i) (e,e) = 1; (ii) the restriction of ( , ) to J5 is skew sym-
metric, with (g, ) = 1; (iii) (J5,J/7) = 0.
The multiplication on J is then defined as

xop = (exly + (ey)x — (x,p)e, VYx,pel. (11.4)
This implies the following multiplication table for the basis
elements of J:

(11.2)

o , e a b
ele a b (11.5)
ala 0 —e
bbb e 0

This example is a Jordan superalgebra of type D (see Ref. 15).
Let us now return to the case of L = osp(3,2). It is easy
to verify that this Lie superalgebra is a Z-graded Lie superal-

gebra!®1®
L=L 'eL%sL *!, (11.6)
where
L%= (to,t+,t_,R0_,/2,Roy_,/z,so), (11.7)
L= <S+’R1,1/2,R1.— 12 ) (11.8)
L '= (s——!R—l,l/29R—1,—l/2>' (11.9)

Note that the subsuperalgebra L ° is in fact osp(1,2) @ so(2).
The Z-grading in (11.5)(11.6) is obviously not consistent
with the Z,-grading of L.

Kac has proven'® that for a Z-graded Lie superalgebra
L=L 'eL°sL"' thespacel '=Lgz'eL7i'isalor-
dan superalgebra if we let

xoy =[[px]y], xyel ~, (11.10)

where peL ;" 1. In our case it is easy to verify that L ~' is the
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Jordan superalgebra of type D defined by (11.5). If we take
p = is /2, then the relation between the basis (11.5) and the
basis {11.9) is given by

e=is_,

a=VIR _,,;, b=VIR_,_,,.
More generally, the Lie superalgebra osp(3,2) is in fact that
image of the Jordan superalgebra (11.5) under the Kantor
factor Kan, which gives an isomorphism of the category of
finite-dimensional Jordan superalgebras onto the category
of finite-dimensional admissible Z-graded Lie superalge-
bras.'
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Some integrals involving three Bessel functions when their arguments

satisfy the triangle inequalities®
A. Gervois® and H. Navelet

Service de Physique Théorigue, CEN Saclay, 91191 Gif-sur-Yvette Cedex, France

(Received 3 January 1984; accepted for publication 13 April 1984)

We calculate definite integrals involving three Bessel functions of the form

oxJ, (ax)J, (bx)J, ., ,(cx)dx and f¢xY,(ax), (bx)J, . ,(cx)dx, which appeared in some
absorption calculations. Results are given for all relative positions of lengths a, b, ¢. They
complete formulas outside the triangle case and correct some misprints given in tables.

PACS numbers: 12.40.Pp, 02.30.Bi

I. INTRODUCTION

For a while, the phenomenology of high-energy physics
relied heavily on the Regge formalism. To perform analyti-
cally the absorption-type calculation'? the integral

Serdrd (] —tWglry —t' W, 5ry —t") was needed
when the three real variables  — ¢, ¥ — ', Y —t” obey
the triangle inequalities. Unfortunately such integrals were
known only in particular cases,? for a = 0 say. On the other
hand all the papers and books about the Bessel functions did
give the values of these integrals but in the case
J—=1t">J—1t"+ —t, where the value is zero.

For all these reasons, it was interesting to compute ana-
lytically these integrals. To do that we have been led to com-
pute other integrals involving two or three Bessel functions
of the form

f wa# (ax)J | ,(bx)dx,

j (L1)
= J,  (bx)

J; xJ, (ax){Y (bx)]J“+ Jlex)dx.

All these integrals are given in Tables I and II.

The second part of this paper is devoted to the particu-
lar case when the three orders @, B8, and ¥ = a + [ are inte-
gers and we give a very simple interpretation of the result so
obtained by comparing it with the sum**

D2 + V), (05) ), (0, (61):
J

In the third part, we treat the general case by extending the
result about the normalization of the Bessel functions of in-
teger order” to real order and get the announced result about
integrals of type (1.1). In the last part we check known results
compiled in Refs. 3 and 6 where particular cases are exam-
ined. A short summary of our new results is contained in the
conclusion.

il. INTEGRALS INVOLVING THREE BESSEL
FUNCTIONS OF INTEGER ORDER FOR
lc—bl<a<c+b

Following Graf,”® we write

. + o .
I xa)= S T, .(xc),(xb)e"™, (2.1)

# Dedicted to the memory of Friedrich W. Bessel on his 200th birthday
(1784-1846).
® Chercheur au CNRS.
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where the angles ¢, (i = a,b, or ¢, 2,4, = ) are defined in
Fig. 1 and x is a real parameter, » is an integer, and u is real.
This yields at once

2T ,
J,,H(xcv,,(xb):L f e =" (xadg,,  (2.2)
2rJo

where
a*=c*+b*—2chcos ¢,

and

wa dx J,(ax\,(bx), , ,(cx)

oo 27 )
- 717?1, xdx J, (xa) JO b= T (xd')dd, .

By inverting the order of the two integrations of the right-
hand side and taking advantage of the orthogonality relation
for Bessel functions of integer order* namely,

fwx dx J  (xa)\J, (xa') = bla—d)

T (2.3)

we get for u = m, m integer

f “x dx J,,(ax), (M, , o(cx)

2

_ 2 (", cosme, — ng, 1 28=2)
mTJo

(aal)I/Z ’

where the factor 2 comes from the symmetry of the inte-

grand.
Now
Sa—a)__ 86y —0) _ gy —¢.)
(@a')'’? ~ (ad')'?|0a'/3¢,|  besing,

FIG. 1. Convention for the angles of the triangle.
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The final result reads
cos(md, — nd,)

[EEIACTAE AN :
o mab sin ¢,

(2.4)
(In a triangle bc sin ¢, = ab sin . = acsin¢,,.)

At this stage a comment is in order. By exactly the same
kind of trick it is possible to get very easily the sum

f 2(2.1 + l)d mm, (03)‘1 m,m;, (GZ)d mym, (01)’

where the three unit vectors §,, 4, §, have polar angles (0,0),
(65,0), and (6,,¢,), respectively, the angles between §; and §;
being 8, (i, 7,k = 1,2,3).

Let £2,, bearotation which brings the unit vector 2 onto
g, such that 2 ;- 42, is a rotation with Euler angle (0,6,,0),

Q25 '%,
2 -4, is arotation with Euler angles (¢;,0,,@,)-

is a rotation with Euler angles (¢,8,,0) and

From
,,,l,,,z 25 '.() A2 5 ‘.{Zéz)
= zgm m 24 '.!2 )gm,m, 2, '.Oqz )s
we deduce at once
m.m, zeXp[ — i(m @ + mp; + ms@;)]

X dlm (0:)d7,.,(64)
or

1 2
m,mJ (62) d m,mz(el) =2 XEJ‘ cos(m 1P1 + m,p,
+ ms@; )d m,m, (03)d¢) :;
and
1 27T
f= ;j dg ; cosim,@, + m,p, + myp ;)
(4]

X 2(21 + 1)d, 1, (63}, (63)

= ; A d¢)§ COS(m1¢71 + myp; + m3¢3)
X 6(cos 8; — cos 63).

Noting that cos 8, = cos &, cos &, — sin 6, sin 8, cos @,
and
dcos G;

= sin 6, sin 6, sin @; = |§,{,X§5)|,
g,

we get
2(2] + l)d mm, (03)d mym, (02)dj;n,m; (al)
_ 2 cosim@; + myp; + myp,) o)

T 132X )|
where © is the Heaviside step function

(2.5)

3351 J. Math. Phys., Vol. 25, No. 11, November 1984

@1‘(‘?2)(@3)’
iQI'(QZXQS)’

sin 6, sin f,¢ ~ ¥ = cos 6, — cos 0, cos 6 —
sin B, sin G,¢ ~"*' = cos 6, — cos 6, cos O, —
sin 6, sin f,e ~
= — [cos 85 — cos 6, cos 6, — i§ (@, X §5)],
and
19,4323} = 1 — cos? 6, — cos® 6, — cos® 8,
+ 2 cos &, cos 0, cos §; = 4.

As expected, result (2.5) is strikingly similar to the one
obtained for the three Bessel functions. Indeed for largej and
small 8,d”, 5(6 )~J, _5,(j0)and the sum over integer value
of j becomes an integral

2[ 7 g OM i OH 161

For small 6,’s
Ax—1(61 + 6% + 03

= —8/4,
8 =/[63 — (6, — 6] [(6, + 6, — 63],
20,0, cos p,=60?% + 035 — 03, 20,0, sin p,~5'7,
20,0, cos @, =02 + 63 — 03, 20,0, sin p,~5"7,
20,6, cos py= + (03 — 03 —02%), 26,6, sin gy~ — 52,

@1+ @+ @3~0
and

deﬂ.m._,,.ﬂuesv,m,_m,.(jezv.mz_mﬂ(jol)

1 cosl(m, —my)p, — (m; —

B 6,0, sin @,
We get at once that the integral is zero if 8,,0,,6, do not fulfill
the triangle inequalities.

In the next part, we show that it is possible to generalize
the formula (2.4) in the case where both m and m’ are real
and for the case were J; is replaced by the Neumann func-
tionY,.

20202 —2626% —20263)

lii. DERIVATION OF THE INTEGRALS
A. Some preliminary resuits

One of the main problems we shall encounter is the
estimation of the integral

fme 1(exV, (Ex)dx = ;im f xJ, (exW, (cx)dx,

where c, ¢ are positive numbers. Provided Re(d + p)> — 2,
the behavior at x = 0 is regular. For large R, the result in-
volves very rapidly oscillating functions whose limits are ac-
tually the distribution (¢ —c¢) and P.P./(* —¢?) (P.P.
stands for principal part).

Starting with the indefinite integral®

(C — cz)fol (cx).]p (@x)dx + (A2 — 2)J'J,1(CX_V(CX)

=cxJ, (ExM; _ (ex) — exJ, _  (exW; (cx)
+(p — A W lex), (ex), (3.1)
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and using the well-known behavior of Bessel functions for
small and large (real) variables, we get

f <, (exM, (Exkdx + 4 —p) f RACIACNS
0 2_c2 b

-1 [008[(c+5)R—(/1 + p)/2]
77’((,‘5‘)”2 C+Z‘
_ sin[(¢ — ¢)R — (p—A)m/2] 1
t—c } (R)’

where we have assumed Re(4 + p)> 0 (behavior at x = 0).

Now!°
J‘ >Jy{ex), (ex) dx
o x
- ( )”F((ﬂ- +pV/ 2 (p—4)/2)
27 Lip+1
Xsm[(p /l)——]X,F( +/lp2/1,p+l,;)

with ¢ <¢, and a similar result holds for ¢>c by the ex-
changes A«»p, E<«»c.
For ¢ = ¢, both expressions have the same limit'°

2 sm[(p /1)77/2]

T —A?
Asc+Z'>0,
cos[c +f)R ] and sin[(c +~c)R ]
c+c c+c¢

are bounded and rapidly oscillate as R— co; in further inte-
grations, they give a vanishing contribution. Terms like

sin(¢ — ¢)R and cos[(¢ —c)R ]
c—c c—c

may give a large (of the order of R ) contribution in a region
¢ — ¢ = O(1/R); when further integrated, the larger-order
terms give a finite, nonzero contribution. Thus

fRﬂ 4 (ex), (Ex)dx

behaves like

1 [cosllc+ &R —(A+pjn/2]
17-‘/2—5 C+z‘
_sin[¢—¢R—(p—4 )17/2]]
c—c

(/1 2_ pz) J”J 2 (ex), (€x)dx

or, using the notation of dlstnbutlon

fwa 2 (exW, (Ex)dx
0
_ cosi(p ~—ﬂ)17'/2]5(z_c) _Ar-pY
(ce)'/? 27
F((p+/l)/2)F((p—/7.)/2)sm[(p Ar/2]
I'ip+1)
p+/1p —A &\ _P.P. '

()BT G)eme b

with
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Re(d +p)>0 and é>c. (3.2b)

The singular behavior coming from the division by &> — ¢? is
killed by the oscillating contribution cos[(¢ — ¢)R ]/(¢ — ¢)
and is replaced by a principal part. Result (3.2a) for x #y was
already proposed by Schindler.!

When p = A, the second term disappears and we have
the closure relation

fo "X, (Ex)dx =

which generalizes the well-known formula* when A is an
integer. The condition ReA>0 may be relaxed to
Re A > — 1 as the integral §(J,J, /x) dx does not come in.
Expression (3.2) may be extended to the case 4 + p = 0 by
starting again from the indefinite integral (3.1) as again
S, J _ ;2 /x) dx must not be taken into account. Some care is
needed to examine the behavior near x = 0 of the right-
hand-side. The final normalization condition reads

——-5( 720 < (3.3)

fo "X (Ex)dx = %ﬂ' —)

_ Zsinmd( ”) ., Red> —1 (3.40)
T \C C —C
or more simply
f xJ, (cx) Y, (Ex)dx = ( ) PP Reis 1,
C C —C
(3.4b)

where the condition ¢ < ¢ may be removed, and Y, is the
Bessel function of the second kind.'? For 4 = /integer, result
(3.4a) is obvious since J _; = ( —)'J,. For A 1, we have an
extra term as expected from Carlson’s theorem.

B. Calculation of f&xJ, @)J, (bx)J, , .(cx)dx =1
Thebasic formulais the expression of J,, (Z )/, () for real
Z,z as an integral?

1 (7 _oef Z+ze® \\#+2 -
LZW.2) =—[ e 9(—_——) 7, . (@)d6
W(ZV,(2) Py Z 7 s+ (@y)d

. Z/z o)
_ sinvr —v_i| Z—2p ]“‘*"V i
T J; p {Z——Z/p ;4+v( )dp’

where z<Z, @ =Z2+22+2Zzcosf, A*=Z*+ 2
— Zz( p + 1/p). There exists a similar formula for Z <z by
exchanging u and v and Z and z. For Z = z, we get the well-

known formula for the isosceles triangle'*
1 +7/2

T =—

T
With some changes in the notations (Z=>ax, z=>bx) and var-
iables (0— — 6—7 — 6, p = €*) we rewrite it in a more sym-

metrical form
1 T ) a— beia (u+v/2
J, (ax)J, (bx =———Ref e“"'e""”(—)
wlaxV,(bx) T Jo a—be™
SinVﬂ_J-lna/b o
. e

-

cos[(u — )0 1J, ., (2z cos 6)d6.

— /2

(w,x)d6 —

Juvw

ot \lu+ w2
x (aa bbe— u) ’ Ju+vAx)du,  (3.53)
—be
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with
b<a, @} =a*+b*—2bacosb,
A*=a*>+b*—2abcoshu. (3.5b)
Now,
R
lim | xJ,(axVJ,(bx)M, . ,(cx)dx
R—wx Jp
T _ i \(u+v/2
=_1_Rej el’vﬂe—iv9< a be i )
T Jo a—be %
R
X lim | xJ, {exV, , ,(@x)dx
R— w0 /o
B Sil’l ijlna/be_w( a__beu )(p+v)/2
T Jo a—be "
R
X lim | xJ, , ,(exV, , ,(4x)dx,
R—wJo
Re(pu +v)> — 1.

We may permute the integrations, as the intervals are finite
and all integrals have a meaning. Using formula (3.3) for
A =p =p + vand with ¢ = either o, or 4, we get

2 _ i0 {u+v/2
=L 6(c—w1)Re[e—"""_"V9(—al—) d0]

me Jo a — be—
. In a/b _ u \(u+v/2
_ smva' 6(c—A)e“"‘(a be ) du,
¢ Jo a—be*
Re(p +v)> — 1,a<b. (3.6)
Three cases may occur.

(i) either ¢ > a + b, then ¢ > w, for every 6€[0,7]

and ¢ > A for u€[0,ln a/b]. (3.7)

Hence, both terms are zero and I = 0. (See formula 2.6 for
integer indices.)

(ii) @ — b<c<a + b (triangular configuration). Then
c2=a*+b*—2abcos ¢., where ¢,,8,,6. (0<¢,<m) are
the angles related to sides a,b,¢ of the triangle (see Fig. 1),
then ¢ > A for u€[0,ln a/b]. The second term in the right-
hand side of (3.6) is zero; but there exists 8 = ¢ such that

TABLE I. Definite integrals involving three Bessel functions of the first kind.

w; = c and the first term is not zero.
As

8(c — w,) = 2c8(c* — &)

= L&(cos 6 —~cosd,.)
ab

" absing, 6 —¢.)

we get for the first term

[ osvbe — i)
mrab sin ¢,
A = labsin ¢, = lbc sin §, = jca sin @,

(3.8a)
(3.8b)

where A is the area of the triangle; we have explicitly used the
relation 7 = ¢, + ¢, + ¢. to restore the symmetry ( u-ov),
(@b ). Note that formula (3.8a) is the generalization of for-
mula (2.4) obtained fro m = and n = v integers.

(iii) 0 < ¢ <@ — b. We introduce the three positive argu-
ments u,,u,,4. which generalize the angles ¢ in the triangle
case (i) (@®=b2+c*+2bccoshu,,b’>=a*+c*

— 2ac cosh u,, ¢ = a* + b* — 2ab cosh u,). Only the last

term in (3.6) gives a nonzero contribution. As (4 —¢)
=cbd(u — u,.)/(ab sinh u ), we get, after some manipula-
tions, the nearly symmetric formula

I= — (sinvir/2md Je~ ™",

with

(3.9a)

4= lab sinh u, = ibc sinh u, = jca sinh u,.  (3.9b)

Alternative formulations may be derived by using the gener-
alized triangle properties, mainly the relationu, = u, + u,.
Expressions (3.7)3.9) are listed on Table I (without the re-
striction @ > b ). For integer indices, we recover the result
given in (2.6).

Result (3.7) was already known.'® It is a particular case
of a more general formula involving products of J functions
(Ref. 3, pp. 691 and 694). Result (3.8) was calculated only in

1= [ s, @l (b3}, , fexkds [Relp+9)> 1],
iy c>a+b,

(i) a+b>c>|la—b|,

(iii) [a — b |>c>0
ifa>b

ifa<d

Notations: Cases (i) and (iii)

I=0,

= E:'Z cos{ up, — vé,) (triangle case),

I=— L..sinwe_"""_“"",
27A
_ _ sin;i‘rre_w,-,..,,_
2rd

@=5b%4c*>+2bccoshu,, b = +d +2accoshu,, ¢=a>+b?+2abcoshu,,

u,, Uy, 4. >0;

Case (ii)
a?=b4c*—2bccos ¢,
0<¢a1 ¢b'¢c <, ¢a +¢b +¢c =,
24 = besin g, = ca sin g, = absin .,
24 = bc sinh u, = ca sinh u, = absinh u,.

+ sign only for the largest length. If a> b, c u, = u, + u,.

b>=¢"+a*—2accos$,, *=a*+b>—2abcosé,,
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particular cases and is new in this general form. As to result
(3.9), it was found already, but in a very sophisticated form.
As b,c <a, we may set b =asin@ cos ¥, c =acos @ siny
(O<@ ¥ <m/2), where 2c*tan’ @ (resp. 2b%tan’¢) = a®
— b2 =+ =a*+b*+c* — 2% — 2d°7

— 2¢°b?). Then, the formula of Ref. 15 reads'®

fwﬂv(bxvﬂ (@x), , ,(ex)dx

= f xJ, (ax sin @ cos YW, (ax)
0
XJ,, 4 {ax sin ¢ cos @)dx
_ _ 2sin wr{sincp)"(sin 1//)'“”

ma® \cos/ \cosg
1

X b
cos(g + lcoslp — ¢)
and after some manipulations we recover (3.9a). Neverthe-
less, the formula in Ref. 15 keeps some ambiguities; mainly it
implies that cos(¢ + ¥} > 0 and it does not fix completely the
determination of tan® @ and tan® ¥ which must be the small-
est of the two (positive) roots of each equation. Formula
(3.9a) has no such ambiguity.

C. Integrals involving Bessel functions of the second
kind

As Y, is a linear combination of J, and J_ ,, the above
results may be used to calculate integrals involving one Bes-
sel function of the second kind, perhaps with further restric-
tions on theindices. Assuming always thata > b, we consider
the two cases

J= waY# (@xW, (bx)J, . . (cx)dx,

K= fwa# (ax)Y, (bx), , . (cx)dx,

for all three positions of ¢: a +b<c, a—b<c<a+b,
O<c<a—0b.

Integral J involves as an intermediate step the integrals
[#hutan o, fexiax
and
[ slaxb texi i,
whence the integrals
%, 1 (EXV, . lexldx

and

f xJ,(bx)J, (bx)dx

for some &, b which are of the same kind as the , and 4 of
formula (3.5}{3.6). Provided Re(g+v)> —1 and
Re v> — 1, all calculations may be completely carried out
as we deal only with the distribution 8. The same holds for
integral K provided Re(z +v)> — 1 and Rev> — 1. Re-
sults are listed on Table II and some particular cases which
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TABLE I1. Definite integrals involving two Bessel functions of the first
kind and one of the second kind for a > b. Notations are the same as in Table
L

(@a>b)
J=J- xY, (ax\, (bxM, , (cx}dx (Reg+v> —1,Rev> — 1),
0

K=J; xJ,(ax)Y, (bx), , ex)dx (Rep+v> —1,Reu> —1),
{ye>a+b,

1 et

274

»

_ 1 Vi, — ftidy
= — —=e A

2nA
i)a+b>c>la—b)|,
J= —K= —\sin (v, — ud,) (triangle case),
27A
(iii) [a — b |>¢>0,
J= —K=

COS TV~ sy — vy
274

already appeared in the literature are checked in the next
section. Most of the results are new.
As to the last possibility

L= f xJ,(ax\, (bx)Y,, , ,(cx)dx
0
it involves the intermediate integral
J xJ, . (ex)Y, , ,(cx)dx,
0

i.e., a principal part. In that case the integration is hopeless,
except in some particular cases which are already known.
We just set the general equation. From (3.3)—(3.5) we get

) @ ) a — be® \l#+v72
L =__ReJ. etwre—wﬂ( )
7 Jo

a—be "
4 v
X(ﬂ)“ P.P. 46
¢ 1
ZSinVﬂ'flna/b (a_beu )(p+vj/2
— e_w [
~ o a—be ¥
A\+tv P.P.
X{— du, 3.10
(c) oy (310

where
w? =a*+ b2 — 2ab cos § = (a — be)la — be "),

A?=a’>+ b? — 2ab cosh u = (a — be*)(a — be )
[cf. Eq. (3.5b)]. The integrals can be calculated only in very
special cases, for example v = O (so that the second term on
the right-hand side disappears).

IV. CHECKING PARTICULAR RESULTS
A. Integrals involving three J functions
(i) When u = v = 0, we get

I= fwaO(ax)Jo(bx)Jo(cx)dx

1

in the triangular case,
0 otherwise,
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where 4 is the area of the triangle (Ref. 3, p. 696, formula 9
with v = 0).
{ii) When & = 0 and v#0,

I= fxfaaxvv (bx), (cx)dx

(0 if c>a+b )
—C?E%)— if |l[a—b|<c<a+b ,
be sin ¢,

sinvme ™ 7,
—_ 0 if O<c<la—b bza,
arbe sinh u, | |

\0 b>a

(cf. Ref. 3, pg. 695, formula 8 with & = 0)."”

Forv=1/2,

I= 2 f Jolaxjsin bx sin cx dx
rJo

= iJWJO(ax)[cos(b — c¢)x — cos(b + ¢)x]dx
wJo

is the cosine Fourier transform of J{ax) and can be checked
with tables of integral transforms.'®

(iii) Whena = bandu = (A + n)/2,v = (1 — n)/2 (Ref.
3, p. 674, formula 11),

I= L X 4w (@xWy _ gy olaxVy (ex)dx
__ cos(nd,)
={  ma*sin24,

=0 ifc>2a.
As cos ¢, = c¢/2a, the result may be rewritten

if c <2a (isosceles triangle)

2 c .
) (4a® — cz)‘/zT"(E;) ife<a

=0 otherwise

(where T, is the Tchebyscheff polynomial).

B. Integrals involving two J functions and one Y
function

{iy Whenpu =0,
[ x¥a, oxi, exiax
0
(——lwe""“’ if c>a+b
274
1 .
= { —— sii if |a—b|l<c<a+b
421”_‘ in vé, | |<c<a+
sgla —b) —vu,
= _—~cosmve °* if O<c<la—b|
274 <e<| |
where we have removed condition a > b
[+ if a>b)
(sg(a_b)_[—l if a<b/

At this stage, a comment is in order. In a recent preprint
Askey, Koornwinder, and Rahman® give the result for the
integral f& Y, (ax), (bxM, (cx)x** ! dx, and they agree with
us for v = 0. The result outside the triangle is reported in
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0 (c(a-b
8:31.b2-2ab cosh U(

K +i00

1a-bl (c {a+b
=gt +b2-23b cosd,

) ash
2=t 2ab coshu

FIG. 2. Contours in the 6-plane for the calculation of L (v = 0) for the three
possible ¢’s.

Ref. 3 (p. 695, formula 5 with & = 0) but in an incorrect
manner. The largest length must be a {a>b+c¢) or
b (b>a + c)but not ¢ like in their hypothesis. It is in contra-
diction with their formula 13, p. 696 for the isosceles case.
The above result may be tested for v = } by using the Fourier
cosine transform of ¥y(x)."*

In the case of the isosceles triangle and forpy = v =0we
get two different integrals, listed in Ref. 3 (p. 695, formulas
12 and 13)

J‘wao(bx)Jo(ax)JO(ax)dx
i = 0 if b<2a
- (bsz)llz it b>2,
J:xYo(ax)Jo(ax)Jo(bx)dx
= 0 if b<2a
- - ___ﬂb(bziw)m if b>2a,

(ii) When u = v = A4 /2 (Ref. 3, p. 673, formula 10,

f:xa lax)¥, p(axh (cx)dx

2 1 .
= — -1-r-£-~(cz—_4a—2)l/7 if ¢>2a

=0 if c«<2a (isosceles triangle).

C. Calculation of some particular L integrals for v=20

It was already calculated in (4.1)-{4.2) (with exchange of
a and ¢). We may derive it directly. From (3.10) we have

—be® VW w, ¥ P.P.
(T e
a—be " ¢/ -t

This integral can be calculated by using a path in the 8 plane
which depends on the relative value of a,b,c¢ (see Fig. 2). The
two principal parts integrals along the imaginary axes do not
contribute (pure imaginary result). The path at infinity gives
zero and finally the integral is (to a + sign) the real part of
the only residue near the integration contour.

V.SUMMARY AND CONCLUSION

In this paper, we have shown that it is possible to get
integrals of three Bessel functions when the arguments either
satisfy the triangle inequalities or not. The key point of the
proof is the use of the normalization relations between the
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J,’s which are well-defined distributions. Since the math-
ematical theory of the distributions is rather recent as com-
pared to the theory of Bessel functions, it is not astonishing
to discover new results by using a new technique. We hope
that this will be an incentive for other Bessel buffs to study
other properties unknown up to now.
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ERRATA

Erratum: Functional integrals as integrals on locally noncompact groups with
generalized measures [J. Math. Phys. 25, 1412 (1984)]

N. N. Meiman
Maxim Gorky nab. 4/22, ap. 57, Moscow 11 3127, USSR

(Received 17 July 1984; accepted for publication 27 July 1984)

PACS numbers: 03.65. — w, 02.20. + b, 99.10. + g

The following are corrections to be made to the article
cited above.

On page 1412 in the right-hand column, the fourth line
from the bottom should read

do(g') = exp[ — (i/#)S (g')1du(g’).

_ On page 1415, the first line after Eq. (1.13) should read
geG'.
On page 1415, the second line of Eq. (1.16) should read

exp%[sy(g')—s“(gan.

On page 1417, in the right-hand column, the fourth line
from the top should read as follows: band being the curves
x4 (£).

On page 1417, in the right-hand column, the last line
should read as follows: ug(fx_,x, };‘,f) of a channel

fx_x, }:,f is the solution of.
On the page 1418, the third term on the right-hand side
of Eq. (2.16) should read

1 (iﬁ a—A).
2 Ix

On page 1420, the first of the right-hand sides of Eq.
{2.37) should read

f(xk+ 1 _ xk)2K0(xk+ l’t k+ l|x"t ")dxk.

On page 1421, the limit on the second integral in Eq.
(2.45) should read (y§ ~'y™).

On page 1421, the second ¥ on the line just below Eq.
(2.45) should read #.

On page 1422, Eq. (3.2) should read du' instead of
du®.

On page 1422, the numerator of the fraction on the
right-hand side of Eq. (3.13) should read (x” — x')2.

On page 1422, in the right-hand column, the fourth line
from the bottom should read du, (y) instead of déu u ).

On page 1423, the first integral on the right-hand side of
Eq. (3.15) should read

i

| I
— my, dt.
[z
On page 1423, the second of Egs. (3.27) should read
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pal{x_x. )
H, (%4 1%)

On page 1424, the left-hand side of Eq. {3.34) should
read o, [ {x_x.} 57 o).
On page 1424, Eq. (3.35) should read

im 3 (7 Jexp | 5 Suty)
- %SH(T’O)]/‘LHO [ {x_,x+}zf — ‘)/]

On page 1424, Eq. (3.36) should read

tim S* exp | £-Sult) — £-Su(Fo) |, [ (3517 — 7]
g i fi

On page 1425 left-hand column, the beginning of the
eighth line from the top should read ¢ "¢,

On page 1425, the left-hand side of Eq. (3.42) should
read K (x,,t,|H |x,,t,).

On page 1426, the first term on the right-hand side of
the third of Egs. (3.60) should read K, (0,¢7(0,¢9).

On page 1427, the integral on the right-hand side of Eq.
(3.68) should read

f dit, (7,
U LM

and the last term should be deleted.

On page 1427, Eq. (3.69) from the first exp on the right-
hand side should read

exp [ — LJ th] f exp [L Vdt
fi vt LA Iy
— L[ var| dunm
i Jy

On page 1429, the right-hand side of Eq. (4.9) should
read

Kt/ ) = [exp |+ I, )| dotr),

On page 1429, the left-hand side of Eq. (4.10) should

read do{7}).
On page 1430, the line 18th from the top should read

24x*+ ! instead of dx*+ 1,
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Erratum: Inverse scattering for optical couplers. Exact solution
of Marchenko equations [J. Math. Phys. 25, 1900 (1984)]

G. P. Bava and G. Ghione

Dipartimento di Elettronica, Politecnico di Torino, Torino, Italy

(Received 25 July 1984; accepted for publication 9 August 1984)

PACS numbers: 03.80. +r, 02.30.Rz, 42.80.Lt, 99.10. + g

Formula (2) must be written as

Poin = Kn(x)expl — (= 1)'i By x]  (m#n). (2)
In Sec. I1I B, point 3, instead of ik — k) one must read
rk — ko/2).

Formula (29) must be written as

R(x)= — 2iCulx 4 .29
( ( )alcosh 2a,x + 7 sinh 2a,x 29)

In Figs. 3-7 the scale of the vertical axis of the diagrams
showing {R | should be doubled (i.e., 2.0 instead of 1.0 and so
on).

Erratum: Linear response theory revisited. IV. Applications [J. Math. Phys. 25,

1391 (1984)]
P. Vasilopoulos and C. M. Van Viiet

Centre de Recherche de Mathématiques Appliquées, Université de Montréal, Québec, H3C 3J7, Canada and
Department of Electrical Engineering, University of Florida, Gainesville, Florida 32611

(Received 17 July 1983; accepted for publication 27 July 1984)
PACS numbers: 03.60. + w, 72.10. — d, 72.10.Dj, 99.10. + g

(1) Using (4.2) it can be easily shown that the two terms
in the brackets of Eq. (4.1) are equal. Thus, for all tempera-
tures (4.1) becomes

nd J— — i
ny(o)_ayx B0 }(,ZN(N+ 1)(”N>eq
X(I - <nN+l)eq)(1 _e~ﬁﬁw(,);

this, together with only fy(1 — fy)=B ~'6(¢ — ¢}) [cf. Eq.
(4.3)] brings about the following changes: in Egs. (4.6), (4.14},
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and (4.15), 2N + 1 is replaced by 2(N + 1) and Eq. (4.16) is
divided by 2; further, Eq. (4.18) is replaced by [the two terms
in the brackets of Eq. (4.17) cancel each other]

0 %(0)=0,, =0,

for all temperatures and the comment following Eq. (4.18)

does not apply.
(2) The @, /N 4 * [third line after Eq. (3.32)] should be
replaced by w, /w, — P.

© 1984 American Institute of Physics 3358



	JMP, Volume 25, Issue 11, Page 3141
	JMP, Volume 25, Issue 11, Page 3148
	JMP, Volume 25, Issue 11, Page 3155
	JMP, Volume 25, Issue 11, Page 3166
	JMP, Volume 25, Issue 11, Page 3171
	JMP, Volume 25, Issue 11, Page 3183
	JMP, Volume 25, Issue 11, Page 3190
	JMP, Volume 25, Issue 11, Page 3194
	JMP, Volume 25, Issue 11, Page 3204
	JMP, Volume 25, Issue 11, Page 3209
	JMP, Volume 25, Issue 11, Page 3214
	JMP, Volume 25, Issue 11, Page 3221
	JMP, Volume 25, Issue 11, Page 3227
	JMP, Volume 25, Issue 11, Page 3231
	JMP, Volume 25, Issue 11, Page 3235
	JMP, Volume 25, Issue 11, Page 3250
	JMP, Volume 25, Issue 11, Page 3252
	JMP, Volume 25, Issue 11, Page 3264
	JMP, Volume 25, Issue 11, Page 3270
	JMP, Volume 25, Issue 11, Page 3274
	JMP, Volume 25, Issue 11, Page 3279
	JMP, Volume 25, Issue 11, Page 3286
	JMP, Volume 25, Issue 11, Page 3297
	JMP, Volume 25, Issue 11, Page 3299
	JMP, Volume 25, Issue 11, Page 3303
	JMP, Volume 25, Issue 11, Page 3316
	JMP, Volume 25, Issue 11, Page 3324
	JMP, Volume 25, Issue 11, Page 3331
	JMP, Volume 25, Issue 11, Page 3334
	JMP, Volume 25, Issue 11, Page 3350
	JMP, Volume 25, Issue 11, Page 3357
	JMP, Volume 25, Issue 11, Page 3358

