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order indices. We also touch on the anomaly in higher-dimensional theories. 

PACS numbers: 02.20. + b, 11.15. - q 

I. INTRODUCTION 

Recently there have appeared several works on the 
higher indices 1-5 of the representations of classical groups. 
Indices are of importance for particle physics and other 
branches of physics. The second-order index which is pro­
portional to the so-called quadratic Casimir invariant6 ap­
pears most frequently in physics. The fourth-order index 14 
(see Refs. 5 and 7) [see Eq. (4)] has been used to obtain the 
correct Kronecker products and subgroup decomposition. 
The third-order index yields the anomaly8 in the four-di­
mensional theory. To compute the indices in general is a 
hard task although some progress has been made over the 
last few years. 

In the present paper we would like to present some re­
sults on the indices ofSU( ). Specifically we present reduc­
tion formulas for ( 1 k ) ( = k times antisymmetrized repre­
sentation) and (k ) ( = k times symmetrized representation). 
(Reduction here refers to expressing an invariant associated 
with a representation in terms of those associated with the 
fundamental representation only.) Our expectation is that 
the reduction formulas for ( 1 k) (k) will enable us to deal 
with other representations since they can be formed out of 
( 1 k J and (k ). Section II is devoted to the derivation of the 
reduction formulas. In Sec. III we will be in contact with 
physics and touch on the higher-order anomaly which was 
recently discussed by Frampton.9

•
10 

II. DERIVATION OF THE REDUCTION FORMULAS 

The quantity we are concerned with is5 

P 

(1) 

where XI" is the generator of a representation of a classical 
group, and ~P is a summation over p! permutations of indices 
p, v, ... ,p. Various invariants can be defined through Eq. (1). 
For instance, 

DP(p) g,oo'l"p ~ Tr(X X ... 1' ) (2) 
L 1", 1"2 I"p 
P 

(p denotes a representation), is one kind of pth-order index 
and is related to the pth-order Casimir invariant J

p 
(p) by 

DP(p) = Jp(p)d (p), (3) 

where d (p) is the dimension ofp. Other invariants discussed 
in Ref. 5 are 

-) Address after September 1983: International Center for Theoretical Phys­
ics, Miramare, 1-34100 Trieste, Italy. 

(4) 

and 

14(p) Tr(gijHiHj)2, 

where in the latter Hi are restricted to the generators of Car­
tan subalgebra. 

So far as we know 1Y' (p) is calculable in general. How­
ever as for other such as /2p, an explicit compact expression 
has not been given. We try to obtain it for { 1 k J and (k ) as a 
first step toward a general expression. To deal with the prob­
lem as we follow the approach of Okubo and Patera5 and 
reduce the expression ofEq. (1) to terms associated with the 
fundamental representation. Now to the derivation of the 
reduction formulas. 

Let r be a generator of the fundamental representa­
tion of SU(N), 

(r ):, a = 1,2, ... ,N 2 
- 1, a, b = 1,2 ... ,N. (5) 

Also let £5 : be the N X N unit matrix. Then the generator fa 
of ( 1 k ) can be written as 

(6) 

where the wedge products denote antisymmetrization on the 
lower indices only. Thus, if A, B, and Care N XN matrices, 

(A A B A C)Q,Q2Q
3 

b,b2b, 

(7) 

In the above the matrix multiplication is defined by 

(8) 

Also trace is defined by 

(9) 

It is not very difficult to show that the following equation 
holds: 

Tr(AI A A2 A .. ·Ad 

= ( - l)k I ( - 1)l:,xi 
(Xi) 

X {I' (Tr A )x'(Tr A 2{2 ... (Tr Ak{k}, 

where (Xi) is a partition satisfying 
k 

I iXi =k, 
;=1 

(10) 

(11) 
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and 

(Tr A P)"":=Tr A]J Tr A ]J···Tr A]J (12) 
II '2 'XI' 

where l:' denotes a sum over permutations of (1,2, ... ,k) 
which yields distinct terms. That is, one does not include 
cyclic permutations within a trace, nor permutations which 
simply exchange two traces. For instance, 

Tr(A 1\ B) = Tr A Tr B - Tr(AB ), 

Tr(A 1\ B 1\ C) = Tr A Tr BTr C - Tr A Tr(BC) 

- Tr B Tr(AC) - Tr C Tr (AB ) 

+ Tr(ABC) + Tr(ACB ). (13) 

In particular note that 

Tr(A I 1\ A2 1\ ..• 1\ Ak) = Tr(A;, 1\ A;2 1\ ... 1\ A;J, 
(14) 

where (il, ... ,ik ) is any permutation of (1,2, ... ,k). It is easy to 
show 

Tr(AI 1\ •.• 1\ A k _ 1 1\ ~ 

= [(n - k + l)!/(n - k )!] Tr(AI 1\ ... 1\ A k _ 1). (15) 

One more property we need is 

(AI 1\ A2 1\ •.. 1\ Ak)(T 1\ {j 1\ {j 1\ •.. 1\ {j) 
'- V' :/ 

k-I 
= (k - 1)!{ (AIT) 1\ A2 1\ .•. 1\ Ak 

+AI 1\ (A2T) 1\ ••. 1\ Ak 

+ ... +AI 1\ A2 1\ ..• 1\ (AkT)J. (16) 

Now we wish to evaluate the quantity 

ITr (ta,ta2 ... tam) 

= 1 I Tr[(T a, 1\ {j 1\ ... 1\ {j) 
((k-1)!)m 

X (T a2 1\ {j 1\ ... 1\ {j) .•. (Tam 1\ {j 1\ ... 1\ {j)]. (17) 

Using Eq. (16) repeatedly and taking into account the sym­
metrization on the indices a; we obtain 

ITr (ta,ta2 ... tam) 

= 1 {(k-1)!t-I~I m! 
((k - l)!)m kin,! n\! ••. nk! 

(18) 

where l:lnil is the sum over all partitions with n; satisfying 

l:7 ~ \ n; = m, and Tn, is a short-hand notation for 
Ta'Ta2 .•. Ta. (ordinary matrix multiplication). Using Eq. 
(14), we can rewrite this as a sum over partitions {z; J, where 
Z; is the number of n's which are equal to i. They satisfy 

m 

I iz; =m. (19) 
i=O 

Thus we have 
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m!k! 

= ~Zo!z\!···Zm!(l!t'·.·(m!tm 
XITr{~I\~ 
1\ ~2 1\ ... }. (20) 

Inserting this into Eq. (18) and using Eq. (15) we obtain 

I Tr(ta' ... t am) 

k-\ (n-k+zo) 
=m!I 

Zo ~o Zo 

l:Tr{~ 1\ ~2~.} 
x~ z\!z2! .. zm!(1~z' ... (mrm 

(21) 

the right-hand side contains products of traces. What we do 
in the following is to obtain the coefficient for each type of 
trace product. With that done the reduction is completed. 

First we deal with the one trace case. Its coefficient is 
denoted as A ;;: (n, k ). For a particular partition (z; ] the rel­
evant contribution from l: Tr{ ... ] in Eq. (21) can be pulled 
out by the use of Eq. (10) and it is 

(- l)k- Zo + I(k -zo - 1)!I Tr(T a'T a2 ... T am). (22) 

Thus we find, 

k-l (n k+Z) A;;:(n,k)=m!.?(_l)k-zO +l -z ° (k-zo -l)! 
Zo - 0 0 

1 

X ~ ZI!"'Zm!(l!)" ..• (m!),m 

Then employing an identity, 

1 

~ z;! •.. zm!(l!ti .• ·(m!)'m 

1 k - Zo ( - 1 V (k - Zo - It 

= -;;;! I~O I !(k - Zo - I)! ' 

and definingj = Zo + I we arrive at 

A;;:(n,k)= k.f± (_W-H{n-:+zo) 
zo=Oj=Zo 0 

X(k-z -I)! (k_j)m 
o (j _ zo)!(k _ j)! 

k - 1 j 

= L L (- l)k - j + 1 

j=Ozo=O 

(23) 

(24) 

x(n - k + zo)(k ~Zo - 1)(k _ j)m-l 
Zo ) - Zo 

= ± (_I)k-j+l(~)(k_j)m-l. (25) 
j~O ) 

(This has been obtained in Ref. 5. Our result agrees with 
theirs.) Restricting ourselves to even m = 2p we readily 
evaluate several coefficients in the expansion 
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LTr (T a' ••. Ta2P) = LA ~~n2""L [(Tr Tn')(Tr Tn2) .•. ], 
(n, J 

(26) 

where 

Lni =2p, n l <n2<···, ni>2. 
i 

Using Eq. (23) we obtain 

A 22···2 = (2p)! (n - 2P), 
2p 2Pp! k - P 

(27) 

A 22···24 _ (2p)! 
2p - 2P- 2.4.(p-2)! 

X [ _ (n - 2P) + ..!.-(n - 2p + 2)], 
k-p 6 k-p+l 

(28) 

A 22···233 _ (2p)! 
2p - 2P-3. 32. 2!(p - 3)! 

X [ _ (n - 2P) + ..!.-(n - 2p + 2)], 
k - P 4 k _ p + 1 (29) 

where A 22···2 A 22···24 and A 22···233 are respectively the coef-2p'2p' 2p' , 
ficients of 

(Tr T2)p , (Tr T2)p - 2 • (Tr T4), (Tr T2)p - 3 • (Tr T 3f 
With a little more effort we can express Eq. (23) in a form 
similar to the above: 

[ (n - 2) (n - 4) A 2p = (2p - 1)' a(2p) _ a(2p) 
2p . I k-l 2 k-2 

+ ... + (- 1)p+ la~p{: -=-;)]. (30) 

The constants a~2p) are tabulated in Table I for 1 <p<7. They 
can be written as 

a~P) = 1 ± WP-I{3Y) (k = 1,2, ... ,p), (31) 
(2p - 1)!j= I 

where the {3's are the solutions of 

k 

L Wi - 1{3 Jk) = 8id2k - I)! (i = 1,2, ... ,k ). (32) 
j=1 

In particular, 

a~2P) = 1 a(2p) = 1. 
(2p - I)!' p 

(33) 

To obtain the other coefficients requires more effort. We 
note first that an arbitrary coefficient can be written in the 
following form: 

"2 "3 

A ~~ _ (2p)! X( _ If+};f~2ni 
(2 n23n3 ... )n2!n3! ... 

{ (
n-2P) (n-2P+2) X VI - V2 k-p k-p+l 

( + I (n - 2)} + ... + - 1)P vp k _ 1 . (34) 
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TABLE I. The constants of a7P. 

2p a, a 2 a 3 a. a 5 a 6 a 7 

2 

4 
3' 

6 
I I -
5' 4 

8 
I I 

7! 40 3 

10 
I 17 7 5 -

9! (84)(144) 144 12 
I 31 4 19 I 

12 -
II! (144)(4200) 945 240 2 

14 
I I 13 I 7 7 -

13' (144)(5280) (144)(360) 108 60 12 

((n-2) (n-4) (n-6) ) A ~~ = (2p - I)! a, k _ I - a 2 k _ 2 + a 3 k _ 3 - .... 

Therefore a coefficient can be represented by a vector 
(VI' v2,··,vp , 0···0). For instance we have 

A ~~ ... 2 = (1, 0, ... ,0), 

A ~~ ... 233 = (1, !, 0, ... ,0), (35) 

A 22···24 ( 1 I ° 0) 2p = '6' , ... , , 

A 2p - (a(2p) a(2p) ... a(2p) ) 2p - p' p - I' , I. O •...• 0 • 

Then by defining a vector multiplication, 

(VI> Vz, ",)(WH wz) , ... ) 

(36) 

we find the following rules of combination and addition of 
coefficien ts. 

Rule 1. If A 2~ is an arbitrary coefficient in 
l: Tr(T a

' ••• r a2P
) then 

A ···(3)(3) - A 33A ... 2p+6 - 6 2p' 

Rule 2. 

A ···(2n) - A 2n A ... ~ 2p-2n2p' 

Rule 3. 

A · .. (2n + I) = (al2n) n - 1 al2n) 
2p n' n n-I' 

n - 2 (2n) 1 (2n) ° ) --on_2, .. ·,-o1 , , ... 
n n 

n-' -XA i.~2 ... 23. 

(37) 

(38) 

(39) 

Using these rules and Eqs. (27)-(29) one can obtain all 
coefficients in the reduction. 

To make our procedure more understandable let us 
work out the m = 2p = 8 case: 
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From Eqs. (27)-(29) we have 

A 2222(N k) = ~(N - 8) 
g , 244! k - 4 ' 

A 233(N k)=_8_! [_(N-8)+~(N-6)], (41) 
g, 2.32·2! k - 4 4 k - 3 

A ~24(N, k) = 4.;:.2! [ - (; =:) + +(; =:)]. 
Also by solving Eqs. (31) and (32) we find 

A~(N,k)=7l[ -(;=:)++(~=:) 

- 4~(;=;)+ ;J~=n]· (42) 

A ~222 = (1, 0, 0, ... ), 

A ~33 = (I,!, 0, ... ), (43) 

A ~24 = (1, i, 0, ... ), 

A ~ = (1,~, _1_,~, 0, ... ). 
3 40 7! 

We will also need 

A 1 = (1, !, 0, ... ), 

A ~ = (1, !, ;!' 0, .. ) (44) 

ThenA ~6canbeobtainedbycombiningthree2'sinA ~222. By 
Rule 2 we find 

A ~6 = A ~A ~22Z 

= (I,!,!, 0, ... )1,0, ... ) (45) 

= (1, !, ~, 0, ... ). 

Here, A 35 can be obtained by combining one 2 and one 3 in 
A 233. By applying Rule 3 the generating vector is obtained 
from A 1 by 

~ 1 = (1, !) __ (1, ~.!) = (1, n), 

. 'A ~5 = (1, n, 0, ... ), 

A ~33 = (1, n, 0, ... ){1,!, 0, ... ) = (1, j, -}g, 0, ... ). (46) 

Finally A ~ can be obtained by combining two 2's in A ~24, 
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A ~ = A 1A ~Z4 = (1, !, 0, ... )( 1, !, 0, ... ) 

= (1, j, -tr" 0, ... ). (47) 

Writing these in full, according to Eqs. (27)-(29), 

26 8! [(n - 8) 1 (n - 6) 1 (n - 4)] 
Ag =2:6 k-4 -4 k-3 +51 k-2 ' 

A ~5 = 3~~ [ G = !) - +(~ = ~) + 4
1
8 (~ = ~) ], (48) 

A:4 = 4~~! [(~ =!) - +(~ =~) + 3~ (~=~)]. 
The tabulation of coefficients for m = 2,4,6, 8, 10, and 12 is 
presented in the Appendix. 

So far we have restricted ourselves to even m. For the 
odd m case one has 

"2 11) - -A ~~ .. ~ 1 (~:~l 

(2p + I)! ( _ 1)1 + ~,ni 

(2 n23 n\ •• )n
Z
!n

3
! ... 

X[v 1[N,k,p] +vz[N,k,p-l] +",+vp[N,k, 1]). 

(49) 
Here, 

[N k ] =~(-IY'+1 N-2k(N-2P). (50) 
"p 2 N-2p k-p 

Then the coefficients are again represented by vectors and 
Rules 1, 2, and 3 apply without modification. The starting 
vector (1,0,0, ... ,0) corresponds to 

p I 

A~ (N, k) = (- 1)"+ 1(2p + I)! [N, k,p]. (51) 
Zp+ 1 3.2P - lIP _ I)! 

At this point we comment on how to obtain the formu­
las for the symmetrized representations [k ]. In this case we 
have to change the antisymmetrization in Eq. (6) into sym­
metrization. What this change amounts to is the following. 
Denote the coefficients for [I k ] and I k I as A i~Sl(N, k ) and 
A i~l(N, k ). We know A i~s liN, k ) can be expressed as follows: 

A i~Sl(N, k) = ± ( - l)k +H l(~(k - jfP -1. (52) 
j=O jJ 

Then make a formal change N-- - N to obtain 
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(53) 

The coefficient A ~~)(N, k) for {k } has been found to be relat­
ed toA h~S)( - N, k); 

A ~S)( - N, k) = (- I)k+ IA ~)(N, k). (54) 

With this we come to the end ofthe derivation of the reduc­
tion formulas. 

We can apply our results to calculate the quantities 

(55) 

where:J'l'; are the elements of the Cartan subalgebra in the 
{}k} representation. We denote the elements in the funda­
mental representation by Hi' and ( ) denotes symmetriza­
tion over indices. 

By noting Tr(H;t j) = (l/r)c5;i2( { } }) it is straightfor­
ward to obtain the following: 

12U Ik }) = A ~(N, k )/2({1 j), (56) 

14( { 1 k } ) = A : (N, k )/4( { I} ) 

+ r;r 
2 

A ~2(N, k )[l2({1}W, (57) 

16( { 1 k }) = A ~ (N, k )/6( { I} ) 

+ r + 4 A ~4(N, k )/2( { I} )/4( II} ) 
5r 

+ A ~3gl;jgklgmn) Tri,H;HjHk) Tri,H/HmHn) 

+ r+4 r+2A~22(N,k)[l2({1}W, 
5r 3r 

12P ({ 1 k ) ) = A ~~ (N, k )/2P ({ I) ) 

+ A i;P - 2(N, k ((; ~ ~r2/2( { I} )/2p _ 2 ( II) ) 

+ ... + r+2 r+4 ... r+2p-2 
3r 5r (2p - I)r 

(58) 

Calculating the right-hand side is not difficult since it in­
volves only the fundamental representation. A tabulation of 
the result will be given elsewhere. 

So far, all the coefficients for even m have been ex­
pressed in terms of the functions 

(
n - 2q). 
k-q 

What happens when this quantity is not defined? (For exam­
ple, n - 2q < k - q.) Now, these terms arise from theexpres­
sions 

q .(q) (n-2q+j) 
/~o ( - 1 Y J k - 2q + j , 

each term in the summation being a contribution from a 
particular partition in Eq. (21). Here we assumed that 
n > k>2q. But this need not be the case. If k < q, clearly none 
of the partitions contribute, and we simply omit the entire 
expression 
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(k <q => ,,(nk -=-~), = 0). 
But, if k = q + I, 0 < / < q, the appropriate sum is 

± (_ Iy(~)(n - 2q + ~\ 
j = q _ / .; k - 2q + j) 

( - W(n - 2q), n>k + q, 
k-q 

( _ I)k (k + q - n - 1), n < 2q 
k-q 

0, 2q<n<k+q. 
Similar considerations apply to the case of odd m. 

III. CONTACT WITH PHYSICS 

The index /2P mentioned at the end of the last section 
has not yet found its use in particle physics. On the other 
hand a more common index has found another use in parti­
cle physics. Recently Frampton noted,9,JO by generalizing 
the works of Ref. 11, that in a d (> 4)-dimensional theoryl2 
the anomaly is well defined and can be separated from other 
divergences inherent in such a theory. To state only the re­
sult the anomaly in 2d dimensions is given by A ~! : , with a 
normalization such that the anomaly for the fundamental 
representation is one. If we take such a theory seriously we 
must take care of the anomaly, among other things. And 
thus the freedom from anomaly should serve as a constraint 
on the models in 2d dimensions. (Incidentally there is no 
anomaly in an odd dimension.) 

As regards the anomaly we only note one formula 
which is handy to get numbers: 

A::: [N, k] =A::: [N - 1, k] +A::: [N - 1, k - 1]. (59) 

With the help of this formula one has to use Eq. (25) only 
twice to get all other numbers. Classification of the models 
based on freedom from anomaly will be given in a separate 
paper. 

IV. SUMMARY 

We derived a reduction formula for {I k} and {k } of 
SU(N) which we think will serve as a basis for more general 
cases. Generalization of our result is currently under investi­
gation. 
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APPENDIX. THE COEFFICIENTS IN THE REDUCTION 
FORMULA FOR p = 1,2,3,4,5 

A 6 = 5!((n - 6) _ ~(n - 4) _1 (n - 2)) 
6 k - 3 4 k - 2 + 120 k - 1 ' 

A 8 = 7!( _ (n - 8) ~(n - 6) 
8 k-4+3k-3 

1 (n - 4) 1 (n - 2)) 
- 40 k - 2 + 7! k - 1 ' 

A 44 = ~((n - 8) _ ~(n - 6) 1 (n - 4)) 
8 42.2! k - 4 3 k - 3 + 36 k - 2 ' 

A ~5 = ~((n - 8) _ ~(n - 6) + _1 (n - 4)), 
3·5 k - 4 3 k - 3 48 k - 2 

A 26 _ 8! ((n - 8) 1 (n - 6) 1 (n - 4)) 
8 - 2.6 k-4 -4 k-3 + 120 k-2 ' 

A 224 _ 8! ( (n - 8) 1 (n - 6)) 
8 - 22.4.2! - k - 4 + 6 k - 3 ' 

A ~33 = _8! ( _ (n - 8) + ~(n - 6)) 
2·32.2! k - 4 4 k - 3 ' 

A 2222 = ~(n - 8) 
8 24.4! k - 4 ' 

10 ((n - 10) 5 (n - 8) 7 (n - 6) 
A 10 = 9! k _ 5 -12 k - 4 + 144 k - 3 

17 (n - 4) 1 (n - 2)) 
- (84)(144) k - 2 + 9! k - 1 ' 

A 55 = ~( _ (n - 10) _5 (n - 8) 
10 52.2! k - 5 + 12 k - 4 

3146 

- 1~ G=:)+ 5~6G=~))' 
A ~ = !~~ ( -(nk -=-1~) + 1

5
2 (~ == !) 

- 2~ (~=:) + 7~0 (~= ~)), 
A n = !~; ( -(nk -=- 1~) + 1

5
2 (~ == !) 

2 (n-6) 1 (n-4)) 
- 45 k - 3 + 1440 k - 2 ' 
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A 28 = 1O! ( _ (n - 10) ~(n - 8) 
10 2.8 k - 5 + 3 k - 4 

1 (n - 6) 1 (n - 4)) 
- 40 k - 3 + 7! k - 2 ' 

A 334 _ 10! ((n - 10) 5 (n - 8) 1 (n - 6)) 
10 - 3242! k - 5 - 12 k - 4 + 24 k - 3 ' 

A 244 _ 10! ((n - 10) l(n - 8) 1 (n - 6)) 
10 - 242.2! k - 5 -"3 k - 4 + 36 k - 3 ' 

A i~5 = ~((n - 10) _ ~(n - 8) + _1 (n - 6)), 
2·3.5 k - 5 3 k - 4 48 k - 3 

A 226 _ 1O! ((n - 10) l(n - 8) 1 (n - 6)) 
10 - 22.6.2! k - 5 -"4 k - 4 + 120 k - 3 ' 

A li = 11!( _ (n - 12) + ~(n - 10) _ ~(n - 8) 
k - 6 2 k - 5 240 k - 4 

1 (n - 6) 1 (n - 4)) 
- 240 k - 3 + 20·6! k - 2 ' 

A i~ =~((n - 12) _~(n - 10) + ~(n - 8) 
5.7 k - 6 2 k - 5 240 k - 4 

19 (n - 6) 1 (n - 4)) 
- 6.6! k - 3 + 24·6! k - 2 ' 

A i~ = ~((n - 12) _ ~(n - 10) + ~(n - 8) 
4.8 k - 6 2 k - 5 360 k - 4 

22 (n - 6) 1 (n - 4)) 
-71 k - 3 + 6·7! k - 2 ' 

A ~~ =~((n -12) _~(n -10) +~(n - 8) 
3.9 k - 6 2 k - 5 40 k - 4 

1 (n-6) 1 (n-4)) 
- 315 k - 3 + 2·8! k - 2 ' 

1 (n - 8) 1 (n - 6)) 
-12 k-4 + 216 k-3 ' 
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A ~~5 = ~( _ (n - 12) + ~(n - 10) 
3·4·5 k - 6 2 k - 5 

- 1~ (~ = !) + 2!8 (~ = :) ), 
A ~~6 = ~( _ (n - 12) + ~(n - 10) 

32·6·2! k - 6 2 k - 5 

- 2~ (~ = !) + 4~0 (~ = :) ). 
An5=~(- (n -12) +~(n -10) 

2·52·2! k - 6 12 k - 5 

- 1~ (~=!) + 5~6 (~= :)). 
A ii6 = ~( _ (n - 12) + _5 (n - 10) 

2·4·6 k - 6 12 k - 5 

- 2~ (~ = !) + 7~0 (~ = :) ). 
AW=~(_(n-12)+~(n-lO) 

2·3·7 k - 6 12 k - 5 

2 (n - 8) 1 (n - 6)) 
- 45 k - 4 + 1440 k - 3 ' 

A 228 _ 12! ( (n - 12) 1 (n - 10) 
12 ---- - +-

22·8·2! k - 6 3 k - 5 

1 (n-8)) 
+36" k-4 ' 
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The theory of space groups and their subgroups is related to that of their irreducible 
representations. Se~eral important theorems concerning the determination of isotropy subgroups 
are proved. In partlcular, we ~how th~t the translation subgroups of isotropy subgroups are in 
one~to-one .correspondence wlth certam subsets, called "substars," of the "star" characterizing 
the lrreduclble representation of the space group. 
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I. INTRODUCTION 

In this paper we show how to construct lattices of sub­
groups of the crystallographic space groups and explain how 
to obtain from them the lattice of isotropy subgroups in a 
given representation. 

The problem of finding isotropy subgroups arises in 
many physical applications, notably in theories of contin­
uous phase transitions I and in gauge theories. 2 In particular, 
in continuous structural phase transitions the symmetry of a 
crystal changes from one space group to a subgroup. This 
subgroup is the isotropy group of a vector (order parameter) 
in the representation space of an irreducible representation 
of the space group. This characterization is most explicit in 
the Landau theory of phase transitions3 and in its renormal­
ization-group generalization.4 In the Landau theory, the iso­
tropy groups which appear are those which correspond to 
the minima of the Landau free energy. The first step in iden­
tifying the minima is to determine all the isotropy groups of 
the representation.5 An algorithm for finding the isotropy 
groups was recently given in Ref. 6. In this paper we present 
the general mathematical results on which the algorithm is 
based. 

The direct computation of the subgroups of a space 
group is made possible by the algebriac characterization of 
an n-dimensional space group as an extension of Z" (See Ref. 
7). In Sec. II we show how these concepts can be used to 
construct subgroup lattices. We also describe the correspon­
dence between this algebraic approach and the geometric 
point of view, in which a space group is regarded as a sub­
group of R "<2<O(n) (See Ref. 8). 

Our main result is presented in Sec. III: a necessary and 
sufficient condition for a translation group to correspond to 
the translation subgroup of an isotropy subgroup is that it is 
reciprocal to the translation group generated by a subs tar of 
the star of the representation. This characterization greatly 
simplifies the computation involved in determining which of 
the subgroups in the subgroup lattice are in fact isotropy 
subgroups. 

An explanation of the notation which is used in this 
paper is given in Table I. The Appendix contains a summary 

-) Present address, Department of Physics, North Dakota State University, 
Fargo, North Dakota 58105. 

of relevant notions and results regarding a group action. Spe­
cifically, it contains several important theorems regarding 
centralizers and isotropy subgroups. 

II. SPACE GROUPS AND THEIR SUBGROUP LATTICES 

When space groups are regarded as the symmetry 
groups of real crystals, it is natural to think of them as groups 
of symmetries in three-dimensional space. This means that a 
space group is a subgroup of the Euclidean group, the group 
of all isometries of real space. This geometric viewpoint has 
been traditionally preferred by solid state physicists. Math­
ematicians and mathematical crystallographers, on the oth­
er hand, think of (n-dimensional) space groups as automor­
phism groups of the integral lattice. This algebraic point of 
view was developed by Bieberbach and others in the first half 
of this century to show, among other things, that the number 
of space group types in any finite dimension is finite,9 and to 
classify them in three dimensions. 10 As we will see, the alge­
braic viewpoint is also very useful for characterizing and 
computing the subgroups of space groups.? We will also see 
that the geometric viewpoint provides complementary in­
sights into the problem of isotropy subgroups. II 

A. The geometric viewpoint 

The Euclidean group E(n) in any dimension n is the 

TABLE I. The notation and symbols used in this paper. 

R" 

Z" 
O(n) 
E(n) 
A(n) 
GL(n,R) 
GL(n,Z) 

AQ<B 
AlB 
IA I 
(t,k) 
pot 

Ell 

< 
<l 

the vector space of real n-tuples; 
the additive group of real n-tuples [elements: t, f, k, r] 
the additive group of integral n-tuples [elements: tl 
the group of n Xn orthogonal matrices [elements:p] 
the group of all isometries of R " [elements: gl 
the affine group of transformations of R " 
the group of n X n real nonsingular matrices [elements: rl 
the group of n X n integral nonsingular matrices with integral 
inverse [elements: q, \Jl 
the semidirect-product-extension of A by B 
the quotient group, space 
number of elements in the set A 
the orthogonal scalar product in R " 
the transform of t by P 
the direct sum of matrices, spaces 
isomorphic; conjugate; reciprocal 
smaller than; included; subgroup; subspace (strict inequality) 
invariant subgroup 
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group of all isometric transformations of the real vector 
space R ". It consists of linear orthogonal transformations 
which keep the origin fixed [the group O(n I], translations in n 
linearly independent directions (the additive group R ") and 
combinations of these. Here R " is an invariant subgroup of 
E(n), which is the semidirect product R "&O(n). Therefore 
each elementg ofE(n) can be uniquely written as a product of 
an element t of R " and an element p of O(n). Thus we can 
writeg = tp. 

A space group G is the symmetry group of an n-dimen­
sional real crystal. Therefore it is a subgroup of E(n) whose 
translation subgroup TG is generated by n linearly indepen­
dent vectors in R ". G is an extension of TG by a finite sub­
group P G of O(n) such that P G - G IT G but it is not necessar­
ily a semidirect product. (In three dimensions 73 of the 230 
space group types are semidirect products; they are said to be 
symmorphic.) An element g of a space group G can be writ­
ten as a product tfp, where t is in T G' f (a "fractional transla­
tion") is in R nand p is an element of P G • [An alternative 
notation for g is (t + f)p where additive notation is used for 
elements of R ".] The point group component p and the 
translation component tf are uniquely determined by g. The 
term fp can be regarded as a right coset representative of TG 
in G; f is uniquely defined modulo TG • If Gis symmorphic 
then f can always be chosen to be O. 

The product t3f3P3 of two elements tlfIPI and t2f2P2 is 
tlfl(Plot2)(Plof2)PIP2' wherepot andpofare the transforms oft 
and fby p. Therefore, 

def 

t l,2 = fl + P1of2 - f3ETG' (2.1) 

Since G is an extension of T G by P G' a subgroup L of G 
must be an extension of TL < T G by P L <P G such that 
PL-LITL· 

In this geometric formulation, an orthonormal basis for 
R " is usually assumed, and all of t, f, and p are expressed in 
that basis. 8 However if we take the generators of T G as a basis 
for R n then T G becomes an integral lattice. This is the start­
ing point for the algebraic point of view. 

B. The algebraic viewpoint 

The above change of coordinates, which permits us to 
identify TG with Z",8 also effects a one-to-one mapping y 
fromPG ontoasubgroup~@ ofGL(n,Z), the automorphism 
group of zn. We will denote y(t) by t, y(f) by f, and y(p) by l' 
(see Ref. 12). Thus the image @ of Gunder y is an extension of 
Z" by a finite subgroup ~@ of GL(n,Z) such that 
~@ -@IZ". 

Condition (2.1) now becomes 
def 

t l.2 = f 1 + 1'lof2 - f3EZ ", (2.2) 

which is known as the Frobenius congruence. The set of all 
fractional translations [f J is called a vector system for @. 

Bieberbach showed that two space groups G and G ' are 
isomorphic if and only if they are conjugate in the affine 
group A(n) = R" &GL(n,R ) (see Ref. 9). In fact, looking at 
the problem algebraically, we see that @ and @' are conju­
gate in the subgroup R "CxGL(n,Z) of A(n), since the conju­
gation must leave Z" invariant. Let the space group @ be 
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characterized by ~@ and the vector system [fl and let the 
space group ®' be characterized by ~®' , and the vector sys­
tem (f' 1. Clearly if@ and @' are conjugate in R "CxGL(n,Z) 
then ~@' and ~® must be conjugate in GL(n,Z); one says 
that @ and @' (and also G and G') belong to the same arithme­
tic class. To determine the relation between [f 1 and (f' 1, let 
a be the element of R "&GL(n,Z) which affects the conjuga­
tion@' = a®a- 1

• Then a = rq, whererER "andqEGL(n,Z). 
Thus Z "fl" = a(Z "fl')a- I implies 

l" = ql'q-I and f' - [r + qof - (ql'q-l)or]EZ". (2.3) 

When q = 1, then a is just the translation r and the vector 
systems { f J and! f' J are related by a shift of the origin; in this 
case they are said to be strongly equivalent. (If q¥= 1, the 
systems are said to be weakly equivalent.) 

Within each arithmetic class, each equivalence class of 
solutions of (2.2) characterizes an isomorphism class of space 
groups. In three dimensions there are 73 arithmetic classes 
and 219 isomorphism classes of space groups the 230 space 
groups are obtained by conjugation in the subgroup of proper 
motions in R "&GL(n,Z). 

C. Subgroups and subgroup lattices 

As we mentioned above, a subgroup of a space group is 
an extension of a translation subgroup by a subgroup of the 
point group, that is, 2<® is an extension of:tl,! by ~l,! 

-2/:tl,!' where:tl,! <Z" and ~IJ <~(j). Therefore:tl,! must be 
invariant under ~l,!. Here:tIJ is isomorphic to zm,O<m<n. 
We can specify:tl,! by writing a set of m independent genera­
tors which are n-tuples of integers, as column vectors of an 
n X m matrixA. It is important to note that, alternatively, :rIJ 
can be specified by any matrix AX, whereXEGL(m,Z). Thus 
the condition that :tl,! is invariant under ~IJ becomes 
~IJA = AX or, since linear independence of the m genera­
tors ensures that A has a left inverse, 

A -1~l,!AEGL(m,Z). (2.4) 

An element of2 can be written in the form (t + fl,! + f)l', 
where tE:tIJ , fl,! EZ", l'E~l,!' and f is the fractional translation 
associated with l' in @. Then (fIJ + f)l' can be interpreted as a 
right coset representative of:t1J in 2 and therefore fIJ is 
uniquely determined modulo :tIJ. The fl,! 's must satisfy the 
subgroup congruence 7 

fl.!! +l'lofl,!2 -fl.!3 +t1,2E:tl,!' (2.5) 

which follows from Eq. (2.2). 
Each solution set defines a unique subgroup of @. We 

emphasize this because in order to construct the lattice of 
subgroups of ® we need to specify all the subgroups, and not 
only isomorphism classes. 

Now it is a simple matter to construct the lattice of 
subgroups of @, that is, to determine their partial ordering. 
Let St' and 2 be subgroups of @, with translation subgroups 
:r~ and :tl,! represented by matrices A~ and Al,!. 

Lemma 2.1: :tSl <:tIJ if and only if A IJ- IA~ has integer 
entries. 

Proof A l,!- IA~ = Y if and only if A~ = AIJ Y. Y is inte­
gral if and only if every element of:r~ is a linear combination 
of the generators of:tl,!' Q.E.D. 

Theorem 20 1: Let St' and.2 be subgroups of&. Then St'<.2 
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if and only if(i) $.!t <$2; (ii)~.!t <~2; and (iii) for each element 
(f.!t + f)~ of st! there is an element (f2 + f)l' of 2 such that 
f.!t = f2 (mod ~2)' 

Proof If st!<2 then (i) and (ii) are immediate and also 
(f!! + f)~E2, which means that it can be written in the form 
(t + f2 + f)~, where tE~2' Thus f.l'l is congruent to 
f2 mod ~2' Conversely it is obvious that (i)-(iii) ensure that 
st!<2. Q.E.D. 

In applications to isotropy subgroups we will be inter­
ested in the sublattice of isotropy subgroups which has as its 
minimal subgroup the kernel of the representation. We will 
also wish to identify the subgroups in this lattice by space 
group type. This is not a trivial problem. In the first place, if 
the dimension m of ~2 is less than n, then 2 is not an n­
dimensional crystallographic space group and it need not 
even be an m-dimensional one. Secondly, even if m = n, the 
identification of 2 is not always obvious. First $2 must be 
described as an action on Z n and this is achieved by the 
conjugation $2 = A 2- 1$2A2' since A 2- I maps ~2 back 
onto Z n. However it is often a difficult problem to determine 
the conjugacy class of $2 in GL(n,Z), i.e., to determine the 
arithmetic class of 2. Next, the equivalence class of the vec­
tor system of 2 [see Eq. (2.3)] must be determined. We will 
not discuss the identification problem further here; a com­
puter program for dealing with it has recently been written 
by Engel, and will be published soon. 13 

III. TRANSLATION SUBGROUPS OF ISOTROPY 
SUBGROUPS OF G 

Throughout this section, we will adopt a geometric 
point of view, returning to the algebraic in the concluding 
section. Thus R n will be considered to be a real vector space 
with an orthonormal basis, and its elements n-tuples of real 
numbers. The usual scalar product of k = (kl, ... ,kn) and 
t = (tl, ... ,tn) in R n is (k,t) = kltl + .,. + k n tn. 

Let T be a (translation) subgroup of R n. Then 
def 

l' = I kER n: (k,t)EZ for all tET) is the subgroup of R n 

"reciprocal" to T. CleaIjy 1>T and if T < T' then 1" <1'. 
Consequently, although l' need not equal T it is always true 

that f = T. If T G is the translation subgroup of an n-dimen­
sional space group G then we can identify it with a point 
lattice and TG with its reciprocal lattice. More generally, if 
T < R n is generated by m linearly independent translations, 
O<m <n, as in the case T < T G' then T = T. Furthermore, if 
T' is generated by m' linearly independent translations, 
O<m'<n, then T<T' if and only if1>T'. 

Each irreducible representation R of T G is defined by a 
vector kER " which is unique modulo l' G; in other words R is 
labeled by a "wave" vector k from the first Brillouin zone 
R nlTG (see Ref. 14). Specifically, for each tETG, 
Rk (t) = e21T;(k.t l• 

An irreducible representation R of a space group G is, in 
general, reducible when restricted to its translation sub­
group TG • Specifically, 

s 

R(TG) = 1$ Rk(TG ). 
i=l I 

(3.1) 
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def 

The positive integer I and the set (star) [0'0] = I k l,k2,oo.,ks ) 

are uniquely determined by R. There is a one-to-one corre­
spondence between the vectors k; and the left cosets of the 
isotropy group (little point group) ofklER niT G in the group 
P G: [0'0] is the orbit ofkJ under the action of P G on R niT G' 

If K is the kernel of the representation R then an iso­
tropy subgroup L of G is a subgroup of G which contains K. 
Clearly T K < TL • However the fact that L is an isotropy sub­
group leads to a much stronger characterization of TL . Es­
tablishing such a characterization is the purpose of the pres­
ent section. 

Let 0' be any subset of [0'0]' Then we can construct the 
translation group 

def 

T(u) = ItETG: (k,t)EZ for all kEU). (3.2) 

Cleady,T(u)<TGwhileT(0) = TGandT([uo]) = TK,where 
o is the empty set. We now show that T (0') is reciprocal to the 
group generated by 0' and l' G' 

Lemma 3.1: Let 
def 

Q(U) = Ik: k = k' + kIf, 

where k' = ~n;k;. k;EU, n;EZ, and kIf ET G)' 

(3.3) 

Then T(u) = Q(u). 
_ Proof Since T(u) = I tETG: (k;,t)EZ for all k;EU) and 
TG = TG we have T(u) = ItER n: (k",t)EZ for all k"ETG 
and (k;.t)EZ for all k;EU) = I tERn: (k' + k" ,t)EZ for all 
k' = ~nik;. k;EU, n;EZ, and k"ETG) = ItER": (k,t)EZ for 
all kEQ (0')) = Q (0'). Q.E.D 

When Q (0') defined by Eq. (3.3) can be generated by n 
linearly independent translations in R n it holds that 
Q (0') = l' (0') is equal to Q (0'). Otherwise, although 
Q (0') = T (0'), Q (0') = l' (0') is strictly larger than Q (0'). The 
first case occurs when the image R(G)-GIKis finite and 
corresponds to commensurate (crystal-to-crystal) phase 
transitions. The second case occurs when the image 
R( G ) - G I K is infinite and corresponds to incommensurate 
phase transitions. 

It is not necessary to consider Q (0') throughout this pa­
per; it suffices to consider only T(u) given in Eq. (3.2). How­
ever, we introduced Q (0') and proved Lemma 3.1 because we 
found it sometimes conceptually simpler to first construct 
Q (0') using Eq. (3.3) and then to use Lemma 3.1 to find 
T (0') = Q (0') (see Ref. 6). 

To establish our main theorem we will need severallem­
mas. The first of these is immediate. 

Lemma 3.2: Let 0" < 0''' <[0'0]' then T(u'»T(u") and, 
equivalently, 1'(0")<1'(0'''). 

Lemma 3.2 suggests that there is a maximal 0' among 
those subsets of[uo] which generate the same T(u). Clearly, 
every subset 0' of[uo] is contained in l' (u)n[uo] and so a suffi­
cient condition for maximality is that 0' = T(u)n[uo]. A 0' 
satisfying this latter condition will be called a substar and 
denoted by [0']. We will show in Theorem 3.1 that this is also 
necessary for maximality. 

Lemma 3.3: The subduction frequency of a subgroup T 
of TG is 
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itT) = IITn[uo] I. 

Proof By the definition of the subduction frequency (see 
the Appendix)_and Eq. (3.1), i(T)=I:!.j=lik)T). Since 
ik)T) = 1 ifkjET and o otherwise, the sum in this expression 
is simply the number of elements in the intersection 
Tn[uo]' Q.E.D. 

Notice that for a substar [u], i(T([u])) = II[u]l· 
Lemma 3.4: IfT<,TG then 1>T(u), whereu = Tn[uo]' 
Proof Since both T and T(u) are !ubgroups of 

TG,1>T(u) is equivalent to T<,T(u). Also T= T so that 
T= {tETG: (k,t)EZ for every kETJ. Since u<Tit then 
follows that T<.T(u). Q.E.D. 

Lemma 3.5: Let T<,TG and u = Tn[uo] as in Lemma 
3.4. Then u is a substar. 

Proof We must show that u = l' (u)n[ u 0]. As we pointed 
out after Lemma 3.2, u<, T(u)n[uo]; thus we need only show 
the reverse inclusion. But this follows immediately from 
Lemma 3.4. Q.E.D. 

Now we can state and prove the first theorem of this 
section. 

Theorem 3.1: Let [u] be a substar of [uo]' 
(i) [u] is the maximal subset among the subsets u' of [uo] 

such that T(u') = T([u]). 
(ii) T([u]) is an isotropy subgroup ofTG in the restriction 

of the representation R( G ) to T G' 

Proof (i) [u] = T([u])n[uo] = T(u')n[uo]~u'. 
(ii) Assume there is a T<,TG such that T([u]) < T. Then 

l' ([u]) > TandbyLemmas3.4and3.5, T([u]) > l' ([u']), where 
[u'] = Tn[uo]. Consequently, [u'] < [u] and by Lemma 3.3, 
itT) < i(T([u])). Therefore, T([u]) is an isotropy subgroup of 
TG by Corollary A.I of the Appendix. Q.E.D. 

Corollary 3.1: The isotropy subgroups of T G are in one­
to-one correspondence with the substars of [uo]. 

Proof We have shown that to each substar there corre­
sponds a unique isotropy subgroup of TG • Conversely, let T 
be an isotropy subgroup of TG and let [u] = Tn[uo]. Then 
T([u]) = Tbecause otherwise by Lemma 3.4 T < T([u]) and 

TABLE II. Subgroups ofp4 such that ~2 = ~([O']). 

C2 

c. 

C2 

C2 

C2 

C. 

(0,0) 

(0,0) 
(0,0) 
(0,0) 
(0,0) 
(0,0) 
(0,0) 
(0,0) 

(0,0) 

(0,0) 

(0,0) 

(0,0) 

(0,0) 

(0,0) 

Vector system 

f. f., 

(0,0) 

(1,0) 
(0,1) 
(1,1) 

(0,0) (0,0) 
(1,0) (1,1) 
(0,1) ( - 1,1) 
(1,1) (0,0) 

(0,0) 

(0,0) 

(1,0) 

(0,0) 

(0,1) 

(0,0) 

(0,0) 
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by Lemma 3.3 itT) = i(T([u])) which would imply by Corol­
lary A.1 that T is not an isotropy subgroup of T G' Q.E.D. 

The following immediate corollary is useful in compu­
tations. 

Corollary 3.2: Let u<,[uo]. Then T(u)n[uo] is a substar. 
We need two additional lemmas in order to prove the 

main result of the paper: the subgroups T([u]) are precisely 
the translation subgroups of isotropy subgroups of G. We 
denote the normalizers inPG ofu<,[uo] and ofT<, TG by N(u) 
and N(T), respectively. The normalizer of Tis obviously 
equal to N(T), and in particularN(TG ) = N(TG) = PG· 

Lemma 3.6: Let u<,[uo]. Then N(u)<,N(T(u)). 
Proof Letp be inN (u). Thenp-l is inN (u) and for every 

kEU and every tET (u) (p·t,k) = (t,p -1·k)EZ because p is an 
orthogonal transformation. Therefore, p·tET (u) and, conse­
quently, pEN (T(u)). Q.E.D. 

Lemma 3.7: Let T<,TG and let [u] = Tn[uo]. Then 
N(T)<,N([u)). 

Proof By definition, if kE[U] then kET and kE[Uo]. If 
pEN(T) then pEN(T)<,PG and thus kIt' = p.kET and 
p·k = k' + kIf, k'E[UO], k"ETG<,T. Therefore, k' = k"' 
- k"ETso that k'ETn[uo). Consequently, pEN ([u]). Q.E.D. 

Theorem 3.2: (i) For every substar [u] there is an iso­
tropy subgroup L of G such that TL = T([u]). 

(ii) Conversely, if L is an isotropy subgroup then there 
exists a substar [u] = TLn[uo] such that TL = T([u]). 

Proof: (i) if T ([ u]) is an isotropy subgroup we are done. If 
it is not, there is an isotropy groupL<,G such thatL > T([u]) 
and i(L) = i(T([u])) (see Corollary A.I of the Appendix); if 
T([u)) = TL we are done. Thus we may assume T([u]) < TL . 
But i(T([u))) = i(L) implies i(T([u])) = i(TL ), since 
T([u]) < TL <,L. Thus, by Corollary A.I of the Appendix, 
T([u]) is not an isotropy subgroup of TG, which contradicts 
Theorem 3.1. 

(ii) Assume that TL ~T([u)); then TL < T([u)) by 
Lemma 3.4. Let L be written as a left coset decomposition 
with respect to TL : L = ug j TL • 

(0,0) 
(0,1) 
(1,0) 
(l,I) 

(0,0) 

Subgroup 
type 

p2 

p2 
p2 
p2 
p4 
p4 
p4 
p4 

p2 

p2 

p2 

p2 

p2 

p4 

Subgroup 
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Let L' = ugi T( [0-]); obviously L <L '. L' is a group 
sinceN(TL )<,.N (T([o-])) by Lemmas3.6and3.7. By definition 
(see the Appendix), ilL ) = dim Fix Land ilL ') 
= dim Fix L '. We will show that Fix L = Fix L' and thus 

ilL ) = ilL '), which contradicts our assumption that L is an 
isotropy subgroup (cf. Corollary A.l). 

Let vEFix L. Then v is fixed by TL and by every gi E L. 
Now i(TL) = IITLn[o-o]1 = 11[0-]1 by Lemma 3.3 and the de­
finition of [0-]. On the other hand, 
i(T([o-])) = II T([o-])n[o-o] I = II [0-] I since [0-] isasubstar. Thus 
i(TL) = i(T([o-])) and every vector fixed by TL is fixed by 
T([o-]) and vice versa. Thus v is fixed by T([o-]) and by every 
gi' which implies vEFix L', and hence Fix L<,Fix L '. It fol­
lows (see Proposition A.3 of the Appendix) that Fix L 
= Fix L '. Q.E.D. 

IV. THE LATTICE OF ISOTROPY SUBGROUPS: A TWO­
DIMENSIONAL EXAMPLE 

In principle, the isotropy groups are completely deter­
mined by the image R(G). Thus one could first determine the 
isotropy subgroups ofR(G) and then "lift back" to G to find 
its corresponding isotropy subgroups. This procedure would 
be feasible if representations were classified by their kernels 
and images. However, such a classification does not exist 
even for n = 2; in the meantime we need an alternative meth­
od for a case-by-case study. We can avoid the explicit con­
struction of the matrices in R(G) by recalling that the lattice 
of subgroups L of G which contain the kernel K is isomor­
phic to the lattice of subgroups ofR(G). Therefore, our strat­
egy will be to construct the lattice of subgroups L,K <,L <, G, 
for which TL corresponds to a substar, and then to calculate 
each ilL ). While the construction of the subgroup lattice does 
not require any knowledge of the image R(G), the last step 
requires knowledge of the characters. 

Let [0-0 ] be the star of the representation. It is a simple 
matter to calculate the substars [0-] and the corresponding 
translation subgroups %([0-]). Using a standard procedure, 15 

we can find a basis for each %([0-]) and form the matrix A 
defined in Sec. II. (In this section we return to the algebraic 
point of view.) 

By the results of the preceeding section, we can assume 
that %~ = %([0-]) for some substar [0-]. The next step is to 
construct candidate subgroups ~: for each %~ we choose 
those ~>! under which it is invariant, use Eq. (2.5) to deter­
mine a vector system, and then use Theorem 2.1 to exclude 
those subgroups which do not include ~. If ~ is of finite 
index, the work is simplified by recalling that 1~(l\/~S11 
= I~@/~>! I I~>!/~Sl' I and 1%@/%S11 = I%<c~/%>! I 1%>!/%S11 

(note: %@ = Z n). 
Finally for each ~ in our lattice we compute the subduc­

tion frequency i(~). This computation is explained in detail in 
Ref. 6. In the following example we show only how to con­
struct the lattice of subgroups whose subduction frequency 
is to be calculated. 

Example: Let @ be the two-dimensional space group p4. 
For the purposes of this calculation, we assume R to be an 
irreducible representation of @ whose kernel ~ is the invar­
iant subgroup of @ specified by 
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ASl' = [~ ~],~S1 = C2 = 11,j.12j, and vector system 

fl = (0,0), fp' = (1,1), wherep is the fourfold rotation. Then 
I@/~I = I~@/~Sl' IIZ2/%Sl' I = 2·4 = 8. The star 1S 

[0-0 ] = I (1/2,0),(0, 1/2)J. The substars of[o-o] are 0,[0-0 ], 1(1/ 
2,0) J ' and 1(0,1/2) J. The first two correspond to Z 2 and %.R' 
respectively, while if [0-] is the third or fourth then 
%([0-]) = I (x,y)EZ 2:X is even J or I (x,y)EZ 2:y is even j, respec­
tively. We conclude that they are represented by the matri-

cesA = [~ ~] and A = [~ ~], respectively. 

Next we construct the subgroups ~ with these transla­
tion lattices. We list in Table II the combinations of%>! and 
~>! which form subgroups of~(lj [see Eq. (2.5)], together with 

representative vector systems. Note that [~ ~] and 

[~ ~] are not invariant under C4 and thus there are no p4 

subgroups with these lattices. 
By Theorem 2.1, ~ does not contain ~ unless f p2 = (1,1) 

mod %£; this requirement eliminates seven of the subgroups 
in the list above. Thus our final subgroup lattice is 

where ~ indicates conjugate subgroups. 
To determine which of these subgroups are isotropy 

subgroups, one would first calculate the subduction frequen­
cies for the maximal subgroups ~I and ~5 [note that 
i(~Il = i(~2)] and compare them with i(@) = 0: then one 
would calculate i(~3) and compare it with i(~5) if ~5 is an 
isotropy group or with i(@) if it is not. Finally, ~ is the iso­
tropy group by a general theorem. 
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APPENDIX: GROUP ACTION AND ISOTROPY GROUPS 

In this appendix we outline the basic concepts concern­
ing group action and isotropy subgroups which are assumed 
in Sec. III of the paper. 

Let G be a countable group (e.g., a space group) and let 
R be a homomorphism of G into a group of unitary matrices 
which act on a vector space V 

'ilgEG, R:g~R(g), 'ilVEV, g·v = R(g)v, (AI) 

where R(g) is the unitary matrix representingg. Usually R is 
said to be a representation of G; the matrix group 
R(G) = I R(g): gEG J, the image of Gunder R, is also often 
called the representation. We recall that the set 
K = IgEG: R(g) = 1 J, where 1 is the identity matrix in R(G), 
is a normal subgroup ofG, K<)G, called the kernel ofR. The 
image R(G) is isomorphic to the quotient group G /K. 
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Throughout this appendix we will assume that R is a given 
representation. 

Although the following definitions refer to the G-action 
defined by Eq. (A I) they may be readily extended to a more 
general group action. 16 

Definition A.I: L..; G is the isotropy group (stabilizer, lit­
tle group) of VE V iff L is the largest subgroup of G such that 
VgEL,g-v = v. We will writeL = L (v). Similarly, we say that 
L..;GisanisotropysubgroupofGiff3vEVsuch thatL = L (v). 

The maximal isotropy subgroup of G is, trivially, G it­
self. A reader should be warned that the term "maximal" is 
used in the physical literature for a maximal isotropy strict 
subgroup of G. 

DefinitionA.2: N..;Gis the normalizer of V'..; Vin Giff N 
is the largest subgroup of G such that VgEN and VVEV', 
g'VEV'. We will write N = N(V'). 

DefinitionA.3: C..;Gis the centralizer of V'..; Vin GiffC 
is the largest subgroup of G such that VgEC and VVEV, 
g·v = v. WewillwriteC = C(V'). Similarly, wesaythatC..;G 
is a centralizer in G iff 3 V'..; V such that C = C (V'). 

The following proposition is an immediate consequence 
of the above definitions. 

Proposition A.I: 
(i) Every centralizer contains K which is the minimal 

centralizer in G. 
(ii) G is the maximal centralizer. 
(iii) For every subspace V'..; V, 

N(V');;;.C(V') = n L (v), 
VEV' 

(A2) 

and, hence, 

L (v);;;.C(V'), VVEV'. (A3) 

Definition A.4: The G-orbit through VE V is the set 
(g·v: gEG J..; V. Clearly, the G-orbit through v is also the G­
orbit through any of its points. Furthermore, points in the 
orbit are in one-to-one correspondence with the set G /L (v), 
the set of left cosets of L (v) in G. Sometimes, e.g., when 
L (v) = K, we will use the same notation for the set of corre­
sponding coset representatives. 

Since points on a G-orbit have conjugate isotropy 
groups, L (g.v) = gL (V)g-I, the following is clear. 

Proposition A.2: Isotropy subgroups of G fall into equiv­
alence classes under conjugation in G. 

Definition A.5: Let L be any subgroup of G. Fix L is the 
largest vector subspace of V such that C (Fix L );;;'L. 

The following proposition is an immediate consequence 
of the definitions. 

Proposition A.3: Let Land L ' be subgroups of G. 
(i) If L <L' then Fix L;;;.Fix L '; conversely, if Fix L 

>FixL' thenL<L'. 
(ii) C (Fix L ) = L if and only if L is a centralizer in G. 
(iii) For every V'..; V, Fix C(V');;;'V'. 
(iv)FixL = (VEV:L (v);;;'L = uL ',whereL 'E/(G),L ';;;.L, 

and I (G) is the set of isotropy subgroups of G. J 
The dimensionality of Fix L, ilL ) = dim Fix L, called 

the subduction frequency of L, is the number of times the 
trivial, identity representation occurs in the restriction of R 
to L. For example, i(K) = dim V. In the case R(L ) is finite, 
that is LnK is of finite index in L, ilL ) can be calculated using 
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the orthogonality relations for the characters of a finite 
group: 

I 
L ,-I i(L)= - L TrR(g). 

LnK selL /(£r>K)1 

(A4) 

We emphasize that the following theorem holds for 
continuous as well as countable groups. 

Theorem A.I: A subgroup L of G is a centralizer in G if 
and only if there exists no subgroup L ' such that L < L ' < G 
and ilL ') = ilL ). 

Proof LetL be a centralizerin G. ThenL = C (Fix L ) by 
Proposition A.3 (ii). Let L '..;G be such that L ' > Land 
ilL ') = ilL ). By Proposition A.3 (i) Fix L '..;Fix L and since 
both Fix L ' and Fix L are vector subspaces of V, ilL ') = ilL ) 
implies Fix L ' = Fix L. Furthermore, by the definition and 
Proposition A.3 (ii), C(Fix L ');;;.L '. Consequently, L;;;'L' 
which is a contradiction. To prove the second part of the 
theorem, assume that ilL ') < ilL ) for every subgroup L ' of G 
such that L ' > L. Therefore, C (Fix L ) is either equal to L, in 
which case L is a centralizer by Proposition A.3 (ii), or it is 
equal to such an L '. In the latter case ilL ') < ilL ) implies 
Fix L ' < Fix LcontradictingFix C (Fix L );;;'Fix L whichfol­
lows from Proposition A.3 (iii). Q.E.D. 

The following theorem, which is only true for countable 
groups, will facilitate the use of the previous theorem to cal­
culate isotropy groups. 

Theorem A.2: Every isotropy subgroup of G is a centra­
lizer in G and, conversely, every centralizer in G is an iso­
tropy subgroup of G. 

Proof Let L be an isotropy subgroup of G. It follows 
immediately from Proposition A.I (iii) and the Definition 
A. 5 that C (Fix L ) = L, which proves that L is a centralizer. 
Let L be a centralizer in G such that the set of isotropy sub­
groups L; of G which contain L, L; ;;;.L, is countable (this is 
always the case for a countable group G). By Proposition 
A.3 (iv), we have Fix L = u; Fix L;, A countable union of 
vector subspaces (e.g., u; Fix L;) is a vector subspace (e.g., 
Fix L ) if and only if one of the subspaces in the union (e.g., 
Fix L o, LoE( L;}) contains all the others. Thus, Fix L 
= Fix Lo which implies by Proposition A.3 (ii) that L = Lo. 

Hence, we proved that L is an isotropy subgroup of 
G. Q.E.D. 

The most important result for calculating isotropy sub­
groups of a countable group G is the following immediate 
corollary to Theorems A.I and A.2. 

Corollary A.I: 
(i) A subgroup L of G is an isotropy subgroup of G if and 

only if there exists no subgroup L ' such that L < L '..; G and 
ilL ') = ilL ). 

(ii) Let L < L ' ..; G. Then ilL ) = ilL ') ifand only if there 
exist no isotropy subgroups L " of G such that L<.L II < L '. 

A general strategy for determining all of the isotropy 
subgroups of G is then to systematically calculate ilL ) for all 
subgroups L of G such that L;;;.K and then to apply the above 
corollary. 

Ajustification of our restriction to irreducible represen­
tations in the main text is based on the following lemma. 

Lemma A.I: IfR is reducible, R = E9 R;, then L is an R­
isotropy subgroup of G if and only if L = nLo where each L; 
is an R; -isotropy subgroup of G. 
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The proof follows immediately from the observation 
that irreducible subspaces V; corresponding to Ri' 
V = Ell Vi' are G-invariant subspaces. 

Finally, although we do not use the following lemma in 
this paper, we prove it here since it turns out to be very useful 
in practical calculations of isotropy subgroups.6 

LemmaA.21
; IfLandL' are centralizers in G thenLnL' 

isalsoacentralizerandi(LnL '»i(L ) + ilL ') - j(LL '), where 
LL' is the group generated by Land L '. 

Proof Let v' ;;;; Vbe the subspace generated by Fix Land 
Fix L '.ClearlyVvEV', VgeLnL ',g'v = v.ThusC(V'»LnL '. 
On the other hand C(V') = nV€v·L (v);;;;LnL '. Therefore, 
C(V') = LnL' andLnL 'isacentralizerinGor,equivalently, 
by Lemma 2.1, an isotropy subgroup of G. Furthermore, 
V' = V" Ell V~ Ell V~., where V" = Fix LnFixL' and V~ 

and V ~, are orthogonal complements of V" in Fix Land 
Fix L " respectively. Clearly dim V' = i(L) + j(L ') 
- dim V". On the other hand C (V" »LL ' and by construc­

tion, Fix(LL ') = Fix LnFix L' implies dim V" = i(LL '). 
Finally, using a general relation Fix C(V'» V' we arrive at 
j(LnL '»i(L ) + ilL ') - i(LL '). Q.E.D. 
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A system of n first-order nonlinear ordinary differential equations i(t) = f(x,t ) is said to admit a 
superposition principle if its general solution can be written as a function of a finite number m of 
particular solutions and n constants. Such a system can be associated with the nonlinear action of 
a Lie group G on a space M. We show that "indecomposable" systems of ODE's with 
supersposition principles are obtained if and only if the Lie algebras Lo C L, corresponding to the 
isotropy group H of a point and the group G, respectively, define a transitive primitive filtered Lie 
algebra (L,Lo). Using known results from the theory of transitive primitive Lie algebras we deduce 
that Lo must be a maximal subalgebra of L and that G must be an affine group, a simple Lie group, 
or the direct product of two identical simple Lie groups. Affine groups lead to linear equations, the 
other types to nonlinear equations with polynomial or rational nonlinearities. Equations 
corresponding to the classical complex Lie algebras are worked out in detail. 

PACS numbers: 02.20. + b, 02.40. + m, 1LlO.Lm, 11.30.Na 

I. INTRODUCTION 

Certain nonlinear partial differential equations display 
the interesting property that new solutions can be obtained 
by a nonlinear superposition of specific known solutions (so­
liton superposition laws). I This property has been related to 
the matrix Riccati form of the soliton generating Backlund 
transformations. 2 A related property of certain ordinary dif­
ferential equations, including all matrix Riccati equations, is 
the existence of nonlinear superposition principles, i.e., the 
possibility of expressing the general solution as a function of 
a finite number of particular solutions (a "fundamental set of 
solutions"). The question of characterizing systems of 
ODE's that admit nonlinear superposition principles was 
raised and solved by Lie.3 

More specifically, we shall say that the vector ODE 

dx = f(x,t), x(t ),f(x,t )ER" (Ll) 
dt 

admits a nonlinear superposition principle if there exist m 
"generic" particular solutions XI""'Xm and a function 

S:R"(m + I)~R" 

such that the general solution to (1.1) can be written as 

x(t) = S(xl(t ), ... ,xm(t ),a), (1.2) 

where a is a constant vector, related to the initial conditions. 
The expression (1.2) will be called a superposition formula 
and the set xl(t )"",xm (t) will be called a fundamental set of 
solutions. 

A recent series ofpublications4-7 has been devoted to a 
study of systems of first-order ODE's with quadratic nonlin­
earities that satisfy Lie's criterion. Thus, explicit superposi-

-) Current address: Department of Mathematics, Ben Gurion University, 
Beersheva, Israel, 84105. 

tion formulas were obtained for projective and conformal 
Riccati equations,4.s as well as for the general matrix Riccati 
equation.6 

The purpose of this paper is to provide a general classifi­
cation of nonlinear ODE's with superposition principles and 
to reduce the study of these equations to that of certain "ele­
mentary" or "indecomposable" systems of equations (see be­
low). 

If f is linear in x this is just the representation of a gen­
eral solution as the linear combination of n linearly indepen­
dent solutions and in this case generic means linearly inde­
pendent. Iff is independent of t and nonvanishing near alER" 
we can change coordinates on a neighborhood of a l so that f 
becomes f= (1,0, ... ,0) and the general solution to the trans­
formed equation is i(t) = il(t) + a - a l. Changing back to 
the original coordinates this becomes a nonlinear superposi­
tion with m = 1. Generic in this case means that the solution 
XI has a nowhere vanishing tangent vector. 

More generally for the nonlinear time-dependent sys­
tem a theorem of Lie3 gives necessary and sufficient condi­
tions for there to exist a nonlinear superposition principle. 
Consider f(x,t ) as defining a time-dependent vector field on 
lR" 

". a 
S(x,t)= If'(x,t)-;. 

;=1 ax (1.3) 

The vector fields S (x,to) evaluated at all possible to must gen­
erate a finite-dimensional subalgebra of the algebra of vector 
fields on R", i.e., there exist k vector fields SI(X),,,,,Sk(X) such 
that 

k 

s(x,t) = I aj(t)s;(x) (1.4) 
and 

;=1 

k 

[S;(X),Sj(xl] = I cJs/(x) 
/=1 

(1.5) 

for some constants c J. 
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When these conditions hold, there is a neighborhood of 
the identity in a k-dimensional Lie group G which is acting as 
a (local) transformation group on a neighborhood U of the 
initial values 110, which we assume to be the origin ofRn. The 
differential equation on Rn can then be solved for all initial 
values in U by finding the integral curve g(t) through the 
identity in G of a time-dependent vector field on G and com­
posing with the group action, which we write as (g,x)~gx or 
G X Rn ~Rn, although everything is only locally defined. 
The function S (x1, ... ,xm ,a) is a composition of two maps, the 
first determines the solution g(t) in the group from an m­

tuple of solutions in Rnand the second is a composition ofg(t ) 
with initial conditions x(O) = a 

1 Xi(t) = g(t )ai J~g(t )~g(t)a. (1.6) 

The integer m is the number of copies of Rn necessary to 
make the "generic" isotropy group of the action on (Rnt 
reduce to the identity. 

Lie's results reduce the problem of finding all systems of 
n first-order ODE's with superposition principles to that of 
classifying the finite subalgebras of the algebra of vector 
fields on Rn. They also make it possible to read off the equa­
tions directly from the expression for the fields and vice 
versa. Indeed, given the equations of the required form 

dx I' k 

-=Lai(t)S;(x), l<Jl<n (1.7) 
dt i~ 1 

we obtain the vector fields 

~ n a 
Si(X) = L S~(X) -. (1.8) 

v~ 1 axv 

Given the vector fields, we can write the equations as 

dx I' k ~ 
-= L ai(t)Si·XI' • (1.9) 

dt i~l 

In a different context, Lie himself classified all finite 
subalgebras of the algebra of vector fields on RI and R2.S 

For n = 1 only sl(2,H) and its subalgebras can be real­
ized, leading to the Riccati equation y = a + by + cy2, or 
linear equations, respectively. For n = 2 infinitely many dif­
ferent finite-dimensional Lie algebras can be realized. Two 
of them, namely those that in modern terms correspond to 
two-dimensional symmetric spaces [quotients ofsl(3,R) and 
0(3,1)] lead to coupled Riccati type equations. The equa­
tions corresponding to all other subalgebras (none of them 
simple) partially decouple. A Riccati or linear equation is 
obtained in one variable; once this equation is solved the 
remaining equation reduces to a linear or Riccati equation 
for one unknown function. 

In seeking a generalization of Lie's "decoupling" result 
and an understanding of a reduction procedure for the gen­
eral equation (in an) admitting a nonlinear superposition 
principle, one is led to the study of primitive transitive group 
actions. We claim that a general superposition law on R n can 
be derived from a knowledge of superposition laws for primi­
tive transitive group actions on R.9-15 Furthermore, we shall 
show that the "building blocks" for constructing nonlinear 
equations with superposition principles are obtained by con­
structing the vector fields, corresponding to the action of a 
group G on a homogeneous space G IH, where either G is a 
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simple Lie group and H a maximal subgroup of G, or 
G = K®K, H = KD , where Kis simple andKD is the diag­
onal K-type subgroup of K ® K. 

The nonlinear equations with superposition principles 
that we obtain are not necessarily of the Riccati type, i.e., the 
nonIinearities are not necessarily quadratic. The analysis 
does however bring out the prevalence of matrix Riccati 
equations in the theory. 

The approach taken in this article provides both the 
ODE's with superposition principles and the general form of 
the superposition formula in each case: this is given by the 
group action of G on G I H. 

In Sec. II we relate the problem ofODE's with superpo­
sition principles to the theory of primitive transitive Lie alge­
bras. In Sec. III we apply known results on such Lie algebras 
to construct the ODE's we are interested in. In this article we 
restrict ourselves to the classical complex simple Lie groups. 
The exceptional simple Lie groups and the real Lie groups 
will be treated elsewhere. 

II. SUPERPOSITION PRINCIPLES AND PRIMITIVE 
TRANSITIVE LIE ALGEBRAS 

Let us consider a Lie group G acting on a manifold M. 
The first restriction that we make is that the orbit structure 
of the group is regular, i.e., admits a stratification into sub­
manifolds of fixed orbit type. In fact we restrict our attention 
to the superposition of solutions, all of which take values in a 
stratum of one orbit type G I H. The superposition may be 
based on solutions x1, .... xm taking values in different orbits, 
but since they are all diffeomorphic to G IH, we will assume 
that all the Xi take values in the same orbit, which we identify 
with G I H and further, that H contains no normal subgroup 
of G. Thus, for the purpose of studying the superposition 
formulas we shall assume further that the group action is 
transitive and effective. 

Assume now that the open set UCRn is a coordinate 
neighborhoodofthebasepointxoinG IH. We say that Gacts 
primitively on G I H. if there is no invariant foliation. The 
group G acts locally primitively if there is no invariant folia­
tion of the open set U. A group G may act primitively, but 
not locally primitively, when there is a foliation on a cover­
ing of G I H, or in other words, if the local foliations do not fit 
together to a global foliation on G IH. Golubitskyl2 deals 
with this problem but it will not concern us here. 

We will show below that the action G fails to be locally 
primitive if and only if there exist coordinates (xl .... ,xn) such 
that dxidt for i = 1 ..... r is a function only of xl, ... ,x' and t 
(for some 0 < r < n). The group G acts primitively if and only 
if there does not exist a subgroup K such that 

HCKCG, dimH <dimK <dim G. (2.1) 

The group G acts locally primitively if and only if there does 
not exist an algebra k between the algebras hand g: h C k Cg, 
h =j=k =j=g. 

If G does not act locally primitively. then there is an 
invariant foliation on U and projecting along the leaves of 
the foliation onto the quotient space. we can define a local 
action of G on a lower-dimensional manifold. 
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If there exists a subgroup K satisfying (2.1) we can iden­
tify the quotient space given by projecting along the leaves 
with a neighborhood of the base point in G I K. We can deter­
mine the curve g(t) in G from solutions (that is integral 
curves) of the projected vector fields on G I K, if G acts effec­
tively on G I K. This is true whenever K does not contain a 
normal subgroup of G. The local condition is that k does not 
contain an ideal of g. If K is chosen to be maximal (or k is 
maximal), then the action is primitive (or locally primitive). 12 
If K contains no normal subgroup of G (or k contains no ideal 
of g) the superposition formula for G I H can be constructed 
from solutions on G IK. 

For simplicity of notation we assume that we are deal­
ing with the global problem, i.e., on the level of the group, as 
opposed to the algebra, and the group action is on G I H. 

If, on the other hand, K does contain a normal subgroup 
of G, then denote the largest such normal subgroup N. The 
action of G on G I K is not effective and the superposition law 
on G I H cannot be derived from one on G I K without further 
data. We will describe how to find thecurveg(t lin G from the 
curvegl(t) determined by the action on G IK, and a second 
curve n(t ) given by an equation on a homogeneous space N I 
NnH. Let J C L be the ideal in L corresponding to the normal 
subgroup N. The right invariant vector field t, EL defines an 
element of L I J, which we denote tJ J. The Lie algebra of G I 
N can be identified withL IJ. Letgl(t) project to the solution 
in G IN, that is (dgl/dt )gl- I = tJJ. To find the full solution 
in Gwe must find a curve n(t) in Nsuch thatg(t) = gl(t )n(t) 
solves (dgl dt )g - I = t,. This is equivalent to the equation 

dgl -I dn -I -I k -gl +gl-n gl =!>,. 
dt dt 

We have t,(dgl/dt )gl- IE J so we must solve the differential 
equation 

dn(t) .n-I(t) = gl- I(t) (t, _ dgl(t ).gl-I(t)) gl(t) . 
dt dt 

(2.2) 

This is equivalent to studying the differential equation along 
the leaf Lo of the invariant foliation through the base point 
given by the time-dependent vector field gl(t )-I·(S, - Sit), 
where Sit is the vector field on G I H generated by differenti­
ating the action of g I (t ). The leaf Lo is diffeomorphic to K I H 
and we are studying the action of N. As before we can reduce 
first to the transitive case by picking an orbit of N such as 
Nxo = N I NnH and then reducing to the primitive case if 
NnH or the appropriate isotropy group is not maximal. Since 
dim K I H < n this process will end after at most n steps. 

For the purpose of linking up with the treatment in 
Refs. 3-7 we will discuss this reduction at the level of vector 
fields. Let 

generate a Lie algebra L. Consider the subalgebra 

Lo(xo) = [S IsCL, s(Xo) = Ol (2.4) 

(vector fields vanishing at the origin). Transitivity of the 
group action on RN near Xo is equivalent to dim(L I 
Lo(xo)) = n. If there is a more complicated orbit structure, 
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thend (xo) = dim(L ILo(Xo)) takes values between 0 and n. Let 
Vk be the subset of R, where d (xo) = k and assume Vk is a 
manifold for each k (some Vk may be empty). On Vk the 
vector fields in L form an integrable distribution, foliating 
Vk into submanifolds of dimension k. If R is a leaf of the 
foliation the solutions to the differential equation with initial 
data on R remain on R. By restricting attention to R we are 
carrying out the same reduction as restricting to one orbit of 
the group action. If the orbit is of maximal dimension then 
all nearby orbits are equivalent as homogeneous spaces and 
the restriction to one orbit is justified. On lower-dimensional 
orbits whose neighboring orbits are of different orbit type, 
the situation is not so clear. 

We will assume that we have made the reduction and 
that we are looking at a submanifold R of RN of dimension 
equal to dim(L ILo(x)) for all xER. By changing to adapted 
coordinates we identify R with Rk canonically imbedded in 
RN; to simplify the notation set k = n. Thus we have an alge­
bra of vector fields on RN such that the dimension of the 
subspace spanned by evaluation of the vector fields at xERN, 
[s(x)lsEL l isn for all x. 

The action is called locally primitive if there does not 
exist an invariant foliation defined on a neighborhood U of a 
base pointxo, that is a set of k functions on U [ il, ... ,jk l with 
[d/;x l linearly independent for all XEU such that for any 
sEL Sf: = h;(fl""!k) for some h; depending on S. If such 
[ /; l do exist we can assume they are the first k functions of a 
coordinate chart yl , ... ,yk and we label the remaining coordi­
nates Zk + 1, ... ,ZN. The vector fields in L have the form 

k . J . J 
x=(y,z), s;(x) = I af(y)-. + Ibf(Y,z)-.. 

i~ I Jyl JZl 

The differential equations 

dx I· - = a'(t )s(x).x 
dt ' 

(2.5) 

(2.6) 

can be solved for y independently of z to give y(t) = g(t ). Yo' 
The solution y(t) can then be substituted into the full equa­
tions so that 

dz i ~. . 
- = L a'(t )b f(g(t ) yo,z) . 
dt ; 

(2.7) 

These equations will only be of the form that admits a super­
position principle if we have 

(2.8) 

In other words, the z components of the vector fields s; eval­
uated at different values of y must form a finite-dimensional 
Lie algebra. 

As an example consider the three-dimensional (decom­
posable) Lie algebra given by vector fields on R + X R: 

Sl = y JJ - z a
J

, S2 =..!.. aJ , S3 = eYZ a
J

. (2.9) 
:y z y Z 'Z 

Even though the original algebra is three-dimensional, the z 
components generate an 00 -dimensional algebra. Therefore, 
the equations for z given by substituting the solution y(t) do 
not admit a superposition law. It is, however, possible to 
modify the equations for z in such a manner that a superposi-
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tion formula does exist for the modified equations and that 
these together with the equations for yare equivalent to the 
original system. The vector fields s;EL for which s;' y = 0 
form an ideal J in L and the problem can be reduced to one 
which involves only this ideal. To do this, first solve for the 
superposition law in y-space, that is determine a curve g I (t ) 
in the group such that for any Yo, gl(t lYo = y(t) solves the 
equation in y: 

t = Ia;(t)s;·y· 

Now let g I (t ) act on (y,z) space: 

gl(t)xo =gl(t)(yo,zo) = (y(t),z(t)). 

Then 

with 

d
gl.xo = I bitt )s;(g(t ),xo) , 
dt 

[I a;(t )s;(g(t )xo) - I bitt )s;(g(t )xo)] y = 0 . 

Therefore, 

I (a;(t) - b;(t)) S;E J. 

If J = 0 then l:(a;(t) - bitt ))s; = 0 which implies 
a;(t )=b;(t) by linear independence of s; and the solution to 
the superposition law on y space solves the superposition 
law on x-space. Otherwise we must solve the equation 

~: =gl(t)-I. (I (a;(t) - b;(t))s;(gl(t)z)z) 

for a function z(t). The solution to our original system is 

(y(t ),z(t )) = g I(t H yo,z(t )) 

(g. denotes the derivative action of G). The solution z(t) is 
described by a superposition law based on the action of the 
group corresponding to the ideal J. 

The proposition stated below summarizes these results. 
Proposition: Given a differential equation on Rn which 

has a superposition law there is an associated finite-dimen­
sional Lie subalgebra of the algebra of vector fields 
L = (s; Ii = 1, ... ,p 1 such that the equation can be written 

dx dt = I a;(t )S;(x).x . 

Let Gbe a (local) Lie group with algebraL acting on a neigh­
borhood U of the origin in Rn. If the orbit structure is regular 
(admits a stratification into submanifolds) and if we consider 
only those superposition laws based on r solutions 
xl(t ), ... ,x,(t) which lie in orbits of the same type then the 
most general such superposition law can be derived from a 
knowledge of superposition laws for equations arising from 
transitive primitive group actions. D 

For primitive group actions our primary reference is the 
paper by Golubitsky.12 He studies the globally primitive 
group actions and notes that the maximality of the isotropy 
algebraLo is sufficient, but not necessary. For locally primi­
tive actions the maximality of Lo is necessary. 

Proposition: There is no invariant foliation of any neigh­
borhood U of Xo if and only if Lo is maximal. 
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Proof Suppose there exists an invariant foliation of 
some neighborhood U and let Fx be the leaf through Xo' The 

:9 
condition that the vector field S on U generated by an ele-
ment sEg be tangent to Fxo defines a subalgebra of L properly 
containing Lo. The closure under brackets is trivial and the 
fact that it properly contains Lo is a consequence of the in­
variance of the foliation and transitivity. Conversely suppose 
Lo is not maximal. Let K be a proper subalgebra of g properly 
containing Lo, L -::JK-::JLo, L =/;K =/;Lo. Define 

D (gxo) = {.:{ g(exp t1])'xo I 1]EK } -::J Tgx M. 
dt " 

D (gxo) is well defined for all g in a sufficiently small neigh­
borhood N of the identity in G such that the intersection of N 
with the isotropy group is connected. This definition pro­
vides a G invariant integrable distribution, hence an invar­
iant foliation of codimension equal to the codimension of K 
inL. 

III. CLASSIFICATION OF PRIMITIVE TRANSITIVE 
CLASSICAL LIE ALGEBRAS AND OF THE SYSTEMS OF 
ODE'S WITH SUPERPOSITION PRINCIPLES 

We have shown in the previous section that "indecom­
posable" systems of ordinary differential equations with su­
perposition principles are obtained by constructing the vec­
tor fields s (x) corresponding to the infinitesimal transitive 
action of a group G on a homogeneous space G IH, where 
H C G is a maximal subgroup of G. 

Let us now look at the corresponding pair of Lie alge­
bras (L,Lo)' and reproduce some definitions from various 
authors. 

Definition 1: The pair (L,Lo) defines a transitive primi­
tive Lie algebra if (1) Lo does not contain a nonzero ideal of L; 
(2) Lo is maximal in L. 

Definition 2: The transitive primitive Lie algebra (L,Lo) 
is nonlinear if there exists a nonzero subalgebra LI CLo de­
fined by 

LI = (sELol [s,L ] I ~Lol· 
Definition 3: The transitive primitive nonlinear Lie al­

gebra (L,Lo) is irreducible if no subspace M C L exists such 
that [Lo,M] c;;,M, M =/;L, M =/;Lo. 

According to the arguments of Sec. II we are now in the 
situation of having a transitive primitive Lie algebra (L,Lo), 
where L is some finite-dimensional Lie algebra realized by 
vector fields and 

Lo = (s(x)EL Is(Xo) = 01 ' 
i.e., Lo is the subalgebra of fields vanishing at the origin Xo· 

We can now make use of the classification of primitive 
transitive finite Lie algebras due to Kobayashi and Na­
gano,14.15 Ochiai,l1 and Golubitskyl2 to obtain a classifica­
tion of systems of ODE's with superposition principles. 

Theorem 1: (See Golubitsky.12) Assume L is not simple. 
Then either 

(1) L is not semisimple and there is an abelian comple­
ment V to Lo on which Lo acts faithfully and irreducibly. 
This is the case of an affine group. 

(2) L is semisimple. In this case there exists a simple Lie 
algebra K such that L = K $ K and Lo is the diagonally im­
bedded subalgebra (isomorphic to K). D 
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In case (1) the Lie algebra L is either atI(n,q or one of its 
subalgebras. The vector fields in natural coordinates are giv­
en by combinations of 

(3.1) 

The equations are linear, for atI(n,q we have Lo-gl(n,q 
and the superposition formula is the linear one involving n 
linearly independent solutions. For other affine algebras 
more economical nonlinear superposition formulas (involv­
ing less than n solutions) may exist. 

In case (2) if we choose K as a simple classical Lie alge­
bra, the homogeneous space G / H is a surface in a Grass­
mann manifold of n-planes in C2n

• The semisimple group Gis 
a subgroup of a larger simple group acting on the Grassman­
nian. Let us consider each of the complex classical Lie alge­
bras separately. 

(a) K = sl(n,q. Consider first the action of a larger 
group, SL(2n,q on the Grassmannian Gn (C

2
n) of complex n­

planes in C2n
• Introduce homogeneous coordinates, namely 

the matrix elements of two complex matrices XEcn xn, 
YEcn Xn . The rank of(~) is n and two pairs of such matrices 
X, Y) and (X, Y) characterize the same point in G n (C2n) if they 
satisfy 

S = (~ = (~;j, goEGL(n,q. (3.2) 

The action of SL(2n,q on the homogeneous coordinates is 
linear, 

G12) G ' det g = 1. (3.3) 
22 I 

The isotropy group of the origin (~) is given by the constraint 
Gil + G12 = G21 + G22• We also introduce affine coordi­
nates on Gn (C2n

), putting 

W Xy- I if det Y #0. (3.4) 

The action of SL(2n,q is now a matrix fractional linear one 

W' = (Gil W + Gd(G21 W + Gnl- I 
. (3.5) 

Restricting to the group SL(n,q ® SL(n,q under considera­
tion, we put 

G12 = 0 , G21 = 0, det Gil = det G22 = 1 (3.6) 

and the action (3.5) reduces to 

W' = G II WG22 -I. 

In view of(3.7) we have 

det W' = det W. 

(3.7) 

In order to have a transitive action we must choose a fixed 
value of the determinant; we put 

det W = 1 . (3.8) 
Instead of writing out the sl(n,q aJ sl(n,q vector fields we 
shall just give the corresponding ODE's. In homogeneous 
coordinates they are 

(Xl (C 0) (X\ X,Y,C,BEcnxn 
Y) = 0 - B Y}' Tr C = Tr B = 0, 

and in affine coordinates, using (3.4) we obtain 

W= WB+CW, TrB=TrC=O. 

(3.9) 

(3.10) 

We thus obtain a system of nZlinear equations, subject to the 
nonlinear constraint (3.8). Using (3.8) to eliminate one of the 
variables, say the matrix element W nn , we obtain a system of 
n2 

- 1 nonlinear ODE's with rational nonlinearities. In­
deed, we have 

(3.11) 

where Yik is the subdeterminant of W corresponding to the matrix element W ik • Equations (3.10) reduce to 
n 

Wab = L (Waa Bab + CaaWab' l<a,b<n - 1 , 
a=1 

n-l n 1+(-1)n(WlnYln-W2nY2n+ ... +(-ltwn_lnYn_ln) 
Wnb = L Wna Bab + L CnaWab +Bnb ------'-'--------=----'-------------

a= I a = I Ynn 

In the special case ofn = 2 Eq. (3.10) can be transformed into 
Riccati type equations. Indeed, then (3.11) reduces to 

W22 = (1 + W12W21 )/W II (for WII #0) 

Introducing new coordinates 

x = l/w lI , Y = W12/W II , Z = W21/W II , 

we reduce (3.12) for n = 2 to 

3159 

x = - (b ll + clI)x - x(b21 Y + cI:zZ) , 

y = bl2 - 2b ll y + c12x
2 

- b21 y 2 , 

Z = C21 - 2cllz + bzlx
2 

- CI~ • 
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(3.13) 

(3.14) 

(3.15) 

(3.12) 

(b) K = o(n,q. Consider again the action of a larger 
group, namely O(2n,q on the Grassmannian G ~ (C2n

) of iso­
tropic (with respect to the orthogonal metric) n-planes in c2n. 

Introduce homogeneous coordinates as in (3.2) and impose 
the isotropy condition 

S TKS = 0, K = (~ _ ~) 
for all SEG~(C2n), 

XTX_ yTy=O. 

(3.16) 

(3.17) 

This implies, together with the rank condition on (X, Y), that 
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det X #- 0, det Y#-O and we can hence globally introduce the 
affine coordinates (3.4). The group O(2n,q acts as in (3.5) 
and the group element g satisfies 

gKgT = K. (3.18) 

The O(n,q ® O(n,q subgroup is subject to (3.6) with 

G;I Gll = I, GJzG22 = I. (3.19) 

The ODE's corresponding to the infinitesimal action of 
O(n,q ® O(n,q can again be written in the form (3.9) with 

C + C T = 0, B + B T = O. (3.20) 

In affine coordinates we again obtain the linear equations 
(3.10), satisfying (3.20). The isotropy condition (3.17) implies 
that W satisfies the quadratic constraint 

WW T = WTW=I. (3.21) 

The constraint can be solved by means of the Cayley trans­
form 

W= (I + V)(I - V)-I, V= (W -I)(W +1)-1, 
(3.22) 

where (3.21) implies 

V= - V T 

and (3.10) is tranformed into 

v= B+C + V B - C _ B-C V- V B + C V. 
2 2 2 2 

(3.23) 

This is a special case of the O(2n,q Riccati equation to be 
discussed below. 

(c) K = sp(2n,q. Consider the transitive action of 
Sp(4n,q on the Grassmannian of symplecticly isotropic 2n­
planes G ~n (C4n

). Introduce homogeneous coordinates as in 
(3.2) and impose the symplectic isotropy condition 

T- - (Ko 0 ) s KS = 0 , K = 0 _ K ' (3.24) 

where KoEC2n x 2n is an antisymmetric nondegenerate matrix, 

i.e., X TKoX _ Y TKOY = 0 , X, YEc2nx2n • (3.25) 

Similar to the case of K = o(n,q we obtain, in affine coordi­
nates (3.4), the linear equations (3.10) with a quadratic con­
straint: 

WKOWT = Ko (3.26) 

and Band C satisfying 

CKo + KoC T = 0, BKo + KoB T = 0 . (3.27) 

Removing the constraint by the transform (3.22), we obtain a 
special case of the Sp(4n,q matrix Riccati equation, namely 
Eq. (3.23) with Band C satisfying (3.27) and V satisfying 

V TKo + KoV = 0 . (3.28) 

To summarize: The linear transitive primitive Lie alge­
bras are charcterized in Theorem 1, they lead to linear 
ODE's in case (1), to linear ODE's with polynomial con­
straints in case (2). Removing the constraints we obtain non­
linear equations. For K = o(n,q, sp(2n,q, or sl(2,q the con­
straints are quadratic and we obtain coupled Riccati 
equations. For sl(n,q with n:>3 the nth-order constraint 
leads to equations with rational nonlinearities. 
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Theorem 2: If L is simple and the action of Lo on L 1 Lo is 
irreducible then either (1) Lo acts faithfully and is thus a 
maximal reductive subalgebra; or (2) Lo does not act faithful­
ly, then we have the class of algebras called "nonlinear 
primitive irreducible transitive Lie algebras" by Ochiai. II 
They can be written as a sum 

L = g-I -+ gO -+ gl, [g',gj] Cgi+j, 

g' = 0, i:>2, i< - 2 , (3.29) 

and the subalgebra Lo = gO -+ gl is a maximal parabolic sub­
algebra. 0 

Proof (1) If Lo has a faithful irreducible representation 
it is a reductive Lie algebra. 16 It is maximal since the pair 
(L,Lo) defines a primitive transitive Lie algebra. 

(2) If Lo does not act faithfully on L 1 L o, then there exists 
a nonzero element SELo such that S acts as zero on L 1 Lo. 
Then xEL I #- 0, so the algebra is nonlinear in the Kobayashi­
Nagano--Ochiai sense (see Definition 2 above). Byassump­
tion Lo acts irreducibly (so M = L in Definition 3). The con­
clusion (3.29) and the fact that Lo is parabolic is proven in 
Ref. 14. 

Theorem 3: (See Veisfeiler13 and Golubitsky.12) If L is 
simple and the action of Lo on L ILo has a nontrivial invar­
iant subspace, then L can be written as 

L =g-k -+g-k+ 1-+ ... -+go -+gl -+ ... -+~ 
with g' = 0 for i < - k or i> k and [g',gj] Cg' + j, where 

Lo =+g'. 
1>0 

Hence, Lo does not act faithfully on L 1 Lo and L is non­
linear primitive in the sense ofOchiai. Once againLo is para­
bolic. 0 

Let us now relate these two theorems to the problem of 
ODE's with superposition principles. 

Case (1) of Theorem 2 can be divided into two subcases. 
The maximal reductive subalgebra Lo can be imbedded into 
the simple algebra L reducibly (leaving a nontrivial subspace 
in the considered representation space invariant), or irredu­
cibly. 

Let us first consider reducibly imbedded subalgebras 
LoCL and the corresponding ODE's with superposition 
principles. 

(a) L = sl(n,q. Case (1) does not occur since a maxi­
mal subalgebra LoCsl(n,q leaving a k-dimensional vector 
space invariant (1 <k<n - 1) will be parabolic (will contain 
the Borel subalgebra, i.e., the maximal solvable subalgebra). 
A complex parabolic subalgebra will always contain a nilpo­
tent ideal and can hence not be reductive. 

(b) L = o(n,q. A maximal reductive subalgebra is ob­
tained if we require that Lo leave invariant a q-dimensional 
nondegenerate subspace (spanned by q nonisotropic mutual­
ly orthogonal vectors). We put 

n=p+q, n-l:>p:>q:>l, 

and obtain 

Lo = o( p,q E9 o(q,q . 

Let us now make use of the imbedding 

SOt p + q,ql Sot p,q ® SO(q,q 

-SLIp + q,ql Aff(p,q,q, 
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where we denote Aft'(p,q,q the group of block triangular 
matrices 

0) G E tf'PXP G Etf'qxq G ECqXP 
II '-' , 22 '-' ,21 , 

G22 ' det GIl·det G22 = 1 . 
(3.32) 

We realize an element of the algebra slIp + q,q as 

s=( C 
-D 

A) CECPXP, BECqXq, AECpxq, 

- B ' DEO xP , Tr C = Tr B , 
(3.33) 

and let SL( p + q,q act on the Grassmannian of q-planes in 
CPH:Gq(CP + q)-SL(p + q,ql Aft'( p,q,q. Introducing af­
fine coordinates Was in (3.4) we can write the ODE's corre­
sponding to the SLIp + q,C) infinitesimal action as 

W = A + WB + CW + WDW, WECPXq, (3.34) 

A,B,C,D as in (3.33). 
We restrict to o(p + q,q, p + q = n, by imposing 

SK+KST=O, K=(~ _OIJ (3.35) 

and obtain a special case of the rectangular matrix Riccati 
equation (MRE): 

W = A + WB + CW - WA TW, 

(3.36) 

Note that the action ofO(n,q is not transitive. In homogen­
eous coordinates we have 

(3.37) 

The O(n,q orbit of maximal dimension is given by the condi­
tion rank (XTX - yTY) = n, which can be represented by 
(~) satisfying 

XTX - yTY=I. (3.38) 

This imposes no symmetry condition on W = Xy - I. As the 
origin we can choose (X, Y) = (O,iI), i.e., W = 0. The isotropy 
group of the origin is O(p,q ® O(q,q, as it should be. 

If we request that a maximal subalgebra LoCo(n,q 
leave a degenerate space invariant (containing 1 or more iso­
tropic vectors in an orthogonal basis) then Lo will be a maxi­
mal parabolic subalgebra and these are treated below. 

(c) L = sp(2n,q. The situation is very similar to that 
of o(n,q. The only way to obtain a reducibly imbedded maxi­
mal reductive subalgebra is to require that LoCL leave in­
variant a 2q-dimensional nondegenerate vector space. We 
then obtain 

Lo = sp(2p,q ffi sp(2q,q, p + q = n . (3.39) 

To realize the algebra in terms of vector fields and to obtain 
the corresponding equations, we again imbed Lo into 
sl(2p + 2q,q and use the imbedding 

Sp(2p + 2q,q/Sp(2p,q ® Sp(2q,q 

- SL(2p + 2q,ql Aft'(2p,2q,C) . (3.40) 

Letting SL(2p + 2q,q act on the Grassmannian G2q (C2P + 2q) 
we again obtain the Eqs. (3.34) [replacing (p,q) by (2p,2q)]. 
Restricting to sp(2p + 2q,q we impose 
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(3.41) 

and obtain a special case of the rectangular matrix Riccati 
equation 

W = A + WB + CW + WK2q A TK2P W, 

CK2P +K2p C T = 0, 

BK2q + K2qB T = ° , WEC2p X2q. (3.42) 

This completes the treatment of all ODE's correspond­
ing to reducibly imbedded maximal reductive subalgebras of 
the complex classical Lie algebras. We always obtain special 
cases of matrix Riccati equations. 

The case of irreducibly imbedded reductive subalgebras 
of the classical Lie algebras is less uniform and more difficult 
to treat from the point of view of the obtained differential 
equations. The corresponding group-subgroup classifica­
tion has been given by Dynkin. 17

,18 The homogeneous spaces 
G I H obtained in this case include symmetric spaces, but also 
other classes of spaces, in particular, the isotropy irreducible 
homogeneous spaces studied by Wolf. 19 

We shall here restrict ourselves to two examples and 
postpone a detailed treatment for a future article. 

(a) SL(2n,q/Sp(2n,q. Kobayashi and Nagano l5 have 
established the diffeomorphism U(2n)/Sp(2n)-SO*(4n)/P, 
where P is a maximal parabolic subgroup ofSO*(4n) [No.5 
in their list, which however contains a misprint: SU*(4n) 
instead of SO*(4n)]. We complexify this relationship and 
first extend SL(2n,q to GL(2n,q, then realize it as a sub­
group ofSO(4n,q. 

Realize O(4n,q as the algebra of matrices 

(A B) T 
S = CD' SK + KS = ° , 
K- (

0 

I 2n 
I2n) 

° ' (3.43) 

i.e., D = - A T, C = - C T, B = - B T, and construct the 
Grassmannian of null planes G ~n (C4 n). Take 

(0 = e), X,YEc2nx2n (3.44) 

to be the homogeneous coordinates of the origin. The subal­
gebra of O(4n,q leaving the origin invariant is the maximal 
parabolic subalgebra P. We identify gl(2n,Q with the subal­
gebra 

p(A) = (~ 

J= 

° -1 

AJ+JA
T

) 
_AT ' 

1 

o 

o 
-1 

(3.45) 

The subalgebra of gl(2n,Q leaving the origin invariant is 
gl(2n,ClnP; it is represented by matrices pIA ) satisfying 
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AJ+JA T =0, 

i.e., it is isomorphic to sp(2n,q, as required. 
The action of the group GL(2n,C) on the origin is given 

by 

(3.46) 

with 

X=gJgT -J, X T = _XCc2nx2n. (3.47) 

Restricting to SL(2n,q we have det g = 1. The orbit of the 
origin under SL(2n,q is thus given by 

(J' X+X T=O,det(X+J)=I. (3.48) 

Realizing 0(4n,q on G~n(c4n) in affine coordinates and re­
stricting to sl(2n,q as in (3.45) we obtain a system of linear 
inhomogeneous ODE's: 

W=AJ +JA T +AW + WA T, WEc2nx2n, 

W+ WT=O 

with the polynomial constraint 

det(W +J) = 1. 

(3.49) 

(3.50) 

Using (3.50) to eliminate one of the matrix elements of W, say 
Wn _ In' we obtain a system of nonlinear ODE's with rational 
nonlinearities. 

In the special case of n = 2 (3.50) is quadratic and in 
appropriate coordinates we obtain a system of coupled Ric­
cati equations. Indeed, consider the case ofSL(4,q/SP(4,q. 
Put 

( -~ W= 
-b 

-c 

a 

o 
-d 
-e 

b C) d e 

o / 
-/ 0 

(3.51) 

in (3.49). Use (3.50) to eliminate / and introduce new varia­
bles 

1 
X=--, 

l+a 
d 

t=--, 
l+a 

b 
Y=--, 

l+a 

e 
u=--. 

l+a 

Equation (3.49) reduces to 

x = - (All +A22}x, 

C 
Z=--, 

l+a 

• 2 
Y =A32 + (A33 -A44)Y +A34Z +A12t -AI4(X - zt) 

+ (-A23Y -A24Z +Al3t +A I4U}x, 

(3.52) 

Z =A42 +A43 y + (-A22 +A44)z +A 12u + Al3(x2 + yu) 

+ (A l3t - AnY + A 24Z) Y , (3.53) 

t = -A31 +A21 y + (-All +A33)t +A34U -A24(X2 + yu) 

+ (Al3t + A I4U - A23 y)t, 

U = -A41 +A2IZ+A43t+ (-All +A44)U + A 23(X
2 - 2t) 

+ (A l3t + A 14U - A 24Z)U . 
(b) SL(n,q/SO(n,q. This case can be treated quite 

similarly to the previous one. SL(n,q is extended to GL(n,q 
and then treated as a subgroup of SP(2n,q acting on 
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SP(2n,qIP, where P is the appropriate maximal parabolic 
subgroup of SP(2n,q. Again we get linear equations with a 
polynomial constraint, leading in general to rational nonlin­
earities. We shall not go into the details here. 

In case (2) of Theorem 2 and in Theorem 3 the algebraL 
is simple, the subalgebra Lo is parabolic (represented irredu­
cibly in the first case reducibly in the second). 

We shall now run through all classical complex Lie al­
gebras and their maximal parabolic subalgebras and obtain 
the corresponding ODE's. It turns out that if Lo acts irredu­
cibly, we always get matrix Riccati equations. If Lo acts re­
ducibly we again obtain matrix Riccati equations, some­
times with additional quadratic constraints, that lead to 
cubic and quartic nonlinearities. 

(a) The group SL(N,q. We partition N into N = n + k, 
I <,n,k<;;,N - 1, and introduce the Grassmannian 

Gk(cn+k)-SL(n + k,q/Aff(n,k,q, 

where 

H = Aff(n,k,C) = (
Gll 
G21 

0) GllEc
nxn

, 
G22 ' G21ECk Xn , 

det Gll·det G22 = 1 . 

(3.54) 

(3.55) 

The corresponding ODE's in affine coordinates are simply 
the most general rectangular MRE 

W=A + WB+CW+ WDW, TrB=TrC, 

W,AEcnxk, BECk Xk, CEcnxn , DECk xn. (3.56) 

This was treated in Ref. 6; for n = k>2 the superposi­
tion formula involves precisely five particular generically 
chosen solutions. 

Letting n and k run through all allowed values we ob­
tain all maximal parabolic subalgebras H and MRE's of all 
dimensions. The action of H (or Lo) is always irreducible, so 
we are in the situation covered by Case (2) of Theorem 2. 

(b) The group O(N,q. Let us realize o(N,C) as the alge­
bra matrices X ECN x N satisfying 

XJ + JX T = 0, J = (~ 
Ik 

k = 1, ... ,[N 12] . 

o 

o 
(3.57) 

The group O(N,q will be represented by matrices G satisfy­
ing GJG T = J and a maximal parabolic subgroup H is ob­
tained by requiring that an isotropic subspace of the repre­
sentation space be left invariant. Choosing the invariant 
space to be 

G}G)' j,J.eC·X>. j,eCN-'"X> 

we find 

~)}, HJH T =J, 
G33 

(3.58) 
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where Gik are complex rectangular matrices of the appropri­
ate dimensions. Let us now introduce homogeneous coordi­
nates on the factor space G / H, putting 

(
UI) U U CkXk U2EC(N-2kIXk, 

U= ~:' I' 3
E 

, 

UTJU = o. (3.59) 

As usual, to get rid ofthe redundancy in the characterization 
of a point on G / H we introduce affine coordinates 

~I) (UI U 3- I) Z = = _ I for det U3 =1= 0 . 
2 U2 U 3 

(3.60) 

The isotropy condition in (3.59) implies that the affine co­
ordinates satisfy 

ZI +Z; = - ZfZ2. (3.61) 

In homogeneous coordinates we can write the ODE's corre­
sponding to the infinitesimal action ofO(N,C) on O(N,C)/H 
as 

c= _C T 

E= _ET. (3.62) 
F= _FT 

Using (3.60) we rewrite these equations in affine coordinates 
as 

ZI =C+AZI +ZIA T +BZ2 -ZIFZI +ZIDTZI' 
(3.63) 

Z2 = _BT +DZI +EZ2 +Z~ T -Z2FZI +Z2DTZ2' 

i.e., a system of coupled Riccati equations with the addi­
tional quadratic constraint (3.61). To get rid of the constraint 
we split Z I into its symmetric and antisymmetric part 

ZI +Z; ZI-Z; 
ZI = Zis + ZIA = 2 + 2 

and eliminate Z IS from the equations using (3.61). Finally we 
obtain the following system of ODE's: 

ZIA = C + AZIA + ZIAA T + !(BZ2 - Z fB T) - ZIAFZIA 

+ !(ZIAD TZ2 + Z fDZ1A ) 

+ lZ f(DZ f - Z2D T)Z2 -lZ fZ~ fZ2 , (3.64) 

Z2 = _BT + DZ1A +EZ2 +Z~ T - !DZfZ2 

+ Z2D TZ2 - Z~ZIA +! Z2FZ fZ 2 • 

The matrices A, ... ,F are all given functions of the inde­
pendent variable t, the dependent variables are the matrix 
elements of ZIA and Z2. The equations obtained in general 
contain quartic and cubic terms, attached to the quadratic or 
linear ones. In special cases Eqs. (3.64) reduce to quadratic 
ones. Let us consider these cases. 

(1) k = 1. Then C = 0, F = 0, ZIA = 0 (because of anti­
symmetry). The first of Eqs. (3.64) drops out, the second 
reduces to 

Z2 = - B T + EZ2 + Z~ - ! DZ fZ2 + Z2D TZ2 . 
(3.65) 

This is a complexification of the conformal Riccati equations 
studied earlier. 5 
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(2) k = N /2, for N even. Then B = E = D = Z2 = 0 
and (3.64) reduces to 

. T 
ZIA = C + AZI + ZIA A - ZIAFZIA , 

C= - C T , F= _FT. (3.66) 

Equations (3.66) can appropriately be called "orthogonal 
matrix Riccati equations." 

(3) k = (N - 1)12 for N~ 5 odd. In this case B is a col­
umn, D is a row, E = 0, Z2 is a row. Equations (3.64) again 
reduce to Riccati type equations: 

ZIA = C + AZIA + ZIAA T + !(BZ2 - Z fB T) 

-ZIAFZIA + !(ZIA DTZ2 +ZfDZ1A ) , 

(3.67) 

Z2 = - B T + DZIA + Z~ T -! DZ f Z 2 

+Z~TZ2-Z~IA . 

Returning to the question of reducibility of the primitive 
transitive Lie algebra (L,Lo), we have 

L~~N.C)~{G _~T =;;)} !: =!;: 
Lo~{G _~DT -~l (3.68) 

L,~{G ~ m· 
M~{(~ _~T =~;)} 
(see Definitions 2 and 3 for LI and M). 

For k = 1 we have M = L, for k = N /2 (N even) we 
have M = Lo. In these two cases Lo acts irreducibly, the 
primitive transitive nonlinear Lie algebra is irreducible, i.e., 
we have case (2) of Theorem 2. For all other values of k 
[including k = (N - 1 )/2 for N odd] the nonlinear algebra 
(L,Lo) is reducible and Theorem 3 applies. The equations are 
in general quartic; for k = (N - 1)/2 the cubic and quartic 
terms happen to drop out. 

(c) The group Sp(2N,q. Realize sp(2N,C) as the algebra 
of matrices XECN x N satisfying 

K~~( ~ 
0 I,) 

XKAI' + KAI'XT = 0, K o , 
-IA 0 0 

K=( 0 
- II' 

II' ) 
o ' A+/-L=N. (3.69) 

The maximal parabolic subalgebra Lo will be characterized 
by the fact that it leaves an isotropic A-dimensional subspace 
of the representation space invariant: 

(3.70) 
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A,C,FEC' XA, EE(:}/-LX2/-L, DEC2/-LXA, BECA X2/-L , 

C=C T , F=F T , E=KETK. (3.71) 

The homogeneous space G / H can be identified with the 
Grassmannian of isotropic A-planes; in homogeneous co­
ordinates: 

U ~ (~:). U" U,eC" x', u,eC"''', U TK" U ~ 0 . 

(3.72) 

Affine coordinates are introduced as in (3.60) and satisfy 

ZI - Z r = Z fKZ2 , ZIECA XA, Z2EC2/-LXA. (3.73) 

The ODE's corresponding to the symplectic action in affine 
coordinates are 
· T T ZI = C+AZ1 +ZIA +BZ2 -ZIFZ\ +ZID KZ2 , 

Z2 =KB T +DZI +EZ2 +Z~ T - Z2FZI +Z2DTKZ2' 
(3.74) 

We thus again obtain a system of coupled Riccati equations 
with an additional quadratic constraint (3.73). Putting 

ZIS = ~ (ZI + Z n (3.75) 

and eliminating the antisymmetric part of Zl from (3.74) 
with the help of(3.73) we obtain a system of equations with, 
in general, up to quartic nonlinearities 

· T T T ZIS =C+AZls +ZlsA +!(BZ2+Z 2B ) 

+ MZ\SD TKZ2 - Z fKDZ 1s ) + 1 Z fK (Z2D T 

+ DZ f)KZz - ZlsFZIS -1 Z IKZ2FZ IKZ2 • 
(3.76) 

Zz=KBT + DZls +EZ2 +Z~ T + ZzDTKZ2 

+ ! DZ IKZz - Z2FZIS - ! Z2FZ fKZ2 , 

The nonlinearities become quadratic in two special 
cases. 

(1)J.L = O. ThenB = D = E = Zz = o and we obtain the 
symplectic matrix Riccati equation6 that is of special inter­
est, e.g., in control theoryZo: 

· T T 
ZIS = C + AZ\s + Z\sA - Z\sFZ1S ' C = C , 

F= FT. (3.77) 

(2) A = 1. In this case we rewrite XEL as 

X~(~ 
b T cT 

Ell E\2 

EZI -Eil 

eT _d T 
~b)' 
-a 

E\2=E'[;, E21=Efl' EabEC/-LX/-L, 

b,c,d,eEC/-LXI, a,8,YEC. 

We also put 

(3.78) 

Z\S = Z, Z2 = C), ZEC, X,YEC/-LX\. (3.79) 
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Equations (3.76) again reduce to coupled Riccati equations; 
in vector notation we have 

Z = y + 2az + (b,x) + (c,y) + [(d,y) - (e,x)]z - t>z2, 

X = C + zd + Ellx + E\2Y + ax + x [(d,y) - (e,x)] - t>zx , 
(3.80) 

y = - b + ze + E21x - E ~ y + ay 

+ y[(d,y) - (e,x)] - 8zy. 

The case J.L = 0 corresponds to an irreducible nonlinear 
transitive primitive Lie algebra, and hence to case (2) of 
Theorem 2. All other cases (including A = 1 when the equa­
tions happen to be quadratic) correspond to the reducible 
case and hence to Theorem 3. Indeed, for J.L> 1 the space 

B 

in invariant under L o: [Lo,M] CM and we have M =l=Lo• 
M =l=L. For J.L = 0 we have M = L o' 

IV. CONCLUSIONS 

It follows directly from the classical results3 of So ph us 
Lie, that all systems ofn ODE's of the type (1.1) with a super­
position formula (1.2) are obtained from finite-dimensional 
subalgebras L of the algebra of vector fields on Rn (or en). 
Such a direct approach is however both extremely difficult 
and unnecessary. We have shown that for purposes of study­
ing superposition laws, it is reasonable to restrict the prob­
lem to a search for indecomposable systems of ODE's. These 
are equations from which it is not possible to decouple, by a 
change of dependent variables, a subset of equations involv­
ing a smaller number of variables, having a superposition 
formula of their own. 

The restriction to the indecomposable case leads to the 
requirement that the finite-dimensional algebra L should 
correspond to the infinitesimal transitive action of a Lie 
group G on a homogeneous space G / H for H C G. Further­
more, it is sufficient to consider group-subgroup pairs, for 
which the corresponding Lie algebra-subalgebra pair (L,La), 

with LaCL, defines a transitive primitive Lie algebra. The 
finite-dimensional transitive primitive Lie algebras have 
been classified by differential geometers.9

-
15 

The subalgebra La of vector fields vanishing at the ori­
gin must be maximal in L and cannot contain an ideal of L. 
The primitive transitive Lie algebras and the associated 
ODE's are listed below: 

(1) L is an affine algebra acting on the abelian comple­
ment V of La. The equations are linear inhomogeneous 
ODE's. 

(2) L is the direct sum of two simple Lie algebras: 
L = K $K. The ODE's are coupled Riccati equations or 
equations with rational nonlinearities. 

(3) L is simple, La is a maximal reductive subalgebra. 
The general form of the equations has not yet been deter­
mined. However, if L o is imbedded reducibly in L, the equa­
tions are again coupled Riccati equations. 

(4) L is simple, L o a maximal parabolic subalgebra. If La 
acts irreducibly on L / Lo we obtain various types of matrix 
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Riccati equations. If Lo acts reducibly on L / Lo the equations 
have polynomial nonlinearities. If L is a complex classical 
group, the nonlinearities are up to fourth order. In certain 
special cases we again obtain coupled Riccati equations (the 
higher-order terms drop out). 

It is worth mentioning that all the obtained nonlinear 
ODE's with superposition principles can be interpreted as 
either linear equations, or coupled Riccati equations, with 
additional nonlinear constraints on the dependent variables. 

Many questions concerning ODE's with superposition 
principles remain open. A detailed case-by-case treatment of 
the vector fields and equations corresponding to L simple 
and Lo maximal reductive is forthcoming. 

In this article we concentrated on the classical complex 
Lie algebras. The situation becomes much richer when the 
complex and real Cartan exceptional Lie algebras, as well as 
the real classical Lie algebras are also considered. 

The classification of ODE's with superposition princi­
ples was performed up to arbitrary coordinate changes, i.e., 
up to arbitrary transformations of the dependent variables. 
For instance, the scalar Riccati equation x = a(t ) 
+ b (t )x + cIt )x2 represents the class of equations obtained 
by putting x = ¢> (y), where ¢> is an arbitrary single-valued 
differentiable function of a new dependent variable y. It is 
not excluded that some of the equations that we identified as 
having rational nonlinearities, can be transformed into equa­
tions with polynomial nonlinearities. 

Equations with quadratic nonlinearities (coupled Ric­
cati equations) are of particular interest in many applica­
tions. We have obtained many classes of such equations, but 
we have still not been able to characterize directly all classes 
of Riccati equations that admit superposition principles. 

A separate problem is that of finding the actual super­
position formulas and determining the number of particular 
solutions needed to form a "fundamental set of solutions." 
This has so far only been done for various types of Riccati 
equations.4-7.20 The superposition formulas, in addition to 
providing insight into the properties of the solution space of 
solutions and reducing the problem of finding the general 
solution, to that of finding m particular solutions, also pro­
vide efficient numerical methods for solving the correspond­
ing ODE's.21 
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A new set of Euler angles for the generalized Lorentz group 0 + (p,n - p) are defined, which tum 
out to be much simpler than the ones defined in a couple of earlier papers, and have the useful 
property that each factor in the factorization of a general element itself belongs to the same group. 

PACS numbers: 02.20. + b 

I. INTRODUCTION 

In previous papers l
•
2 the author first obtained a Euler 

angle parametrization of the con;plex rotation group 
O+(n,C) and some of its subgroups <l+(p,n - p),3 O<p<.n, 
and then, using an isomorphism of O+(p,n - p) with the 
physically more important generalized Lorentz (i.e., psuedo­
orthogonal) group O+(p,n - pI, proved that this leads to a 
corresponding parametrization of these latter groups also. 
However, in addition to being extremely cumbersome and 
involved, these angles have another more serious drawback 
also; some factors in the resulting factorization of an element 
ofO+(p,n - p) do not belong to this group. The removal of 
this drawback is obviously very desirable if one wishes, for 
example, to use these angles for the explicit computation of 
unitary irreducible representation (UIR) matrix elements of 
these groups. We prove in the present paper that by using a 
rather simple trick, it is possible to overcome both these diffi­
culties. To get some idea about the nature of this trick, let us 
recall that the Euler angles of Refs. 1 and 2 were, essentially, 
a collection of sets of "polar angles," this last phrase mean­
ing the (m - 1) angular elements of the m spherical polar 
coordinates in the m-dimensional complex Euclidean space 
em. In Refs. 1 and 2, we naturally used a "fixed" definition of 
these angles, i.e., the same definition for every set of polar 
angles used at different stages. However, apart from being 
quite natural and therefore assumed implicitly and uncons­
ciously, there is no real justification for this restriction. In 
fact, as we show in the sequel, if we remove this condition 
and use suitably varied definitions at different stages, then 
not only does this completely remove the complexity of the 
definition of Euler angles ofO+(p,n - pI, but also leads to a 
factorization of elements of this group which consists entire­
ly of simpler elements of the same group. We start in Sec. II 
below with these varied definitions and obtain two impor­
tant theorems as easy consequences of them. With the help of 
these theo~ms, we define in Sec. III, the (complex) Euler 
angles of O+(p,n - p) which lead in Sec. IV, in a much 
simpler manner than in Ref. 2, to (real) Euler angles of 
O+(p,n - pl. In order to avoid repetition and to save space, 
we shall not describe here the notation already introduced in 
Refs. 1 and 2; thus for any unexplained notation, the reader 
is referred to these two papers. 

II. POLAR ANGLES OF sth TYPE 

Consider a Cartesian coordinate system I in the m-di­
mensional complex Euclidean space em. Let s be any integer 

such that 2<.s<.m - 1. If the coordinates of a point ZE em 
(relative to I) are 

with 

t = (~ + ~ + ... + ~ )1/2, Re t>O, 

then 

the "polar angles of sth type relative to I" of Z are defined as 
follows: 

Xj = OJ + i<pj' j = 2,3, ... ,m, all 0j'<Pj real, 

Zm = t cos Xm, O<.Om <.1T, 

Zm~ 1= tsinxm COSXm~ I O<.Om~ 1 <.1T, 

zs+1 =tsinxm .. ·sinxs+2 cosxs+ 1 ' 0<. Os + I <.1T, 

Zs = t sin Xm'" sin Xs + 1 sin xs' - 1T/2<.0. <.1T/2, 

zs~1 =tsinxm· .. sinx.+ 1 cosxssinxs I' 

- 1T/2<.Os~ I <.1T/2, 

Z3 = t sinxm .. • sinxs+ 1 cosx. COSXs~ I'" COSX4 sinx3, 

Z2 = t sin Xm ... sin Xs + I cos Xs cos Xs ~ I ... cos X3 sin X2, 

0<. O2 <. 21T, 

ZI = t sinxm .. • sinxs+ I COS Xs COSXs~ I'" COSX3 COSX2• 

These mean 

±Zj 
cos Xj = ------'----, s + I <j<.m, 

(~ +~ + ... +zJ)I/2 

±Zj 
sin Xj = ------'---- 2 <j<.s, 

(~ +~ + ... +zJ)I/2' 

( 1) 

(2) 

where the sign in each right-hand side is either ( + ) or ( - ). 
Just as in Ref. 1, these angles and t determine, and are them­
selves determined uniquely (for t #0), by the set of Cartesian 
coordinates 

(ZI,z2, .. ·,zm) 

ofZ. 
Let eJ,I<J<.m be the unit vector 

eJ = [O,O, ... ,O,l,O, ... ,O]T, 

jth plate 
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and rjk (x),I<j,k<.m,j-:/k, be the mXm matrix of rotation 
through an angle x in the (j - k ) plane, i.e., 

rjdx ) 

[ C~s x - sin X] _jth row 
sm x cos x _k th row' 

~ , 
jth column k th column 

where all the elements which have not been explicitly written 
down are supposed to be those of the unit m X m matrix. 

By explicitly multiplying em on the left by various ma­
trices one by one, it is now a straightforward matter to check 
that for t = 1, 

rn!x2)r13(x 3 )···r1 s(x,Jrl s+ I ( - xs+ I )rs+ I s+2( - xs+2) 

... rm_lm(-xm)em =Z, 

where 
Z = [ZI,z2, ... ,zm] T. 

This can be written as 

r~_l m( - x m) .. · r;+ Is+2( - xs+2)ri.+ II - Xs+ I) 

X rls(Xs) .. ·rn!X2)z=em' 

which proves the following theorem, if we recall the well­
known result that if rand r' are the column vectors repre­
senting the coordinates of the same point PE em relative to 
the systems I and I I, where I I is obtained from Iby a rotation 
represented by the matrix N, then r = N Tr. 

Theorem 1: If a point ZE em has coordinates 

(ZI,z2, .. ·,zm) 

referred to a system I, where zi + ~ + ... + ~ = 1, then 

(X2,x3'''''Xm ) 

are the polar angles of the sth type relative to I, of Z, and I is 
given a sequence of rotations 

f n!x2), .. ·,f Is (xs ),f I s+ .( - Xs+ I)' 

fs+ I s+2( - x S +2), .. ·,f m- I m( -xm), 

in this order (whose resultant we denote by f), the system I I 

so obtained will have its mth axis along Oz. Here 

fjdx) = a rotation by an angle x in the (j - k) plane. 
Theorem 2: If (i) Z of Theorem 1 is of the form 

(ii) 

p j 

Sj= - LX7+ L xi for j=p+ l,p+2, ... ,n; 
;=1 i=p+ I 

(iii) Sj changes sign atj = s, i.e., Ss < 0 and Ss + I > 0; 
(iv) I I is obtained from I by giving it the rotation f of 
Theorem 1, 
(v) v and v' are the column vectors representing the coordi­
nates ofa pointPE en relative toI andI', respectively, then v 
being of the form 

[ - i.Re, ... , - i.Re,Re, ... ,Re] T 

J pth place 

(3) 
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implies that v'is also of this form; here Re stands for "a real 
number." 

Note first of all, that the explicit form (i) of z shows, with 
the help of (ii) and relations (2), that 

xn = ()n, .. " xs+2 =()s+2' xs+I =iq;s+I' Xs =iq;s' 

... , xp+ I = irpp+ I' xp = ()p,"" X2 = ()2' 

where, as mentioned earlier, () sand q; s are all real numbers. 
It therefore follows that 

v' = r~ _ I n ( - ()n ) ... r;+ Is + 2 ( - ()s+ 2)ri.+ I ( - iq;s +.J 
X rf.(iq;s ) ... rip + I (iq;p + I )rip(()p)'" ri2 (()2)V. 

Keeping in mind the form of the matrices r~(x), we now just 
observe that if v is of the form (3) and we carry out the multi­
plication of v by the above (n - 1) matrices one at a time 
[starting with ri2 (()2) and moving to the left] then at each 
step, we get a column vector of exactly the same form. In 
particular, the final vector v'is also of the same form (3), as 
required. 

Corollary: Under the conditions of the theorem, v being 
of the form 

[Re, ... ,Re,i.Re, ... ,i.Re] T 

~ 
pth place 

implies v'is also of this form. 

III. EULER ANGLES OF O+(p,n -p) 

Consider now an arbitrary element a ofO+(p,n _ p).4 
Assuming as usual that a transforms the Cartesian coordi­
nate system I in en to another such system I', with the same 
origin as I, we recall that if ~ is the tip of the unit vector 
along the jth axis of I " the coordinates of ~ in the system I 
are given by thejth column ofa. Now from the definition of 
........ + 1 A o (p,n - p), we see that the nth column of a, i.e., the co-
ordinates of Xn in the system I will be 

[
•• ] T -lain'"'' -lapn,ap+ I n, .. ·,ann , 

where aij are all real and, of course, 
n 

L a7n = 1. 
i=p+ I 

If Snj' p<j<.n is the sum 
p 

Snp = - L a7n, 
i=l 
p 

Snj = - L a7n + 
i=1 

j =p + 1, ... ,n, 

(so that Snn = 1), suppose that it changes sign atj = Sn' i.e., 

Snsn <0 and Snsn+ 1 >0. 

We now take 

as the polar angles of Sn th type relative to I, of X n. Then (2) 
shows that 

Xnn = (}nn'···' x nsn + 2 = (}nSn+ 2 ' x nsn + 1 =itpnSn+l' 

x nsn =iq;nsn"'" x np + 1 =iq;np+I' x np = ()np, (4) 

... , x n2 = ()n2' 

Let us now subject I I n to the sequence of rotations 
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/Sn + 1 sn+ 2( - Xnsn + 2),···,/n - 1 n( - X nn ), 

in this order (whose resultant rotation we denote by /n) and 
call the system so obtained In - I. Then if N n is the matrix 
representing the rotation /n, the matrix 

an-I=N~a 

will transform the system I n - I to I' as the coordinates of Xj 
in the system In - I will be represented by 

N ~ operating on the jth column of a 

= jth column of an - I. 

Now by Theorem 1,5 

In - I(n) = I'(n) 

::::} the last column of an - I is [0,0, ... ,0,1] T 

::::} the last row of an - I is [0,0, ... ,0,1] 

as an - I is certainly orthogonal. 
Next, as any of the last (n - p) columns of a is of the 

form 

[- i·Re, ... , - i.Re,Re, ... ,Re]T, 

~ 
pth place 

Theorem 2 shows that the same will be true for the last 
(n - p) columns of an-I. Similarly, as any of the firstp co­
lumns of a is of the form 

[Re, ... ,Re,i.Re, ... ,i.Re] T, 

+ pth place 

the corollary to Theorem 2 shows that the same will be true 
for the first p columns of an - I also. It follows that ifaln - I) is 
the matrix obtained from an - I by removing the last row and 

A A 
column then a ln - I)E O+(p,n - 1 - pl. 

We thus have a procedure which, when applied to the 
collection of objects5 

{I=I~:'" I'_I~; aE O+(p,n - P),}, 

a transforms I to I' 

leads to (i) a positive integer Sn withp<;;;sn <;;;n - 1; (ii) a set of 
(n - 1) angles (4); (iii) a coordinate system In - I such that 
1" -I(n) = I'(n); (iv) a matrix an -I = N~a which trans­
forms the system In - I to I' and is such that a ln - I) trans­
forms the system I ~ =: to I ~ _ I (see Ref. 5) and belongs to 
0+( p,n - 1 - p), from which another such collection 

{I~ =:; I ~ _ I; a ln 
-I)E O+(p,n - 1 - P),} 

aln - I) transforms I~ =: to I ~ _ I 

can be obtained to which the same procedure can obviously 
again be applied. Thus it is possible to repeatedly apply this 
procedure; applying it (n - p) times in all, we shall end up 
with the collection 

{
I :;fj; alp)E O+(P,O)=O+(P,R),}. 

a l p) transforms I: to I; 
In the process, a large number of objects would have been 
defined; in order to fully identify them all, let us consider the 
jth step in some detail. At the end of the (j - 1 )th step, we 
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shall have the following: (i) the set of positive integers 

Sk' k = n,n - 1, ... ,n - j + 2, 

with 

p<;;;sk<;;;k + 1; 

(ii) the collection of the set of angles 

(5) 

obtained by giving k the values n, n - 1, ... ,n - j + 2; (iii) the 
set of coordinate systems 

1\ k = n,n - 1, ... ,n - j + 1, 

such that 

Ik(f) = I'(f), 1= k + 1, ... ,n; 

(iv) the set of matrices 

ak=Nr+I .. ·N~a, k=n,n-l, ... ,n-j+l, 

such that a k transforms I k to I' ,alk ) transforms I Z to I k and 
A A 
alk)E O+(p,k - pl. 

Here 

Nk = '12(8k2 )""1 p(8kp )rl p + I (iq:>kp+ d· .. 

.. ·rk_ 1 d - 8kk )· (6) 

The jth step is as follows: Let the last column of 
aln - j + I) [which, of course, gives the coordinates of 

X(n - j + 1) in the systemI~=~!:] be 

[ 
. n-j+1 . n-j+1 . n-j+1 

-lal n-j+ I' -la2n _ j + 1'"'' -lapn -j+ I' 
n-j+1 n-j+1 ]T ap+ln_j+I, .. ·,an_j+ln_j+1 , (7) 

and let 
p 

S "( n - j + I )2 n-j+ Ip = £.. - a in - j+ I , 
;= 1 

p 
S " _ (an - j + I )2 n-j+lk = £.. In-J+I 

;=1 

k 

+ I (a7n-lt}I)2, k=p+ 1, ... ,n-j+ 1. 
p+1 

We define sn_j+1 as the value of k for which Sn_j+lk 
changes sign, i.e., 

Sn-j+lsn_j+1(0, Sn-j+lsn_J+l+ I )O. 

We next define 

Xn _ j + I n _ j + I 'Xn - j + I n - j,· .. ,xn - j + 12' 

as the polar angles of S n _ j + I th type relative to I ~ = ~!: of 
X(n - j + 1) so that (7) and relations (2) show that 

Xn_j+ln_j+1 =8n-j+ln-j+I,,,,,Xn-j+ISn_;+1 +2 

= en - j + 1 s,. _ j + 1 + 2 , 

Xn-j+lsn_j+l+1 =iq:>n-j+ISn_j+l+I,,,,,Xn-j+IP+1 

= iq:>n - j + I P + I' 

Xn_ j+ lp =8n_j+IP,,,,,Xn_j+12 =8n_ j+ 12 · 

We now give to In - j + I the sequence of rotations 

/12(xn _ j+ I 2 )'''''/1 Sn_j+ 1 (Xn -j+ I Sn_j+ 1)' 
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fl Sn~j+ 1 + 1 ( - Xn -j+ 1 s"_)+ I + 1)' 

fSn_J+l+lSn_i+l+2( -Xn -j+lsn _ J + 1 +2 

···f,,-j"-j+ I (-X,,_j+ I ,,-j+ I)' 

in this order (we denote by fn - j + I the resultant of these 
rotations) and call the system so obtained I" - j; it satisfies 
the property of (iii) above with k = n - j. Finally, as the last 
item of the jth step, a" - j is defined by 

a" - j = NT. an - j + I 
"-1+ I 

= N~_j+ IN~_j+2···N~a, 

and possesses the property of(iv) above with k = n - j. Here 
N" _ j+ I is the matrix of the rotation f" - j+ I and is there­
fore given by 

N,,_j+1 

= rdO,,_j+ 12) .. ·rIP (O" -j+ IP) 

X r I s. + j + I + I ( - kp" - j + I s. _ j + I + I ) 

X rs. _ j + I + I s. _ j + I + 2 ( - 0" - j + I s. _ j + I + 2) 

'''r" _ j" _ j + I ( - 0" _j + I "- j + I), 

i.e., by (6) with k = n - j + 1. 
Thus we have been able to define the collection of the set 

of angles (5) obtained by giving k the values 

k = n,n - 1, ... ,p + 1, (8) 

and a sequence of rotations through these angles, in suitable 
planes and in suitable order, transforms I into I P whose last 
(n - p) axes are along the corresponding axes of I' and the 
transformation from I: to I; is given by the determined 
matrix aip)e O+(p,R). Taking 

Ojk, 2<.k<J<.p (9) 

as the usual Euler angles6 ofaiP), we get the !n(n - 1) angles 
(5) with (8), and (9) which determine the transformation from 
I to I ' (rotations through these angles in suitable order trans­
forms /into J') and hence the element aeO+( p,n - pi; these 
angles may therefore be taken as the Euler angles ofa. 

In the end, let us make the following remarks. 
(i) If e is the n X n unit matrix, then 

e=NfNf .. ·N~a 

=>lZ = N"N" _1 .. ·N2' 

where Nk,k;;.p + I is given by (6) while 

(10) 

Nk = rdOk2) .. ·rl k- dOkk- drld - 0kk) (11) 

for 2<.k<.p. 
(ii) Any collection of angles (5), (8), and (9) with 

p<,sk<.k - 1, k = n,n - I, ... ,p + 1, 

0<. Ok" ,Ok" _ I , ••• ,Ok Sk + 2 <,1T, 

- 1T/2<'0kp,Bkp _ 1 , ... ,Ok3 <.1T/2, 

O<.Bk2 <.21T, 

all the qis real numbers, 
A 

will give a (general) element of O+(p,n - p) according to 
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A. 

(10). (That a given by (10) bxlongs to O+(p,n - p) follows 
from the fact that each Nke O+(p,n - p).] 

IV. EULER ANGLES OF THE GENERALIZED LORENTZ 
GROUP 

For the parametrization of the generalized Lorentz 
~oup O+(p,n - pi, we use its isomorphism with 
O+(p,n -pi considered in Refs. 1 and 2. Thus 

A A 
ae O+(p,n - p)=>ae O+(p,n - pi, 

where 

A {fOr j<p and k<.p, 
(a)jk = ajk for j;;.P + 1 and k;;.p + 1, 

(a)jk = iajk for j;;.p + 1 and k<.p, 

(a)jk = - iajk for j<p and k;;.p + 1, 

i.e., a =faf- I, 

fbeing the diagonal matrix 

f= diag(I,I, ... ,I,i,i, ... ,i). 
~ 

pth place 

We now obtain the Euler angles of a as in the previous sec­
tion, so as to get 

a =N"N"_I .. ·Nz 
=>a =f-Iaf 

=f- IN"N,,_I· .. N2j, 

i.e., a = L"L" _ I .. ·L2, 

where 

Lk =f-INkj, k = 2,3, ... ,n. 

Now, it is easy to verify that 

f-Irlk(B)f=rlk(O) 2<.k.:;.p, 

f-Irlk(irp )f= l\k(rp) p + I<k<n, 

f-Irkk+I(B)f=rkk+dO) p+ I<k<n-I, 

(12) 

where Ijk (rp ) is the matrix of the simple Lorentz transforma­
tion by an angle rp in the (j - k ) plane, and is therefore given 
by 

[
cosh rp - sinh rp] _jth row 

- sinh rp cosh rp _k th row' 
+ + 

jth column k th column 

Hence, we shall have, for k;;.p + 1, 

L k = rdBk2) ... rIP(Bkp)/IP+ I (rpkp+ I ) ... 

II sk(rpksk)/1 Sk+ I ( - rpkSk+ I!rSk + Isk+2( - OkSk+2) 

• .. rk _ 1 d - 0kk), (13a) 

while for 2<.k<p, 

Lk = rdBk2) .. ·rl k-J!Okk-drlk( -Okk)' (13b) 

Thus we have the following set of !n(n - 1) Euler angles of 
ae O+(p,n - pi: 

(14) 

with 
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k = n,n - 1, ... ,p + 1, (15) 

and 

(16) 

in terms of these, a factorizes as (12) with Lk given by (13). 
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In this paper, the main properties of the symmetry group of the n-dimensional cube ~re reviewed 
and formulated with respect to possible applications in lattice theories. The connectlOn between 
the hyperoctahedral group Wn and the orthogonal group O(n) is investigated by means of the 
canonical representation. 

PACS numbers: 02.20.Qs, 02.20.Rt, 05.50. + q 

I. INTRODUCTION 

A. Survey 

Recently the importance of finite groups grew out of the 
various possibilities of their application to physical prob­
lems, especially on lattices. First of all, the space symmetry 
of a given problem is an important factor for the calculation 
of possible solutions. In this context, the hyperoctahedral 
group Wn turns out to be a crystallographic point group in n­
dimensional Euclidean space with perhaps one of the widest 
fields of applications of all. For this purpose, one has to know 
in detail the group structure and at least the canonical repre­
sentation T, which is the most important one in all problems 
with the outer symmetry described by the hyperoctahedral 
group. Apart from the fact that the canonical representation, 
as will be shown later, is the direct link to the rotation group 
O(n), the tensor calculus of this representation leads to all 
other representations of Wn . 

Especially, the adjoined representation of Wn turns out 
to be the skew-symmetric part of T ® T, as is valid for the 
appropriate representations of O(n) in exactly the same way. 

Second, the hyperoctahedral group is correlated with 
discrete C7-models where the partition function on a lattice 
with N points is written as 

z= I e- fJE
, 

Sl'''S N EM 

with the energy 

1 
/3= kT' 

Ea:.>'SiOSj' Si EM, ISil=l, 
t.1> 

(Ll) 

where (ij) denotes summation over 1 <i<N and alljthat are 
next neighbors. Especially, if MCRn denotes the set ofvec­
tors with integral components, the hyperoctahedral group of 
dimension n describes the global symmetry of this model. 

Third, the knowledge of the group characters, especial­
ly of the canonical and the adjoined ones, are required for the 
calculation of chiral models on lattices, where the sum over 
states is written as 

z= I e- fJE
, 

gj"'gNE Wn 

(1.2) 

where the a" 's denote the coupling constants of the different 
characters and x" runs through the system of irreducible 
characters of Wn . 

Last but not least, the same is required for calculations 
with lattice gauge theories where 

E = I Ia" 'X,,(gigj gk- 1 gl-l). (1.3) 
plaquets A 

In many problems one would like to use SU(n) and lat­
tices with nontrivial sizes (the sums in the above formulas 
then turning to integrals), but such calculations, even if they 
are done with Monte Carlo methods, are nearly impossible 
from the view of available CPU time. The results of Creutz1 

concerning the Monte Carlo study of SU(2) show that an 
equivalent technique for SU(n) with higher n is impossible. 
Calculations of Petcher and Weingarten2 show that for 
SU(2) a very good approximation is possible if one uses finite 
subgroups instead of SU(2) itself. The best result was ob­
tained with the icosahedral group, which is of order 120. 
Unfortunately, no family of subgroups of SU(n) is known 
that seems to be of great promise for a generalization of this 
method. However, as was shown by Lovelace,3 calculations 
with SU(n) and O(n) look similar in some cases for large n, so 
that results with O(n) are of great interest. Obviously, direct 
calculations with O(n) are restricted by the same reasons as 
mentioned above, which raises the question of approxima­
tion with the aid of nontrivial finite subgroups. 

For this purpose, it is favorable that for O(n) two nontri­
vial families of finite subgroups are known: the symmetry 
group of the n-dimensional simplex and the symmetry group 
of the n-dimensional cube. The first is identical with the sym­
metric group Sn + 1 , the latter with the so-called hyperocta­
hedral group which will now be discussed in those details 
that may be important for physical applications. Clearly, a 
lot of the results that will be stated below are well known, but 
can only be found in mathematical textbooks which are cor­
related with too general a point of view (see Refs. 4-9). Thus, 
the main properties of the hyperoctahedral group must be 
presented in a simple language, prepared for the application 
to physical problems. Especially, some explicit calculus with 
the canonical representation has to be done as well as an 
explicit calculation of number and order of conjugacy 
classes. Hence, the paper is organized as follows. 

After two possible approaches to the hyperoctahedral 
group the structure of this group is discussed, in Sec. II and 
Sec. III, in some details such as the wreath product struc-
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ture, the permutation structure, and the classification of 
conjugacy classes, where explicit formulas are given. 

In Sec. IV, a minimal system of group generators is 
presented that consists of only three members without de­
pendence on n. The following sections deal with the repre­
sentations of Wn , mainly with the so-called canonical (Sec. 
V) and the so-called adjoined (Sec. IX) one. Perhaps the most 
important result of this paper is the fact that both representa­
tions appear to be a direct restriction of the appropriate O(n)­
representations, i.e., the canonical and the adjoined repre­
sentation ofO(n) stay irreducible after restriction to the finite 
subgroup W n, which is one of those properties that make Wn 
interesting for physics. 

The canonical representation T is discussed in many 
details, as are matrix form, geometric interpretation, char­
acters, and so on (Secs. V-VII). 

Especially, the sum 

(1.4) 

is investigated (Sec. VIII), which occurs in mean field ap­
proximations in chiral models (see Ref. 7). 

As a nice result of these calculations we present, expli­
citly, the power series of the function 

exp[cosh(z) - 1] (1.5) 

on the complex plane. 
In Sec. IX, we use the Kronecker product T ® T for a 

construction of the adjoined representation, which shows in 
a canonical way the relations between Wn and O(n). After a 
short look at the representations of dimension one we 
close-for the sake of completeness-with a brief descrip­
tion of the general classification of the irreducible Wn repre­
sentations (Sec. X). 

In an earlier paper we presented the structure and rep­
resentations of W4 completely and derived the connections 
between 0(4) and W4 in detail (Refs. 10 and 11). Recently, 
this group found an application in four-dimensional lattice 
theory (see Ref. 12). 

B. Definition of the hyperoctahedral group 

Let us introduce the hyperoctahedral group as the "lar­
gest" crystallographic point group of the hypercubica1lat­
tice, the latter being generated by all linear combinations of 
the form 

(1.6) 

with integral coefficients Xk and the standard ON-basis 
{e" ... ,en 1 of the n-dimensional Euclidean space. This defini­
tion produces in a canonical way the wreath product struc­
ture and the permutation structure as will be shown later. 
Furthermore, the geometrical interpretation can be seen 
from the beginning. 

C. An alternative approach 

As is well known, the orthogonal group O(n) is the 
group of all n X n matrices which leave the scalar product 

n 

(x,y): = 2:Xyi (1.7) 
i= 1 
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of the Euclidean space Rn invariant. Now, if we take all those 
matrices ofO(n) that map an arbitrary vector x with integer 
components, i.e., x E ',ln, to another vector y E ',ln, we obtain 
the group O(n,',l), which is isomorphic to the hyperoctahe­
dral group. A proof of this statement is given in this paper. 
Now we can understand why Wn occurs as the global sym­
metry in the special case of u-models mentioned above where 
M = ',In. For an application the reader is referred to Ref. 13. 

D. Preliminaries 

The notation used is almost the same as in a preceding 
paper about W4 (see Ref. 10). The symmetric group of degree 
n is denoted by S n' the cyclic group of order 2 by Z2 together 
with the symbol" + 2" for addition modulo 2, and the group 

Z2 n = Z2 ® ... ® Z2 
~ 

n times 

is used in the form 

together with the operation 

(1.8) 

(1.9) 

Furthermore, isomorphic groups are connected by 
"~," and conjugate group elements by "~G," where the 
index G denotes the group relative to which the considered 
elements are conjugate. Finally, the symbol" = " used for 
representations only denotes the equivalence, not the actual 
identity of the representations. 

II. STRUCTURE OF Wn 

A. Wn as wreath product 

Let us now consider the following finite subset L n of the 
n-dimensional Euclidean space Rn

, 

(2.1) 

The appropriate permutation group is S Ln ~S2n . 

Now, we call two elements x,y opposite, if 

y= -x. (2.2) 

In the case of Ln we therefore have n pairs of opposite ele­
ments, i.e., (ei ; - ei ), lo;;;io;;;n, as shown in Fig. 1. We consider 
the group Wn of permutations of the elements of Ln which 
leave opposite elements opposite. If one regards the elements 
of Ln as the centers of the 2n faces of the n-dimensional cube, 
Wn turns out to be its symmetry group. In the language of 
Fig. 1, the elements of Wn obey the two following rules. 

(1) Two elements of the same row may be interchanged. 
(2) Only complete rows may be permuted. 
Therefore, Wn can easily be presented as the wreath 

product Z2 ~Sn' i.e., 

(2.3) 

together with the multiplication rule 
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FIG. 1. Graphical presentation of the n-dimensional 
cube from the geometrical point ofview. 

I -e 
n n 

(a,1T) • (b,u): = (aCT + 2b,1T· u), 

with aCT defined by 

(2.4) 

(aCT)k:=ao(kl (2.5) 

(k th component of aCT)' (For details about wreath products 
see James and Kerber7 or Ref. 14.) Since (a,1T) = (b,u) is equi­
valent to a = band 1T = u, it is evident that Wn is a finite 
group of order 

(2.6) 

Direct calculation shows that for every n the center of 
Wn , i.e., 

C(Wn): = {g E Wn Igh = hg for all hEWn J, 
consists of two elements, 

C (W. I ~ I (O,id s.i;(l,id ,.\, 0, ~ G)' 
h(} 

B. Representations by permutations 

(2.7) 

As a consequence of S L, r;;;ES2n and Wn CS L,' Wn is iso­
morphic with a subgroup of S2n . If we rename the squares of 
Fig. 1 as shown in Fig. 2, and admit again the two rules for 
permutations listed above, we obtain directly the following 
subgroup Pn of S2n , 

Pn = {llES2n l A Ill(k+n)-ll(k)1 =n}. (2.8) 
I<k<n 

With some elementary combinatorics one can see that 
IPn I = n!·2n = I Wn I, as it must be. Now, Pn can, together 
with the usual multiplication rule for permutations, be 
proved to be isomorphic with Wn by means of the mapping 
4> defined as follows: 

with 

4> (a,1T)(k) 

{ 
1T(k) + n·ak , 

: = 1T(k - n) + n(l - ak _ n ), 

if l<k<.n, 

if n + 1<.h;;;2n. (2.9) 

III. CONJUGACY CLASSES 

A. Classification 

The group isomorphism 4> is extremely useful for the 
classification of the classes of conjugate elements of Wn , be­
cause we obtain the following theorem the proof of which is 
given in an Appendix. 

Theorem: Let (a,1T), (b,u) E Wn • Then (a,1T) - w, (b,u) if 
and only if 1T- s,u and 4> (a,1T) - S2, 4> (b,u), i.e., (a,1T) and 
(b,u) belong to the same conjugacy class of Wn , if and only if 
1T and u have the same cycle structure in Sn and 4> (a,1T) and 
4> (b,u) have the same cycle structure in S2n . 

This classification of the conjugacy classes of Wn is of 
some importance because it allows the calculation of the 
number and the order of these classes, a parametrization of 
which follows later. 

B. The number of conjugacy classes 

The above theorem implies that for the number of con­
jugacy classes we have to fix a permutation 1T E Sn with the 
cycle structure 

n 

(l1",2il2, ... ,nil,), L kllk = n, Ilk >0, 
k=1 

(3.1) 

then to count the different cycle structures that 4> (a,1T) can 
have in S2n for the various a E Z2 n, and, finally, to sum over 
all possible cycle structures of Sn. By the special properties 
of the wreath product, only two things can happen to a single 
cycle of an Sn -permutation 1T under the mapping 4>: (1) pro­
duced by the single cycle, 4> (a,1T) contains two cycles ofthe 
same length, or (2) 4> (a,1T) contains one cycle of twice the 
length. 

Therefore, from Il q S n -cycles of length q, Il q > 1, we 
now get, by the action of 4>, for the various a E Z/ (p,q + 1) 
cases of appropriate cycle structures in S2n : 

q2ilQllliJ1.q - II, (2q)/ I q2iJ1.Q - 21,(2q)21 I 

• .. llq2, (2qrQ- 111(2qrQ. (3.2) 

Let 1T E Sn have the cycle structure (l il ',2il2, ... ,nil,). The num­
berofS2n -classesin which we can find 4> (a,1T) fora E Z2 n isso 
far given by the product 

n n 

Q(p,I,···,lln) = II (p,k + 1) = II (p,k + 1). (3.3) 
k= I k= I 

il.>o 

Now the general formula for the number Qn of conju­
gacy classes of Wn is easily obtained by the following sum­
mation over the partitions of n: 

n+1 

n+2 

FIG. 2. Graphical presentation of the n-dimensional 
cube from the algebraical point of view. 

Therefore, Pn can be thought of as a faithful representation n 2n 

of Wn by permutations. 
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TABLE I. Number of conjugacy classes of W. for l<n<150. 

1 2 51 
2 5 52 
3 10 53 
4 20 54 
5 36 55 
6 65 56 
7 110 57 
8 185 58 
9 300 59 

10 481 60 
11 752 61 
12 1 165 62 
13 1770 63 
14 2665 64 
15 3956 65 
16 5822 66 
17 8470 67 
18 12230 68 
19 17490 69 
20 24842 70 
21 35002 71 
22 49010 72 
23 68150 73 
24 94235 74 
25 129512 75 
26 177087 76 
27 240 840 77 
28 326015 78 
29 439190 79 
30 589128 80 
31 786814 81 
32 1046705 82 
33 1386930 83 
34 1 831065 84 
35 2408658 85 
36 3 157789 86 
37 4126070 87 
38 5374390 88 
39 6978730 89 
40 9035539 90 
41 11664 896 91 
42 15018300 92 
43 19283830 93 
44 24697480 94 
45 31 551450 95 
46 40 210 481 96 
47 51124970 97 
48 64 854 575 98 
49 82088400 99 
50 103679 156 100 

Qn = L Q (PI,···,fLn) 
J.lI ... ·.J.ln>o 

I k= lkoPk = n 

(3.4) 

C. Recursive calculation of the numbers of conjugacy 
classes 

For an explicit calculation of Qn it is of great advantage 
to use the following recurrence relations. If we define for 
n>O, 
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130673928 101 2182704 238810 
164 363 280 102 2 582 113 843 795 
206327710 103 3 052 274 960 840 
258508230 104 3605 324 137485 
323275512 105 4255414211990 
403531208 106 5019039720949 
502810 130 107 5915411 540 970 
625425005 108 6966891449865 
776616430 109 8199492 148220 
962759294 110 9643456347436 

1 191 580872 111 11 333922675812 
1472 454 540 112 13 311 695 737 345 
1816715170 113 15624131048910 
2238075315 114 18326156951000 
2753078840 115 21481448170126 
3381689157 116 25 163779232718 
4147937540 117 29 458 577 635 960 
5080752250 118 34464 712 775 100 
6214880700 119 40 296 547 446390 
7592 053897 120 47086297888049 
9262292 216 121 54986 738 253 280 

11 285 536 125 122 64 174308 234 575 
13 733 486 100 123 74852671 601 900 
16691 879795 124 87 256 800 664 440 
20263074 134 125 101657649931466 
24569214653 126 118367514773731 
29755845 120 127 137746158532330 
35 996 306025 128 160 207830443720 
43496760 380 129 186 229 283 983 960 
52 502 280 642 130 216358951877 650 
63 303 821 602 131 251227421256300 
76246618325 132 291 559408377 040 
91 739827630 133 338 187420114200 

110 268 082 280 134 392 067356653475 
132404 776 664 135 454 296 298 907 724 
158827920009 136 526 132 805 091 285 
190338386210 137 609020032390910 
227881 604 535 138 704 612 097171965 
272 572 552 460 139 814804 082539220 
325 725 355 088 140 941 766219818916 
388 887 409 310 141 1087982771 678576 
463 879 670 860 142 1 256 296 287 033 025 
552843 114270 143 1 449 957 907 464 780 
658 293 423 970 144 1672 684 577 368 315 
783 184076 176 145 1 928 724 031 465 432 
930980399 327 146 2 222 928 642 634 633 

1 105744 993 420 147 2 560 839 250 666 680 
1 312237775425 148 2948780346918950 
1 556031 348 120 149 3 393 968 049 615 390 
1 843645820766 150 3904 632 614009852 

(3.5) 

with B (0,0) = 1, B (O,k) = 0 for k> 0, and B (n,k ): = 0 for 
k < 0, we get the formula 

00 

B (n + l,k) = 2: (I + 1)·B (n,k -I·(n + 1)). (3.6) 
/~O 

Since B (nj) = 0 for j < 0, the sum on the right side is 
finite and can be rewritten as 

[k/(n + I)] 

B (n + l,k) = L (I + 1)· (n,k -I·(n + 1)), (3.7) 
/~O 

where [a] means the largest integer less than or equal to a 
(i.e., the so-called Gaussian bracket). Together with the rela­
tion 
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Qn =B(n,n), (3.8) 

the number of conjugacy classes of WIt can easily be calculat­
ed with the aid of a computer. For 1 <n< 150, the result is 
listed in Table I. 

D. Parametrization and order of the conjugacy classes 

To obtain a formula for the order of the conjugacy 
classes we first need a parametrization which, by our 
theorem, may be done by means of the appropriate Sn - and 

S2" -cycles. 
For this purpose, let 1T E SIt have the cycle structure 

( 11'· ,21'>, ... ,nl'·). Then, the above consideration concerning the 
action of <P shows that <P (a,1T) E S 2n can only have a cycle 
structure of the form 

( 12v. 22v2 + iI'. - v.) 32v, 42v_ + il'2 - v2) (2n)2V2. + il'n - vn)) , " , ... , , 
O<Yk </Lk, for 1 <h;;n, 

Vk = 0, for k>n. 

(3.9) 

Consequently, our classes have 2n parameters according to 
this description, i.e., 

n 

(,u1'''·"u,,;VI, .. ·,v,,), I k'/Lk = n, 
k=1 

O<Vk</Lk' 

(3.10) 

Some combinatorics on the distribution ofthe different 
a E Z2 n to the several classes yield the ensuing formula for 
the order of the conjugacy classes of WIt , which can easily be 
calculated with the computer: 

Ord(,uw .. "un ;vl, .. ·,v,,) 

(11"/LI!21'2/L2!' .... nl'fL" !21'· + ... + 1'.) 
(3.11) 

Using the well-known relations (compare Abramowitz 
and Stegunl5 ) 

n (n) I -2n 
k=O k -

(3.12) 

and 

I = 1, (3.13) 
JJ.1 ••. ·,J.l">o 11"/L I!' ... .nl'n·/Ln! 

l:k = tkp.k = n 

one can easily verify the necessary relation 

1'. 1'. 

I I .. · I Ord (,ul"""u" ;vl, .. ·,vn) 
1' ..... 1'.>0 v, =0 v"=o 

l:k~ I~k =" 
(3.14) 

=n!·2
n= IW"I· 

IV. SOME MORE PROPERTIES OF Wn 

A. Ambivalency of Wn 

In this context is is interesting to remark that W is an 
ambivalent group, i.e., every element (a,1T) E WIt is conjugate 
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to its inverse. By (a,1T)-1 = (a
1T
-.,1T- I

) and (a,id).(a".-.,1T- I) 
.(a,id )-1 = (a,1T- I)thestatementisreduced to the equivalent 
one for the groupS", but 1T- Sn 1T- I is a straightforward con­
sequence of the relation 

( .. )-1 (. .) 
lC"lq = lq"'ll' (4.1) 

where (i I .. ·iq) is the standard notation of a q-cycle (see James 
and Kerber7). The ambivalence of WIt is of some importance, 
for it causes all numbers of the character table of W to be 
real. n 

B. On the order of the group elements 

Additionally, it may be quite suitable to take a short 
look at the order of the several group elements g E W", de­
fined by the relations 

g"rd(g)=idw., gk=/=id wn , for l<k<ord(g). (4.2) 

First, if 1T E SIt has the cycle structure (11", ... ,nl'·) with:I~ = I 
k'/Lk = n, we get 

ord 1T = lcm [k I/L k > 0 J, (4.3) 

where lcm is an abbreviation for the least common multiple. 
As ord (a,1T) = ord(<P (a,1T)) and conjugate elements have the 
same order, we can give the order of an element (a,1T) E W as 
a class function in the following way. " 

If(a,1T)E(,uI"""u,,;vl, ... ,vn ), then <P(a,1T) has the well­
defined cycle structure in S2" described above and conse­
quently, 

ord(a,1T) = lcm([k IVk >OJu{2k 10<vk </Ld)· (4.4) 

Calculating, moreover, the highest order possible in Wn , one 
obtains (see Table II) 

TABLE II. Max [ord(g)lg eW. I for l<n<60. 

Max. Max. Max. 
N order N order N order 

2 21 840 41 60060 
2 4 22 840 42 65520 
3 6 23 1680 43 120120 
4 8 24 1680 44 120120 
5 12 25 2520 45 120120 

6 12 26 2520 46 120120 
7 24 27 3080 47 240240 
8 30 28 4620 48 240240 
9 40 29 5040 49 360360 

10 60 30 9240 50 360 360 

11 60 31 9240 51 360 360 
12 120 32 10920 52 360 360 
13 120 33 10920 53 720720 
14 168 34 18480 54 720720 
15 210 35 18480 55 720720 

16 280 36 27720 56 720720 
17 420 37 27720 57 942480 
18 420 38 32760 58 1021020 
19 840 39 32760 59 1 113840 
20 840 40 55440 60 2042040 
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max [ ord(g)lg E Wn 1 

= max{lcm([k IVk >Olu[2k 10<vk <Ih IJ 

Iit/'lil=n, O<Vk<lik, I<k<n} 

= maX{lcm[2k llik > 01 I/t/ . iii = n} 

= 2 . max { lcm [ k Iii k > 0 1 I/t/ . Ii I = n} 
= 2 . max [ ord(1T)I1T E Sn I. (4.5) 

C. Generators of Wn 

At this point we give a minimal system of generators for 
the hyperoctahedral group, Wn , n;;. 2, which consists of only 
three elements a,/3,y, independently of the parameter n. 
These generators are defined by 

:) ) ~ (0,(12)), (4.6) 

(n - :)~) ) ~ (0,([23 ... n)), (4.7) 

:) ) ~ (e.,Id,) (4.8) 

As is well known, a and {3 generate Sn, i.e., precisely 
spoken, all elements (O,1T) E Wn with 1T E Sn' From 

(O,1T- 1
). y. (O,1T) = (e17jn),id) 

and 

(a,id) • (b,id) = (a + zb,id ) 

we get all the elements 

(a,id)E Wn , with aEZz
n

• 

Finally, (O,1T) . (a,id) = (a,1T) yield the rest. 
For the sake of simplicity, we list the ensuing relations: 

{3 - k. y. 13 k = (ek,idsJ, I<k<n, 

13 k . a· {3 - k = (O,((k + I)(k + 2))), O<k<n - 2, 

{3n-1 . a. {31-n = (O,(nl)). 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

With these relations every (a,1T) E Wn can easily be expressed 
by a, {3, and y, since every permutation 1T E Sn can be written 
as a product of transpositions and 

etc. 

(Ik) = (12)(23)· .... ((k - I)k) 

.(12)(23)· ... . ((k-I)k), for k>l. 

V. THE CANONICAL REPRESENTATION 

A. Definition 

Let us now proceed to the representations of the hyper­
octahedral group. Quite important is a representation of de-

3176 J. Math. Phys., Vol. 25, No. 11, November 1984 

gree n, by which Wn is directly connected to the n-dimen­
sional rotation group O(n). The wreath product structure of 
Wn implies the following definition of an n-dimensional rep­
resentation, which will be called the canonical representa­
tion: 

T:Wn--+aut Rn, 

where 

[T(a,1T)]ei : = ( - It'. e1T1i ) for I<i<n, (5.1) 

with [ei II <i<n 1 being the standard ON-basis of the n-di­
mensional Euclidean space Rn. 

First, we have to prove the representation property 

[T(a,1T)' T(b,O')]ei 

= [T(a,1T)](( - I)b,. eO'li)) 

= ( - I)b, + ,aui" e
1T

(O'li)) = [T(aO' + Zb,1T' 0')] ei 

= [T[(a,1T).(b,O')]]ei , I<i<n. (5.2) 

Furthermore, T(O,idsJ = IdRn and T(l,idsJ = - IdRn . 

Let us now calculate the representation matrices of T 
for the basis [ei 11 <i<n I. From 

n 

[T(a,1T)]ei = L ejT~(a,1T), 
j~1 

we obtain, by comparison with the definition of T, the for­
mula 

T~(a,1T) = ( - 1 t, ·8i17j11· 

Consequently, for x = ~7~ Ixieo we have 

[T(a,1T)]x = jtlCtl T~(a'1T)x}j' 
and from 

[ T(a,1T)T(b,O')] x 

n 

[T(a,1T)] L xiej T~(b,O') 
i.j~ I 

n 

L xiek T;(a,1T)T~(b,O') 
i.j,k~ I 

ktlC.~ I T;(a'1T)T~(b'O')x}k' 

(5.3) 

(5.4) 

we see that the multiplication rule has now been reduced to 
the usual matrix multiplication. 

B. Properties and character of T 

At this point it is useful to prove T to be a real, faithful, 
orthogonal, and irreducible representation of Wn • The ma­
trices are real by definition. The faithfulness follows from 

T(a,1T) = IdRnq A (- It'D~'l = D/ 
l<i,j<n 

qA (ai=Omod2 and 17"(i)=i) 
1 <.;<.n 

q(a,1T) = (O,idsJ = idwn . 

For the orthogonality it is easily checked that 

i T~(a,1T).T{(a,1T) = (- l)a,+akDik = Dik · 
j~l 
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To prove T to be irreducible, we use the character XT 
afforded by T, 

XT(g): = tr[T(g)], ge Wn. (5.7) 

Then, with 
n 

XT(a,1T) = L (- Iti5~'1' 
i= 1 

we get 

1 --
I Wn I g f:w

n

X T(g)· X T(g) 

= r~n! L~n a~2 itI5~'1 
+ L L. L (- It'+Qj 5~115~J)} 

1TeSn i=l:-J~aEZi --------".--
=0 

1 n . 1 n 

= - L L 5~,) = - L (n - I)! = 1, 
n!i= 11TeSn n! i= I 

(5.8) 

which proves the statement. 

C. Useful sum rules for the characters 

In Sec. IV A the ambivalency of Wn was proved. 
Hence, we have X (g) = X (g-I) for every g e Wn and every 
irreducible character of Wn • As a consequence, we obtain 
the following sum rules for the canonical character X T: 

, 2n 

L XT(g) XT(gg') = ~. XT(g '), 
ge Wn n 

(5.9) 

L XT(glgZ)' XT(g2K3)' .... XT(gk-lgk)' XT(gkgl) 
gl.···.gkE Wn 

k>2, 

k>l, 

keven, 
(5.10) 

kodd. 

For an arbitrary irreducible character X of Wn with 
dimension d these formulas read as follows: 

L X(g) X(gg') = (I Wn lid) . X(g '), 
geWr:. 

L X(glgz)· .. ·· X(gkgl) 
gl.· ... gkE Wn 

k>2, 

k>l, 

keven, 

k odd. 

(5.11) 

(5.12) 

VI. GEOMETRICAL INTERPRETATION OF THE GROUP 
GENERATORS 

Now, with the aid of the representation T, a geometrical 
interpretation of the generators a, /3, and r is possible. The 
representation matrices are (for n>2) 

T(a) = ('~ ~ I . 0 \, T(f3) = Cd
n

O
_

1 
I ~), 

~) 
T(r) = C-~/ I id

n

O
_ J. (6.1) 
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Thus, ris a reflection atthe hyperplane I x e Rnlxl = OJ and 
a is a reflection at the hyperplane Ix e R"lxl - X

Z = OJ, 
where x = 1:7= I xiei as above. 

For the generator /3 the two cases of even and odd space 
dimensions must be distinguished. First, if n is odd, i.e., 
n = 2k + 1 with keN, {3 is a pure rotation round the axis 
u = (11",,) (el + ez + ... + eD) with the rotation angle 
q; = ,1T. 

Second, if n is even, i.e., n = 2k with keN, {3 is a rota­
tion reflection and can be written as {3 = r . {3 " where {3' is a 
rotation round the origin with the anglet,6' = 1T12. Note that 
rotation round the origin means embedding of Rn in Rn + I 
and then rotation round the axis u = en + I . 

This is a remarkable difference between WZk and 
WZk + I and should be kept in mind for the various calcula­
tions where the geometrical meaning is of any importance! 

VII. Wn AS FINITE SUBGROUP OF O(n) 

From the above considerations it is obvious that Wn is 
isomorphic with a finite subgroup ofO(n), the isomorphism 
being given by the mapping 

Wn-Mat(n,n) 
TM : . 

(a,1T~(T{(a,1T))I<ij<n , 
(7.1) 

where Mat(n,n) is the set of real n X n matrices. 
Therefore, TM(Wn)CO(n), where 

O(n): = IA e Mat(n,n)IA I =A -Ij. (7.2) 
A short look back shows that for every (a,1T) e W" the matrix 
(T{(a,1T))I<ij<n contains only integers, so that Wn is a sub­
group of 

O(n,Z):=IAeO(n)1 A A{eZj. 
I<ij<" 

(7.3) 

From the restrictions that all matrix elements must be 
integers and A t = A -I we immediately obtain a special 
property of the matrices of O(n,Z). In fact, they contain only 
the three numbers - 1,0, and + 1, and, moreover, in every 
column and in every row we find + 1 or - 1 exactly once. 
Therefore, elementary combinatorics yield 

ord(O(n,Z)) = n!·2n = ord(Wn) 

with the consequence that 

Wn ~O(n,Z). (7.4) 
Thus, we have the following diagram for the isomor­

phisms between Wn ,Pn, and O(n,Z): 

t,6 

(7.5) 

VIII. PROPERTIES OF THE CANONICAL CHARACTER 

A. Number of elements with equal character 

In chiral models as well as in gauge theories on lattices a 
detailed knowledge of the characters used is necessary. 
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One interesting problem is the calculation of the 
numbers of elements g E Wn with X T(g) = a, a E JR, i.e., the 
calculation of 

G(n,k): = ordlg E Wn IXT(g) = k}. (8.1) 

From the above considerations follows immediately 
G(n,k) = ° if kiQ.. or k>n. 

Furthermore, one can see 

G(n,n) = 1, G(n,n-l)=O, and G(n,k)=G(n,-k). 

Using the number In of permutations 1T E Sn without cycles 
oflength one, which turns out to be 

n ( l)k 
In = n!· L ---, (8.2) 

k=O k! 

one can get with some combinatorics the following general 
formula for G (n,k), - n<.k<.n, 

[(" ~ Ik 11/2) 
G (n,k) = n!2" ~ Ik 1 L -----

1=0 221./!'(1 + Ik I)! 

n - 1 k 1 - 21 ( - 1 t 
X L --. (8.3) 

m=O m! 

The relation ~Z = _" G (n,k ) = ord( Wn ) is fulfilled, as it must 
be. For 1 <.n <.15 the numbers G (n,k ) are listed in Table III. 

B. Multiplicity of the trivial representation in Kronecker 
products of Twith itself 

Let us now look at the sum 

n!~n g~. [XT(g)] m, 

which is nothing but the multiplicity of the trivial represen­
tation in the m-fold Kronecker product of the canonical rep­
resentation T with itself. Clearly, the sum equals one for 
m = 0 and vanishes for m = 2k + 1, kENo. For m = 2k, 
kEN, we define 

(8.4) 

and obtain, after some nontrivial combinatorics, the formula 
minlk,nl 1 (2k)' 

A(n,k)= L " L . 
1 = 1 l. 1'" ... ,1'(;.1 (2J.l d!' ... . (2J.l 1 )! 

I',+".+I'/=k 

(8.5) 

Note that A (n,k) is independent of n for k<.n. 
In order to simplify the above formula we look at the 

generating function 
;?k 

I(n,z): = LA (n,k)-
k>O (2k)! 

= _1_ L L [XT(g)]2k. ;?k 

n! . 2n 
gE w. k>O (2k )! 

n 

L G (n,k ) . cosh(k . z) 
n!2n k= _" 

{
In } ;?k = 1 + I -·2 IG(n,l) ·/ 2k 

-. 
k>1 n!2n 1= 1 (2k)! 
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With the above relation (S.3) for G (n,l) a comparison of coef­
ficients yields another formula for A (n,k ) 

n pk [In - /)/2) 

A(n,k)=2I-/ I -2-·--
/~ I 2 j~O 2 Jj'.(l + j)! 
n-/-2j ( _l)m 

X I --. (S.7) 
m~O m! 

By the special property ofthe numbers A (n,k ), one ex­
pects the generating functions f(n,z) to build a sequence of 
functions that converges uniformly on every compact subset 
of the complex plane and, indeed, one finds the surprisingly 
simple result 

lim f(n,z) = exp(cosh(z) - 1). 
n~oo 

For a proof, look at the power series 

exp (cosh(z) - 1) 

co 1 
= I -(cosh(z) - l)k 

k=ok! 

= 1 + k~Jtl(2~)! 

(S.S) 

and compare this with the results on A (n,k ). This may be of 
some importance for mean field calculations with the hyper­
cubical group on lattices since 

and 

fin, z) = _1_ I eZ
• X~gl, 

n!· 2n
gE Wn 

(S.lO) 

exp(cosh(z) - 1) - f(n,z) = O(rn + 2), for z--+o. (S.ll) 

C. Power series of exp(cosh (z) - 1) 

Additionally, the power series of exp(cosh(z) - 1) can 
easily be calculated and starts with 

exp(cosh(z) - 1) 

Z2 Z4 Z6 Z8 
= 1 +-+4-+ 31-+ 379-

2! 4! 6! S! 
10 12 14 

+ 6556~+ 150 349~+ 4 373 461 ~ 
1m 1~ 1~ 

16 18 

+ 156297 964 ~ + 6 69S 4S6 371 ~ 
16! IS! 

r O 

+ 337 789 490 599 - + ... . (S.12) 
20! 

This is an explicit calculation of the first coefficients of the 
general formula 

co rk 
exp(cosh(z) - 1) = 1 + LA (k,k)-. (S.13) 

k~1 (2k)! 

Apart from the fact that even in special tables on power 
series one can only find the first three or four coefficients this 
result is a nice example of the mathematical connections 
between group theory and analysis. 
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IX. THE ADJOINED REPRESENTATION 

A. Construction from T ® T 
Although the canonical representation Tis without any 

doubt the most important representation of the hyperocta­
hedral group, we should throw a short glance at the other 
ones, especially at the so-called adjoined representation, 
which will now be constructed from the twofold Kronecker 
product of the canonical representation T with itself, T ® T, 
which is a representation of Wn on the space Rn ® Rn = Rn2. 

Using the standard ON basis! ei 11 <;i<;n l for Rn we find 
! e i ® ej 11 <;ij<;n l as a new basis of Rn 

® Rn. Furthermore, 
three invariant subspaces can be obtained. From 

T® T(e i ®ej - ej ®e i ) 

= i ek ®e/T7T j-e/®ekTj T 7 
k,/~ I 

= I (ek ®e/ - e1 ®ek)(T7Tj - T~T;), (9.1) 
k</ 

for i <j, the skew-symmetric subspace Vi-I, 

Vi-I: = «(lIv12)(ei ®ej - ej ®e i )ll<;i<j<;n», (9.2) 

turns out to be invariant with dim Vl-I = !n(n - 1). 
In an analogous manner it follows that the symmetric 

subspace Vi + I of dimension ~n(n + 1), defined by 

VI+ I: = «(lIv12)(e i ® ej + ej ® edll <;i<j<;n» , 

is invariant under the representation T ® T. 
But VI+ 1 cannot be irreducible because the orthogona­

lity of the matrices TJ implies 

(9.3) 

Thus, 

ViOl: = «(lI{n)(e l ® e l + ... + en ® en)) (9.4) 

is a one-dimensional invariant subspace of Rn ® Rn and of 
VI+I as well. Obviously, T® T acts trivially on ViOl, so that 
T ® T I v'O) is the identity representation. 

Now, with vl+l: = V I+ 1 - ViOl = (Vi-I E9 V IOI)\ we de­
fine two new representations 

TA :Wn_vl-ICRn ® Rn
, 

g.---.. TA (g): = T ® T I Vl~) (g), 

TS:Wn_VI+ICRn®Rn, 
g.---..Ts(g) = T® Tlv,+,(g), 

(9.5) 

(9.6) 

where the subscripts A and S stand for antisymmetric and 
symmectric, respectively. If To denotes the trivial represen­
tation, we get the relation 

T® T= To E9 TA E9 Ts' (9.7) 

where nothing is said about the irreducibility of TA or Ts. 
Here TA is the so-called adjoined representation of Wn • 
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Since we only used the orthogonality of the representation 
matrices, the last relation is also valid for the appropriate 
representation ofO(n). 

B. Properties of the adjoined representation 

Let us now examine the representation TA • From 

TA(e; ®ej - ej ®e;) = L(ek ®e, - e, ®ek)TA~" (9.8) 
k<' 

we obtain the relation 

TA~' = T7·TJ - T;.Tj, 

and, for the appropriate character XA: = tr TA, 

XA(g) = H[XT(g)]2 - XT~)}. 

(9.9) 

(9.10) 

Obviously, TA is real because Tis real. With the last relation 
one can prove the irreducibility of TA , 

(9.11) 

using the following formulas: 

dtW) L [XT(g)]4 = 4, n;;'2, 
or " ge W. 

(9.12) 

(9.13) 

1 L [XT(g)]2XT~)=2, n;;'2. (9.14) 
ord(W")ge w. 

As a very important consequence, we find that the O(n)­
representation TA , constructed by the analogous algorithm 
from the fundamental O(n)-representation Tstays irreduc­
ible after restriction to the finite subgroup W" and thus has 
to be irreducible itself. 

In spite of this relation to the appropriate representa­
tion ofO(n), the representation TA is less important than the 
canonical representation Tbecause TA is not faithful which 
is an obvious consequence ofits construction from the Kron­
ecker product. Furthermore, for n even, TA generally de­
composes into two parts after restriction to the subgroup 
SW" of pure rotations. Thus, a more detailed investigation of 
TA is omitted here. 

X. SOME REMARKS ON THE COMPLETE SYSTEM OF 
IRREDUCIBLE REPRESENTATIONS 

A. One-dimensional representations 

Before proceeding to a general classification of the W"­
representation, let us look at the one-dimensional ones. For 
n>2, we have at least four representations of degree 1 that 
are clearly identical with their characters and therefore de­
noted by 

X ~I, k = 1, ... ,4. 

They are 

x\ll(a,1T): = 1 ("identity"), (10.1) 

X ~11(a,1T): = sgn(1T) ("signum S" "), (10.2) 

x~ll(a,1T): = sgn[</> (a,1T)) ("signum S2n"), (10.3) 

x~l(a,1T): = det[T(a,1T)] ("determinant"). (10.4) 
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The definition of T leads to the relation 

det[ T(a,1T)) = ( - It' + ... + an L sgn(a).8~g ..... 8~~: 
aeSn 

= ( - It' + ... +an sgn(1T). (10.5) 

If 17' E Sn has the cycle structure (11", ... ,nl'n), where 
l:Z ~ 1 kf.lk = n, one gets sgn(1T) = ( - 1)" -II', + ... + 1'.1. Apply-
ing this to the permutation <I> (a,1T) ESzn , we obtain the re­
markable result 

sgn[ <I> (a,1T)] = ( _ l)a, + ... +an, (10.6) 

which implies a simple calculation of the "determinant" as a 
class function, 

det[T(a,1T)] = sgn(1T)' sgn[<I> (a,1T)). (10.7) 

Additionally, we have the following relations between our 
four one-dimensional representations: 

for any k. (10.8) iil·X~) = X~), 

X~)·X~) = X\l), 

X~l)-X~l) = X~ll, 

for any k. (10.9) 

and all permutations of (2,3,4). (10.10) 

B. Extension of Sn-representation to Wn 

The representations of S" are well known and can easily 
be extended to representations of Wn . If jj is a representation 
of Snover V, we define 

D: Wn-V, 

(a,1T)f--+D (a,1T): = jj (17'). (10.11) 

The representation property is a straightforward conse­
quence of the multiplication rule in W" 

D ((a,1T) • (b,a)) = D (aa + zb,1Ta) = jj (1Ta) 

= jj (17') • jj (a) (10.12) 

= D (a,1T) • D (b,a), 

but none of these representations can be faithful. 
An application of these representations without mixing 

up, for example, with the canonical representation reduces 
the symmetry to a much poorer one, especially the link to 
O(n) is lost. 

C. A guide to the general classification of 
representations 

Let us now proceed to a short survey of the complete 
system of irreducible representations of Wn • Starting with 
the two inequivalent, irreducible representations of Zz, 
called Do and D 1, one obtains a complete system of pairwise 
inequivalent, irreducible representations of Z2 n in the form 
D;, ® ... ® D i., where ® denotes the outer tensor product and 
i1, ... ,in E {O,lj. If we combine the subscriptsi1, ... ,i" to a vec­
tor I = (il, ... ,in )" we have 2n different vectors (with compo­
nents a or 1) that label the different representations of Zzn. 
Thus we use the notation D I : = D;, .... . D;n' where the tensor 
product is reduced to the usual multiplication since all ap­
pearing representations are of dimension 1. 

We now define a subgroup of Sn 

S(I): = {1TES" [17'(1): = (in111' ... ,in1nl)' = Ij C Sn. (10.13) 
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Together with 

n l = i l + i2 + ... + i. 
no = n - n l 

(~ number of ones of I), 

(~ number of zeros of I), 

and the definitions 

S(.o): = I1TES. 11T(k) = k, if i k = I, k = I, ... ,nj C S., 

S(.,): = 11T E S. l1T(k) = k, if i k = O,k = I, ... ,n j C Sn' 

one finds the following relations: 

S(.o) ~S.o' 

S(.d ~S." 

S(I) = S(.o) ·S(.,) , 

ord(S(I)) = no! • n I!. 

(10.14) 

Furthermore, if D (·0) and D (n,) label irreducible repre­
sentations of S(.o) and S(n,), respectively, we get all irreduci­
ble representations of S{I) in the form 

(10.15) 

The change of D (no.n,) to a representation of the wreath pro­
duct Z2-S(I) CZ2 -Sn = W. is the same as explained in 
Sec. XA, . 
D (no.n')(a,1T): = D (no'.')(1T), (a,1T) E Z2 -S(I)' (10.16) 

On the other hand, a change of D(I) to a representation of 
Z2-S(I) can be done by the definition . 

D I (a,1T): = DI(a) = Ddal)· 00.· DiJa.). (10.17) 

. . . . 
Thus, D I (a,1T) = D I (a,idsJ, and D I (a,1T)·D I (b,u) . 
= D I(a" + 2b,1TU). 

Note that 1T,U E S(I) is a necessary condition for this exten­
sion which explains the definition of SI' We can now com-. . 
bine D I and D (·0'·') to another representation of Z2 - S(I) : 

. . . . 
(D I,D (.o··'))(a,1T): = D I (a,idsn ) ® D (.o.n')(O,1T). (10.18) 

At this point, one has to extend these representations of 
Z2 -S(I) to representations of Z2 -S., using a complete sys­
tem of representatives 1]l>oo.,1]r' r = n!lno!· nl!' of the group 
S(I) as left coset in S. and Clifford's theory. 

Since this is done in many textbooks on the representa­
tion theory of wreath products (see, for example, Kerber3 or 

Osima),9 it is omitted here. If (DI,D(no.n,))* denote the ex­

tended representations, the following result can be stated 
(for a proof see Kerber6

). 

If DI runs through a complete system of irreducible 
Z2· -representations so that every possible pair (no,n I) ap­
pears exactly once, and, while I is kept fixed, D (·o.n,) runs 
through the irreducible representations of S(I)' then . . 
(D I,D (.0'.'))* runs once through a complete system of pair-

wise inequivalent and irreducible representations of Wn . 
As is well known, the number of Sm -representations i~ 

given by the number of partitions of m. Hence, with p(O): = I 
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we have p(no)p(nJ! representations of S(I)' This yields the 
following formula for the number Q ~ of W. - representa­
tions: 

n 

Q ~ = I p(k ).p(n - k ). (10.19) 
k~O 

Since Q ~ = Qn (number of conjugacy classes), we obtain 

kt!(k) • p(n - k) = JL"~">o [,~\ (jl, + I)]. (10.20) 

. . 
By construction, (D I,D (Ilo.n,))* is of dimension (n!lno!n I!)' 

dim(D (.o.n,)). As a crosscheck, one can calculate 

I[dim(DW 
D 

= ± ( n! )2. I [dim(R W. I[dim(T)]2 
k ~ 0 k !(n - k )! R T 

n ( n' ) = I . 2 • k! . (n - k )! 
k = 0 k !(n - k )! 

= n!· ± (n) = n! . 2· = I w. I 
k~O k 

(10.21) 

(where D is the irreducible representation of Wn , R is the 
irreducible representation of Sk' and Tis the irreducible re­
presentation of Sn _ k)' as is necessary. 
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APPENDIX: A PROOF OF THE CLASSIFICATION 
THEOREM FOR THE CONJUGACY CLASSES 

In the main text it was stated that two elements (a,1T) 
and (b,u) of W. are conjugate to each other if and only if 1T 
and u have the same cycle structure in Sn and <P (a,1T) and 
<P (b,u) have the same cycle structure in S2n' One direction of 
the proof is almost trivial. 

If (a,1T) - wJb,u), i.e., (b,u) = (c,p)(a,1T)(c,p)-1 for some 
(c,p) E Wn , we obtain 

<P(b,u) = <P(c,p)· <P(a,1T)· (<P(C,p))-1 

by the group isomorphism property of <P and u = p1Tp -I by 
application of the multiplication rule of W •. Thus, this part 
of the proofis complete. In order to prove the other direction 
we first bear in mind that 1T - s" u, i.e., 1T = pup -I for some 
p E Sn' implies (b,u)- wJ0,p)(b,a)(O,p-I) = (bp _ 1,1T). With 
c: = bp _ 1 we now only have to prove that <P (a,1T) - s <P (C,1T) 

2" 

implies (a,1T) - wJC,1T). Let 1T have the cycle structure 

(IJL',2JL2 ,00.,nJLn ), ~Z ~ I k·f.1k = n. Now we ask what happens to 
a cycle oflength q under the action of the group isomorphism 
<P and find that this is determined by exactly those q compo­
nents of a the SUbscripts of which appear in the considered 
cycle. The cycle becomes doubled in number if the number of 
ones at the relevant positions of a is even, and doubled in 
length if this number is odd. 
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Now, we can make this number 0 or 1 since every pair of 
1 's in the range of our cycle can be cleared by an equivalence 
transformation of the form 

(a,1T)-w.!d,id)(a,1T)(d,id)-1 = (d". + 2d + 2a,1T). 

Explicitly, if (m 1m2".mq) is the considered cycle and amj 
= amk = 1, ioj=k, one has to choose d so that dk = 0, 

kE£{ ml,,,·mq J, and 

{
I, if l=mj or l=mk , 

dm.l) + d1 = 
0, otherwise, 

which is always possible. 
Next, if we have a single" 1" in the range of our cycle 

(m 1m2,,·mq), we can move it to any other position in the 
range of the cycle, which is done by the same transformation 
as for the clearing of pairs of 1 's. 

Furthermore, if a has two cycles oflength q, let us say 
(m 1m2,,·mq) and (n 1n2,,·nq), and am, = 1, ak = 0 for 
k E (m 2,,,.mq ,n l ,.,,,nq J, we can move the 1 from one cycle to 
the other so that afterwards am, and an, are interchanged. 
This is done by the transformation 

(a,1T)- w.!O,p)(a,1T)(O,p-I) 

with 

_ ( m1m2·"mq_ 1 mqnln2".nq_1 nq ) 
p- , 

nqnl,,·nq_2nq_lmlm2,,·mq_1 mq 

wherep(k) = kif kE£{ml,,,.,mq,nl,.,,,nq J andp1Tp-1 = 1T, as 
it must be. 

Last but not least let us again look at the two elements 
(a,1T) and (C,1T). By construction, f/J (a,1T) and f/J (C,1T) have the 
same cycle structure in S2n' This guarantees that our clear­
ing algorithm produces the same number of l's after applica­
tion to both elements. 
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Next, we can move the l's to equivalent positions and to 
corresponding cycles with the transformations described 
above. 

Hence, we find by construction 

(a,1T)- w.!f,1T)- w.!C,1T), 

since our algorithm arrives at the same element fEZ ~ for 
(a,1T) and (C,1T), respectively. From the beginning we have 
(C,1T)- w.!b,u) and consequently 

(a,1T)- w.!b,u), 

which completes the proof. 

1M. Creutz, Phys. Rev. D 21, 2308 (1980). 
2D. Petcher and D. H. Weingarten, Phys. Rev. D22, 2465 (1980). 
3c. Lovelace, "University at Large N," Rutgers University Preprint, RU-
82-01. 

4G. de B. Robinson, Proc. Cambridge Philos. Soc. 26, 94 (1930). 
'J. S. Frame, Nagoya Math. J. 27, 585 (1966). 
6A. Kerber, "Representations ofPennutation Groups I," in Lecture Notes 
in Mathematics (Springer, Berlin, 1971), Vol. 240. 

7G. James and A. Kerber, The Representation Theory of the Symmetric 
Group (Addison-Wesley, Reading, MA, 1981). 

8S. J. Maier, J. Algebra 33,59 (1975). 
9M. Osima, Math. J. Okayama Univ. 4, 39 (1954); 6, 81 (1956). 
10M. Baake, B. Gemiinden, and R. Oedingen, J. Math. Phys. 23, 944 (1982). 
11M. Baake, B. Gemiinden, and R. Oedingen, J. Math. Phys. 24, 1021 

(1983). 
I2J. E. Mandula, G. Zweig, andJ. Govaerts, Nucl. Phys. B228, 109 (1983). 
I3R. Badke, P. Reinicke, and V. Rittenberg, "The Discrete Cubic and 

Chiral Cubic Spin Systems in Various Dimensions and their Large N lim­
it," preprint, Bonn-HE-84-13. 

14M. Marcu, A. Regev, and V. Rittenberg, J. Math. Phys. 22, 2740 (1981). 
I'M. Abramowitz and A. Stegun, Handbook of Mathematical Functions 

(Dover, New York, 1964). 

M. Baake 3182 



                                                                                                                                    

Color analysis, variational self-adjointness, and color Poisson 
(super)algebras 

Robert Trostel 
Institut/iir Theoretische Physik, Technische Universitiit Berlin, 1000 Berlin 12, West Germany and The 
Institute/or Basic Research, Cambridge, Massachusetts 02138 

(Received 19 March 1984; accepted for publication 11 May 1984) 

After stating some facts concerning the calculation with "color variables" we cite some recent 
results of the author with respect to the color analytic extension of variational principles, self­
adjointness, and Heisenberg commutation relations. As an apparent novelty, we then present the 
color analytic version of the Hamiltonian formalism including the construction of color Poisson 
brackets leading to a color (super)algebra with color derivation property. 

PACS numbers: 02.30. + g, 11.10.Ef, 11.30.Pb 

I. INTRODUCTION AND MAIN RESULTS 

Recently, there has been great interest in generalizing 
the statistics in quantum field theory (e.g., Ohnuki and Ka­
mefuchi,I,2 Omote and KamefuchV Levine and To­
mozawa,4 and others). This has its origin in Green's propos­
aP to use parastatistical commutation relations, being 
compatible with Heisenberg's equation of motion. Also in 
this connection, there is great interest in the recently intro­
duced generalized superalgebras, also called color (super)al­
gebras (e.g., Kac,6 Rittenberg and Wyler,7,s Lukierski and 
Rittenberg,9 and others). We refer to Agrawala,1O Green and 
Jarvis, II Scheunert,12 and others, for example, for the con­
struction of Casimir invariants, tensor operators, and repre­
sentations of color (super)algebras. The main idea of the col­
or (super)algebras consists in replacing the plus or minus in 
the anticommutator or commutator by a complex commuta­
tion factor compatible with the grading. 

In our short note, we pick up the idea of Rittenberg and 
Wyler'? for example, where they have introduced color var­
iables in order to describe color (super)groups. But we take 
the color variables as the foundation of an extension of vari­
ational principles, self-adjointness, Hamiltonian formalism, 
Poisson brackets etc. We therefore start with an associative 
r -graded algebra A (over the complex numbers q with unit, 
with a finite abelian grading group r and equipped with a 
non vanishing commutation function (T: r X r - C! 0 J com­
patible with associativity and the grading r. The generaliza­
tion of well-known conventional supersymmetric (i.e., l2-
graded) theoretical physics (for instance Kostant,13 Dell and 
Smolin, 14 Rogers, 15 Corwin, Ne'Eman, and Sternberg, 16 and 
others) consists in replacing the infinite-dimensional Ban­
ach-Grassmann algebra Boo (Rogers,15 and Jadczyk and 
Pilch 17) by A with an arbitrary finite abelian grading group r 
and an admissible commutation function (T. Without insist­
ing on mathematical subtleties which can partially be found 
in Ref. 18, we want to collect in this note some general re­
sults. The situation if the Hessian is not regular (i.e., if one 
deals with constrained systems) and the globalization of the 
results here presented only in local coordinates will be dis­
cussed in a forthcoming paper. 

We point out that the content ofSecs. II and III ofthis 
article can already be found in Ref. 18. Because of math-

ematical homogeneity, we have decided to include Sees. II 
and III in this note as a preparatory step in order to familiar­
ize the reader with color analytic calculation methods. The 
new results consist in the construction of a color Poisson 
(super)algebra and in displaying the interplay of two F-grad­
ed products, the ordinary associative one in A and the color 
Poisson bracket, both interrelated by the color derivation 
property. The color Hamilton-Jacobi differential equation 
is presented and also the extension to field theories is briefly 
indicated. 

II. GENERALIZATION OF HEISENBERG'S 
COMMUTATION RULES 

Let A be a r-graded associative Banach algebra over 
the complex numbers C and with unit lS 

$ 
A= _Ay, AyAc5CAy+c5' 'rir,t>Er, (1) 

rEr 

where Ay are Banach subspaces of A and where 0 E r de­
notes the neutral element in the finite abelian group r. 
Moreover A is characterized by a commutation function 

(T:r Xr - C\ ! 0 J, u(a,/J )0i/3,a) = 1, 

u(a,/J )u(a,r) = u(a,/J + r), 'ria,/J,r E r, 
I 2 2 I I 2 
qaqp = u(a,/J)qpqa' 'riqa E Aa, qp E Ap. 

(2) 

(3) 

Equation (3) can be found, for example, in Ref. 7. The condi­
tion (2) entails the relations 

u(a,O) = u(O,a) = 1, u(a,a) = ± 1, 
(4) 

u(a,/J) = u( - a, - {3) = oi/3, - a) = u( - {3,a), 'ria,/J E F, 

which indicate that one deals with ordinary bosonic and fer­
mionic numbers in each subspace Aa of A. Now let [nr ] 
: = (ny)yer denote a set of positive integers ny E No satisfy­
ing ny = n_ y. We introduce the Banach space (equipped 
with the product topology) 

G[nr): = $ (A )"r 
rEr y , 

being a Ao-module. Elements ofG[nr) are denoted by 

(5) 
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G[nrl _ ( i liE 11, ... ,nyl 
X,yE , x- qy YEr , 

(6) 

y = (7J~)~:I;, ... ,nyl, q~,7J~ E Ay . 

We are interested in A-valued functions/on G[nrl, 

fG[n rl _ A, i.e.JE ,_~-"(G[nrl; A), (7) 

being sufficiently many times continuously Ao-differentia­
ble. 18 If (A E R), 

( ~/) =(~), aq~ x aq~ x 

(8) 

denotes the left derivative of the function/ (7) with respect to 

q~ E Ay at x E G[nrl, we can derive the generalized or color 
Heisenberg's commutation rules l8 

~~=a(a,/3)~ ~ 
aq~ aq/J aq/J aq~' 

a(a,a) = + 1::::::>[ ~,q~] _ = 8/, 
aq~ 

a(a,a) = - 1::::::>[ ~,q~] + = 8/, 
aq~ 

a· . a 
a=l=f3: --. qJ = a(f3,a)qJ --. , 

aq~ aq~ 

Va,/3 E F, Vi E p, ... ,na j, 

V j E ! 1, ... ,nII j. 

Note for the following, that 

(9) 

a a/II agy ----a:- (/ IIg y) = ----a:- g y + u(/3,a)f II ----a:- ( 10) 
qa qa qa 

is valid for arbitrary continuously Ao-differentiable maps 

/1I:G[nrl _ AlI' gy:G[nrl - A y. 

We point out that 

( a/~) E AlI-a' 
aqa x 

(11) 

holds. 18 

III. GENERALIZATION OF VARIATIONAL PRINCIPLES 
AND SELF-ADJOINTNESS 

Let now Q denote the vector space of all sufficiently 
many times continuously differentiable maps from [ta,tb ] 

to G[nrl, ta <tb; ta,tb E R. Elements ofQ will be denoted by 

x,y E Q, x:t-x(t) E G[nrl, y:t_ y(t) E G[nrl, 

(t) = ( i (t ))iE 11, ... ,nyl (t) = ( i (t ))iE 11, .... nyl 
X qy ye r , Y 7J y yE r . (12) 

Let L ("Lagrangian") be a sufficiently many times continu­

ously Ao-differentiable map from [ta ,tb ] X G[nrl X ... 
111 

XG[nrl to Ao. Using q~(t): = djldtjq~(t), we then con-

sider the action tUo being a map from Q to Ao, 
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J
t" (n) 

tUox : = dt L (t,q~ (t), q~ (t ), ... , q~ (t)), 
ta 

(13) 

and its variation dtUo (A E R), 

(dtU) (y): = ~tU 1 
Ox d,1 °x+>y,1=O 

n n (I-I) 

+ I i I rfy (t)· PIJ• - y(t)x I::, (14) 
YErj=I/=1 

where 

n d
k

-

I 

( a'L ) p. t·= _lk-I__ EA 
IJ. - y ( )x' I ( ) d k - I IK) - Y 

k = I t a tfy (t) 
x 

(15) 

are the generalized canonical impulses (e.g., Ostrogradski). 19 

The expression 
(2n) 

£j. _ y(t)x: = £j. _ y(t,q~ (t ), ... , q~ (t)) 

.- ~(_l)e!!..!......(~) EA . - L d I II) -y' 

1=0 t atfy(t) 
x 

(16) 

VXEQ, VtE [ta,tb ], VjE p, ... ,nyj, VYEr 

is called the set of evolution terms with respect to the La­
grangian L. If on the contrary one only disposes of a set of 
evolution terms, one can search for a Lagrangian L so that 
(16) will be valid. In this case, the prescribed set of evolution 
terms has to satisfy 

0= +£i._y(t)x + a(8,y) I (- w+ I (u) 
atis(t) u=O r 

d
u

-

r (a ) x--- ---£ t dt u - r lu) ]. - 0 ( )x 
aq~(t) 

Vr=O,I, ... ,2n Vy,8EF; 

ViE p, ... ,nyj,jE p, ... ,noj, VXEQ, 

where 

The Lagrangian then reads up to boundary terms 

ny il 
L = y~r]~1 tfy(t) 0 dT 

12n) 

X£j. _ y(t,Tq~(t ), ... ,T q~ (t)). 

(17) 

(18) 

We refer to Ref. 18 where the Lemma of Poincare on Banach 
spaces is exposed and applied to the discussion of variational 
principles and self-adjointness including the consideration 
of boundary terms appearing during the variational proce-
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dure. Because of the commutation factor a(!5,y) in front of 
the sum in (17), we call (17) the generalized variational self­
adjointness conditions. 

IV. GENERALIZATION OF THE HAMILTONIAN 
FORMALISM 

According to, e.g., Ostrogradski,19 we introduce the 
Hamiltonian 

(19) 

We are now supposed to be able to solve (15) for the variables 
In) In + I) 12n - I) 

rty, rty ,,,., rty so that our phase space P = (G[nrl)2n is 

spanned by the variables R: 
In-I) 

P R (ni ni P p..,i e 11, ... ,nyl 
3 = 'fy'"'' 'fy , IJ,-y"'" nJ,-ylrer . 

The equations of motion on the configuration space 

~ (-1),~(~) =0 £.. dt l (/) 
1=0 arty(t) 

x 

(20) 

(21) 

entail the generalized Hamilton equations on the color phase 
space P 

d 1/ --. 1) a 
-( q'y (t)) = a(y,y) Ho(R (t ),t), 
dt ape;;,_y(t)x 

(22) 

d a 
dt (PI;;, - y(t)x) = - (/_ I) Ho(R (t ),t), 

a r4 (t) 

1= 1, ... ,n. 

Note, that Hoht) is a map from P to Ao. Let now 
F (-,t ) E Y (P;A) denote a map from the color phase space P 
to A. The time evolution of F reads 

~F(R (t),t) = aF(R (t),t) + (Hoht), F(-,t)lRII» 
dt at 

{Ho(-,t ),F(-,t )lR 

. = ~ ~ ~ (~ ) aHo(r,t)aF (R,t ) 

. £...£.. £.. V\a,a (I-I) 
a e r I = I I = I ap . a i 

I;I.-a qa 

_ aHa(R,t) aF(R,t)). 
(I-I) a'P a q~ I;i-a 

(23) 
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V. COLOR POISSON (SUPER)ALGEBRA 

We now construct a color Poisson bracket on the asso­
ciative r-graded algebra of maps 

e 
Y (P;A) = rY(P;Ay) 

yE 

such that Y (P;A) is again a r-graded algebra under the 
color Poisson bracket ({ , 11: 

(24) 

VBp E Y(P;Ap), VCy E Y(P;Ay). 

We state the following rules: for ({Bp,Cy 11 E Y(P;Af3+ y), 
we have color antisymmetry, 

(25) 

the color derivation property, 

{ {Bp,CyDlj 11 = { {Bp,Cy llD{j 
+ oif3,y)Cy { {Bp, Dlj 11; (26) 

and the color Jacobi identity, 

a(y,a){{ {{Aa,Bpll,Cyll +a(a,.8){{ {{Bp,Cyl},Aall 

+ oif3,yH { {{ Cy,Aa 1 }, Bpll = 0; (27) 

all of which can be verified after long and tedious but 
straightforward calculations using the nontrivial properties 
(2) of the commutation function 0'. In order to show the tech­
nique, we, for example, prove (26): 
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+ 1 i~I/~1 O"(a,a)u(p,a)O"(y,a)u(p + a,y)Cy ap/i:a a (I~I) - u(a,/3)O"(y, - a)u(p - a,y)Cy 

na n ( aB an 

" q~ 

aBp ant;) x-----
(/-.I) ap. a q~ I;I,-a 

Using (4), the definition of the color Poisson bracket (24) goes 
naturally over to (23) because of Ho(·,t) E Y (P;Ao), 

Corollary I: (Y (P;A),!! ' 1 l) is a color (super)a/gebra 
[Eq., (25) and (27)] with grading 

r:Y (P;A) = ;ErY (P;Ay ) 

and commutation function 0", the same function 0" with 
which we have started in the associative r-graded algebra A. 

Corollary II: (Y (P;A), . ) is an associative r-graded al­
gebra over the complex numbers with unit and with the same 
commutation function 0" as in A. The interplay of both the 
structures {Y (P;A), ! ( , 1 l) and (Y (P;A), . ) is determined 
by the color derivation property (26). 

Corollary III: By virtue of the color derivation property 
(26), the time evolution constraint is identically satisfied; 
F(.,t), G (.,t) E Y (P;A): 

~t (F. G )(R (t ),t) = dF(~;t ),t) G (R (t ),t) 

+ F(R (t),t). dG(R (t ),t); 
dt 

{Ho(' ,t),F. G(.,t)l = (Hoht),F(· ,tIl . G(· ,t) 

+ F(., t )(Ho(·,t),G(·,t)l, 

for all Hamiltonians Ho(·,t) E Y (P;Ao). Also 

:t {{Bp,Cy}} = {{ d:;, CY }} + {{Bp, d~y }}, 

{{Ho,UBp,Cyll II ={{ {{Ho,Bf3ll,Cy }} 

+ {{BpUHo,Cyl 1 }}, 
VBp = Bp(.,t) E Y (P;Af3), 

Cy = Cy(.,t) E Y (P;A y), 

Ho = Ho(' ,t) E Y (P;Ao) 

(28) 

(29) 

can easily be verified using the color Jacobi identity (27) and 
(2) and (3). 

VI. COLOR HAMIL TON-JACOBI DIFFERENTIAL 
EQUATION 

In order to obtain the Hamilton-Jacobi differential 
equation in our color analytic framework, one proceeds as in 
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• 
'the conventional case, One calculates the action functional 
(vo along the solution trajectories X Sol (21) and obtains a func­
tion of the end points 

(n-I) 

Xtb,q~(tb) '''', q~ (tb)) (30) 

which satisfies the color Hamilton Jacobi differential equa­
tion: 

(j - I) 

as(";tb , q~ (tb )) 

(j - I) 

as (";tb , q~ (tb )) 

Pt"k,-P = ------, 1= 1,,,,,n. 
(I-I) 

a q~ (fb ) 

VII. EXTENSION TO FIELD THEORIES 

(31) 

Let now H[nr] denote the Schwartz space consisting of 
Coo maps from R3 to G[nr] vanishing with all their deriva­
tives at infinity more rapidly then any power of Ilrll- l

, rE R3
, 

Ilrll: = + ~?j + ~ + ~, Elements ofH[nrl are denoted by 

A. _ ( i ( ))iE 11, ... ,nyl 
"'- qyr YEr,rER" 

_ /"i ( ))iE 11, ... ,nyl H[nr] 
77 - V' y rYE r,r E R' E , (32) 

The A-valued and in general distribution-valued functions 
IE Y d(H[nr1;A) are supposed to be sufficiently many times 
functional Ao-differentiable and (A. E R) 
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denotes the variational left-derivative off with respect to 

q~(r) E Ay at ¢; E JHI[nrl. The color Heisenberg commutation 
rules in field theory result: 

8 8 8 8 
----- = u(a,/3) ----
8q~(r) 8qp(r') 8qp(r') 8q~(r)' 

u(a,a) = + I:=> -. -, q'a(r') = 8/8(r - r'), [ 
8 .] . 

8q~(r) _ 

u(a,a) = - I:=> -. -, q'a(r') = ~8(r - r'), [ 
8 .] . 

8q~(r) + 
(34) 

8 . . 8 
a=/=/3:=> ~p(r') = u(f3,a)q'p(r') -. -, 

8q~(r) 8q~(r) 

'rJa,/3 E r, i E 11, .. ·,na J, 
j E ( 1, ... ,np j; r,r' E ]R3. 

In order to avoid unnecessary repetitions we remark that one 
only has to replace the ordinary color derivative a/ aq~, the 
summation 2i over i, and the vector space G[nrl by the vari­
ational color derivative Of 8q~ (r), the summation 2i S d 3r 
over i,r and the vector space JHI[nd in order to transcribe the 
results of the Sees. II-VI to the field theoretic case. We there-

I 

fore finish the paper by at least showing the construction of 
the color Poisson (super)algebra in field theory 

(lBp,Cyjj:= Itla~ritlf d3r 
X u(a,a)u(f3,a) 8P . (r) (l~ I) 

( 

8Bp 8Cy 

1;1. - a 8 q~ (r) 

- oia,/3) (/- I) , (35) 8Bp 8ey ) 

8 q~ (r) 8PI;i. _air) 

Bp =Bp(.,t)EY d(lP;Ap), Cy =cy(.,t)EY d(lP;Ay), 

lP: = (JHI[nrl)2n, 

and by specifying the color variational self-adjointness con­
ditions for evolution terms 

Cj. _ p(XiL) «I> = Cj. _ p(XiL, q~ (xIL), ay , q~ (XiL), ... , 

X a ... a qi (XiL)) 
VI Vn a 

which depend (already in a symmetrized manner in the argu­
ments, see Ref. 20, p. 395) at most on the n-jet of the color 
valued field functions «I> E Q: 

Q = Y([ta,tb ], JHI[nd ), «I>:t-+ «I>(t):r -+ (q~(r,t))~:I;, .. ,nrl E G[nrl , 'rJXiL = (r,t) E ]R3x [ta,tb ], 

If Cj. _ P (XiL)", E A _ p fulfills (36), the Lagrangian 

(36) 

(37) 

leads to 

(38) 

where 

Ia (a2' ) 
Yo Yo aaYoqp 

means a2' /aqp. 
Proof 

3187 J. Math. Phys .. Vol. 25. No. 11. November 1984 Robert Trostel 3187 



                                                                                                                                    

= f dr :r (rc j. - p(xl',rq~ , ...• r al'l ... al'.q~) - f dr r :r C j. _ p(xl',rq~ , ... ,ral'l ... al'. q~) 

+ I Io(y.P) t (_1)1 I a"I .. ·ay,(q~ f dr r ~. j Ck._y (xl',rq~, ... ,ral'l .. ·al'nq~)) 
y k 1-0 vI •.. "v, 0 a(raVI a",qp) 

= Cj. - p(xl',q~ , ... ,al'l ... al'. q~) - f dr r I I I I (al'l ... av,q~) . a k 
o y k I~O VI.···''', a(ray, .. ·al',qy) 

Xc j. _p(xI',rq~, ... ,rall' ... al'.q~) + f dr r ~ ~ O'(Y,P) Ito ( - 1)1 l"~YI stJ ~ )(a", ... av,q~). 
xav ... av ( a . ck_y(XIl,rq~, ... ,ral' ... allq~)). 

,+ I I a(ra", ... a",q/J) . , n 

By virtue of (36), the last two terms cancel after extending the 
sum 

to ± (I) ... 
s~O s 

(by putting ( ! ) = 0 if 1< s) and after substituting 

1-+ s, s -+ I in the last double sum. • 
We emphasize that by virtue of the commutation factor 

u/..a,p) in front of the sum in (36) the color variational self­
adjointness conditions (36) represent a nontrivial generaliza­
tion of the old mathematical concept "variational self-ad­
jointness" studied in the pure bosonic case by Helmholtz21 

and recently by Vainberg,22 Tonti,23 SantillV4-26 Tulzcy­
jew,27 Dedecker and Tulzcyjew,28 Abraham and Marsden, 29 
Hughes and Marsden,30 Takens,31 Kosmann-Schwarz­
bach,32 Kamo and Sugano,33 Anderson,34 Horndeski,35 
Vanderbauwhede,36 Bauderon,37 Atherton and Homsy,38 
Telega,39 Hojman and Urrutia,40 Trostel,20 and others. For 
more references and for the technique of the modification of 
a prescribed set of bosonic evolution terms by virtue ofinte­
grating matrices in order to arrive at variational self-adjoint 
evolution terms we refer also to the books24 of Santilli. 

VIII. CONCLUDING REMARKS 

We have presented some recent results concerning the 
calculation with numbers obeying unusual commutation re­
lations. These numbers can be regarded as elements of an 
associative r-graded algebra A equipped with a commuta­
tion function 0' satisfying nontrivial, nonlinear relations 
which are also known in the theory of color (super)algebras. 
Color Heisenberg commutation rules, generalized variation­
al self-adjointness conditions, and a color Hamiltonian for­
malism result. As a novelty, we have constructed color Pois­
son brackets leading to an algebra called color Poisson 
(super)algebra satisfying the axioms of a color (super)alge­
bra. This color Poisson (super)algebra is in addition charac­
terized by the associative r-graded product structure inher­
ited from A. The bracket and the associative product are 
linked by the color derivation property. We refer the reader 
to our paper,18 first, concerning the concept of generalized 
superdifferentiability or-being more specific-Ao-differen­
tiability which generalizes the concept of conventional (i.e., 
Z2-graded) superdifferentiability according to Jadzyk and 
Pilch 17 to our case, if dealing with an arbitrary r-graded 
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I 
associative algebra A; second, concerning the mathematical 
foundation of generalized variational principles and color 
variational self-adjointness from the viewpoint of an exterior 
differential calculus for Ao-valued and Ao-differentiable p­
forms (p E No) on Banachmoduli; and third, concerning the 
initiation of color differential geometry characterized by un­
usual commutation properties of covectors within the asso­
ciative wedge product. 
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Necessary conditions for a unique solution to two-dimensional phase 
recovery 
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In this paper we show that although in one dimension multiplicity of solutions to the phase 
reconstruction problem presents a serious problem, in two or more dimensions multiplicity is 
pathologically rare. We derive from a given solution pair (g,G) necessary conditions for the 
existence of alternative solution pairs (h,H), and a characterization of their form. The 
mathematical tools employed are from the theory of functions of two complex variables. 

PACS numbers: 02.30.0k 

I. INTRODUCTION 

The two-dimensional phase retrieval problems can be 
stated as: Let A and B be bounded subsets of H2. Given the 
information that g(zl,zz) is the Fourier transform of a func­
tion G (lUI,lU2) with support contained in B and the values 
m(x l ,x2) = Ig(X I ,X2) I onA, find the phase ofg onA andrecon­
struct G. 

The phase retrieval problem does not necessarily have a 
unique solution. The aim of this article is to derive from a 
given solution pair g and G necessary conditions for the exis­
tence (and characterization) of alternative solution pairs h 
and H. An intuitive start for such an investigation is the 
simple result that ifJ(z) is an analytic function of the complex 
variablez, then so isJ*(z*) andJ(z) andJ*(z*) have the same 
modulus for real z. This suggests that if a solution g can be 
factored into a product of analytic functions gland g2 then 
the entire function of two complex variables 
h (ZI,z2) gl(ZI,z2)g! (zi,z!) is also a possible solution. The 
main result of this paper is to show that all possible alterna­
tive solutions must be of this simple form. 

II. ONE-DIMENSIONAL RESULTS 

The following results from the theory of functions of a 
single complex variable are required. 

Theorem 1: (Paley-Wiener Theorem I) LetB =[b l ,b2] be 
a bounded interval in H. Then for any GeL 2 (H), G =f 0 on B, 
the transform 

l
b, 

g(z) = eizUG (u)du 
b, 

(1) 

is an entire function and there exist constants a and /3 such 
that 

(2) 

The next result is the fundamental theorem providing 
the necessary machinery to characterize all possible solu­
tions to the phase problem both in one and two dimensions. 

a) Also: ROB Associates, Box 8, Wayland, MA 01778. 
b) Present address: Centre for Mathematical Analysis, The Australian Na­

tional University, Canberra, Australia. 

Although independently derived by many authors,2--4 it ap­
pears to have been first stated by Akutowicz.5

-6 We state the 
result as originally presented there. 

Theorem 2: Let CIJ be the class of all functions gEL 2 (H) 
satisfying: (a) Ig(x) I = m(x)=fO VXEH; (b) g = YG, 
where support of G is contained in a bounded interval B of R. 
Then any two functions g,hECIJ are related by equations of 
the form 

h (z) = ei1a + /3z)B (z)g(z), 
(3) 

'" (z-zr) B(z) = II --, 
'=1 z-z, 

where the z, form some subset of the zeros of g(z). The func­
tion (z - z;)I(z - z,) is termed a Blaschke factor. 

Lemma 1: A necessary and sufficient condition for the 
infinite product B (z) to converge is that7 

~ IImz,1 
£.. 2<00. 
'=1 1 + Iz,1 

(4) 

A sufficient condition for the convergence of the infinite sum 
is that G (u) have only a finite number of jump discontinuities 
over B. 

It is easily shown that if G has support in an interval B 
andifh (z) = B(z)g(z), thenH(u) = (y-Ih) (u) also has sup­
port in B. Therefore, combining Theorems 1 and 2 and 
Lemma 1 gives the following statement on existence of mul­
tiple solutions to the one-dimensional (1-0) phase retrieval 
problem. 

Theorem 3: Let A and B be bounded intervals in H with 
a modulus mix) specified over A and a solution pair g and G 
be given to the corresponding 1-0 phase problem. Then if 
mix) has an extension to the entire real line such that mix) > 0 
and G (u) has only finite jump discontinuities over B as well as 
being nonzero in neighborhoods of the endpoints of B, then 
all other solution pairs h,H are given by 

h (z) = eia B (z)g(z), 

H(u) = (y-1h )(u), 

(5) 

(6) 

whereB (z) is any finite or infinite product of Blaschke factors 
andaEH. 

The conditions of Theorem 3 imply that a solution g(z) 
has a Hadamard factorization 
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g(z) = Ig(O) I ei(a + pz) IT (1 - -=-), 
/= I z/ 

(7) 

where a,/3eR, which may be rewritten as 

g(z)= [1g(O)I~(a+{Jz)n(l- ;)] 

[ ( Z)] X II 1--
/E(N-A) z/ 

(8) 

where A is a subset of the natural numbers N. Theorem 3 
thus states that any solution h (z) has the form 

h (z) = eiYgI(z)g!(z*), yeR, (9) 

i.e., that all possible solutions are in one-to-one correspon­
dence with all possible factorizations of g(z). 

III. EXTENSION TO TWO DIMENSIONS 

Conditions that multiple solutions to the 2-D phase re­
trieval problem must satisfy can be deduced from the 1-0 
results. To begin, suppose that the problem as stated has a 
solution pair g(zl,zz), G (CU I,CU2), where z = x + iy and 
cu = U + iv denote variables in the transform and physical 
domains, such that G (u l'U2) has only a finite number of jump 
discontinuities over B. Then 

Lemma 2: g(z 1,z2) is an entire function of the complex 
variables ZI,z2 of exponential growth. 

Proof After defining the quantities 

ut = max{u l:(u l,u2)EB j, 

u2+ (u l) = maxI U2:(U I,U2)EB J, 
u I- = min{u l:(u l,u2)EB J, 

u2- (u l) = minI U2:(U I,U2)EB j, 

g(z 1,z2) can be expressed as 

g(zl,zz) = (U,+ dU I e\u I (U2+(U,) dU2 eiz'U'G (ul,UZ). (10) 
Ju,- JU2- (ud 

Writingg(zl,z2) asgz, (zd to indicate thatg(ZI,z2) is to be con­
sidered as a function of Zl only with Z2 fixed gives 

gz,(zd = (U~+ G(u l ,z2)eiZ ,U, du l . (11) 
JU1 

Therefore, by Theorem 1,gz2 (Zl) is an entire function ofzl of 
exponential growth. A similar procedure shows that gz, (Z2) 
is an entire function of Z2' 

An immediate consequence of this lemma is that if a 
solution exists then the modulus m(xl,x2) has an analytic 
extension to all of H2, which, under the assumption that 
m(xl,x2) > 0, V(X 1,x2)' is unique. 

There are four points to be noted with respect to the 
next three paragraphs. 

(1) The first point is that the zeros 11k (x2) may be num­
bered in accordance with Eq. (13). 

(2) For a given k, the maps tPk and tPk are analytic for 
almost all x 2• This follows from the fact that the set of singu­
lar points has dimension one less than the set of points X 2 for 
which the set of zeros is analytic. 
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(3) The next step is to note that the condition that k be 
fixed can be dropped because there is only a countably finite 
number of k 's, and the set of almost all X 2 is uncountably 
infinite. 

(4) The final step is to observe that if k is indeed an 
alternative solution, then its zero manifold Y must be the 
analytic continuation of the sets (p k (X 2),X2) and therefore be 
continuedinXuX*.IfY #Xand Y #X*, thenanyyeY (with 
yalsoinX) is part of an analytic submanifold Y I, with Y I e Y 
and YI ex but YI #x. Therefore, X must be decomposable 
as a sum of analytic submanifolds. 

Now let h (Zl,zz), H (W I ,W2) be any other solution pair to 
this problem; then hX2 (xd and gx, (xd must have the same 
modulus mx,(xI) over the set Bx, = {x l :(X I,x2)EB j; i.e., 
hx, (Zl) andgx2 (zd are both solutions to a 1-0 phase retrieval 
problem. Therefore, by Theorem 2, Lemma 1, and the above 
assumptions on g, G, and m we have that 

(12) 

wherea(x2) andp (xz) are constants dependentonx2 only and 
B (z) is an infinite product of Blashke factors formed from the 
zerosp/(x2) ofgx, (ztJ. Thus if1l/(x2) are the zeros of hxz (Zl) we 
may order them so that 

11 k (x2) = P k (x2) or pt(xz)' (13) 

NowletXe C 2 and Ye C 2bethesetsofzerosofgandh, 
respectively. It is known8 that the zeros of a function of n 
complex variables from an analytic set of dimension (n - 1), 
which in turn is the union of analytic manifolds of dimen­
sions (n - 1) and a set of dimension at most (n - 2). The 
difference in dimensions implies that, for a fixed k, for al­
most all points Xz the points (PdXZ),x2) and (11k (X2),x2) are 
members of analytic submanifolds of X and Y, respectively. 
That is, there exist maps 

tPk:C I--+X, tPdxz) = (,odXZ),x2)' 

(14) 

tPk:C I--+y, tPdxz) = (11k (X2),X2), 

which are analytic on a neighborhood Nk (x2 ) of x 2• Since 
there are only countably many k 's, it follows that, for almost 
all x2, all of the maps {tPk ,tPk j k = I are analytic in neighbor­
hoods Nk (x2) of x2. [Note the dependence of Nk (xz) on k.] 

If we now suppose for simplicity that the zeros Pk (x2 ) 

are distinct, i.e., 

(15) 

then Eq. (13), and the analyticity of tPk and tPk imply that 

(16) 

Therefore, if XI ~X and Y I eY are the extensions of the 
neighborhoods {(,ok (z),(Z)'(yk (z),z) j k = I to analytic mani­
folds, then 

(17) 

YI ~XluXf. (18) 

If Y I #XI then there exists a point yeYI and an associated 
neighborhood Ny such that y and Ny are contained in analyt­
ic submanifold X2 of X, but the analytic extension of Ny is 
not X. Therefore, X may be decomposed into two submani­
folds X2 and XI - XZ' 
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Thus, apart from alternative solutions generated by 
varying a(x2 ) and {3 (x2), a necessary condition that an alter­
native solution h to the 2-D phase problem must satisfy is 
that some of its zeros be the complex conjugates of those of 
the original solution. Although this is the same mechanism 
by which an infinite number of alternative solutions to the 
1-D phase problem are generated, the zeros must now satisfy 
the condition that they form a union of one-dimensional ana­
lytic manifolds as opposed to a union of zero-dimensional 
manifolds, that is a collection of connected analytic line seg­
ments as opposed to a collection of isolated points. If an 
alternative solution exists then either the whole manifold X 
has been "flipped" to its conjugate, or it has been "tom" and 
only partially flipped. The connected nature of XI implies 
that the existence of "dotted lines" along which tears may be 
made is very unlikely; this compares to the isolated points in 
the 1-D problem, each of which may be flipped independent­
ly of the other. 

Given this condition the form of an alternative solution 
may be determined. Let XI be decomposable into submani­
folds X2,x3 and define 

(19) 

Then the function gx, (z I) may be written as the product 

gx, (z Il = g I,x, (z Ilg2,X2 (z Il, (20) 

where 

g2x (ZI) = II (1 __ Z_I ). 
, , (Pdx,),x,)EX"2", Pk (x2) 

(21) 

By Eq. (12) hX2 (zIl may be written as 

hx, (zIl = gl,x, (zl)gix2 (zT), (22) 

If h (ZI,Z2) exists it is the analytic extension of hx, (zd, there­
fore, h (ZI,Z2) = gl(zl,z2)g!(zT,zn 

We have not been able to show that this necessary con­
dition for alternative solutions is also sufficient; i.e., given 
submanifolds X2 , X3 and the decomposition of Eq. (20) that 
the hx, (ZI) of Eq. (22) may be analytically continued to a 
function h (z 1,z2)' One source of trouble is the dependence of 
Nk (x2) on k; it is possible that for every x2, nk' = I Ndx2) = <p. 
Then although each zero (P k (X2),x2) is analytic in a neighbor­
hood of X 2 there does not exist a neighborhood over which all 
zeros are uniformly analytic, and therefore, a neighborhood 
over which the product ofEq. (21) is provably analytic. 

If the cardinalities of Xi,x, are finite, e.g., g(ZI,z2) is a 
polynomial, then sufficiency can be shown. In the polyno­
mial case decomposability of XI intoX2 and X3 is equivalent 
to a factorization of the polynomial. However, almost all 
polynomials of two variables are irreducible so that such a 
factorization and decomposition does not exist, therefore, 
alternative solutions do not exist. Irreducibility extends to 
general functions of two variables with infinite sets of zeros, 
so that exact alternative solutions are most unlikely in 2-D 
phase retrieval. This result on polynomials and its implica­
tions is also presented in Ref. 9. 

IV. THE SUPPORT OF ALTERNATIVE SOLUTIONS 

In the previous subsection conditions that alternative 
solutions g and h must satisfy in order that 

3192 J. Math. Phys., Vol. 25, No. 11, November 1984 

Ig(xl>x2)I = Ih (X I,X2)I were derived. We still have to derive 
the necessary conditions on g and h so that (support 
G) = (support H). The first is that{3(x2)-0 in Eq. (12). This 
follows by noting that if G (U I ,U2) is nonzero in neighbor­
hoods of points (u l+ ,U2),(U I- ,u2)EB then the function 
G (uj)x 2 ) of Eq. (All) will be nonzero in neighborhoods of 
U I = ut and U I = u l- for almost all x 2• So by Theorem 3, 
h X2 (z I) is the transform of a function H (u I,X2 ) with support in 
(u 1- ,U t ) if and only if {3 (x2)=0. 

A second condition follows from noting that the bound­
edness of the set B implies that h (ZI,z2) is of exponential 
growth in Z2' so that a(x2 ) must only be a linear function of 
x 2• Summarizing these results and those of the previous sec­
tion gives the next theorem. 

Theorem 4: Let g,G be a solution pair to the 2-D phase 
retrieval problem. Then any other solution pair h, H must 
have the form 

h (ZI,Z2) = ei(a, + a,z')gl(zl,z2)g!(zT,z!), (23) 

whereglg2 is a factorization ofg. 
We have been unable to complement these necessary 

conditions for equality of support with sufficient conditions 
equivalent to those for the 1-D problem. The difficulty seems 
to lie in determining the role of the geometry of B; we give 
two examples. 

1. The first example concerns convexity and is taken 
from Huiser and van Tom. 10 Letg,Gbe a solution pair, then 
after the change of variables to the new orthogonal coordi­
nate systems (SI,s2),(tl>t2) with 

SI = UI cos if; + U2 sin if;, tl = XI cos if; + X2 sin if;, 

(24) 

S2 = - U I sin if; + U2 cos if;, t2 = - X I sin if; + X2 cos if;, 

and definition of the quantities 

S2+ (s I) = max [ S2 :(s I ,s2)EB J, 

S2-(SI) = min [S2:(SI,s2)EB J, 

SI+ (if;) = max[sl:(SI,S2)EB J, 

sl-(if;) = min [sl:(SI,S2)EB J, 

the relationship g = Y G may be rewritten as 

(25) 

(26) 

For fixed t2 the growth rate in gt, (t l ) is determined by 
s 1+ (if;) and S 1- (if;). Knowing these values for all if; is equivalent 
to knowing all supporting hyperplanes for the set B, which 
by duality arguments from linear algebra is equivalent to 
knowing the convex hull of B. If hand H is any other solu­
tion pair then ht2 (t l ) must have the same growth as gt, (t l ), 
otherwise H has support outside of the convex hull of B. 

If g has a factorization g Ig2 such that the growth of g2 is 
always dominated by that of g I (e.g., g2 is a polynomial) then 
the alternative function 

(27) 
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has the same modulus as g and support in the convex hull of 
B. If B is convex then h is an alternative solution, if B is not 
convex then it is possible that the support of H is not Beven 
though still in the convex hull. 

2. Let g,G be a solution pair, then it is' trivial to show 
that the inverse transform of g*(zT ,z!) is G *( - lUI' - lU2) 
which has support - B. So a sufficient condition that 
g*(zT ,z!) be an alternative solution is that B = - B, i.e., B is 
invariant under rotation by 180·. 

Example 1 suggests that convexity of B is necessary for 
existence of an alternative solution and taken with Example 
2 suggests that for a factorization g into glg2 and an alterna­
tive solution h of Eq. (27) then B must have symmetries 
linked in some fashion to those directions in which growth of 
g2 dominatesgl· 

v. CONCLUSIONS 

Nonuniqueness in the phase retrieval problem in two 
dimensions appears to depend on two conditions: (1) that the 
zero space of g be decomposable into a union of several sub­
manifolds, (2)thatB possesses a suitable combination of con­
vexity and symmetry. Both conditions will, in general, be 
difficult to satisfy compared to the 1-0 phase retrieval prob­
lem. Only in the case of symmetries that effectively reduce 
g(ZI,z2) to a function of one variable (e.g., the possession of 
radial symmetry investigated in Ref. 11) will the manifold 
have an infinite decomposition as appears in the 1-0 prob­
lem. In most cases it will be indivisible. Likewise the general 
two-dimensional bounded set has considerably more degrees 
of freedom than the one-dimensional bounded set, the inter-
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val, consequently it has far fewer symmetries. Therefore, in 
general the 2-D phase retrieval problem will have a unique 
solution if one exists. 
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The problem of analytic continuation to the boundary of the holomorphy domain from both 
continuous and discrete interior sets has recently been the subject of detailed analyses. This 
problem is important in phenomenological applications but is also of interest in theoretical 
calculations, e.g., in attempting to evaluate the parameters of resonances or other nonperturbative 
effects in QCD. Because of the inherent instability of the continuation problem it is necessary to 
introduce additional criteria-which should be physically based-to select the right continuation 
function. In this paper, the results thus obtained for continuation from a continuum are examined 
for stability, and bounds are derived for the errors on the boundary in terms of the uncertainty of 
the input data. The procedure is shown to be stable in the sense that these bounds tend to zero as 
the data errors go to zero. 

PACS numbers: 02.30.Rz, 02.60. + y, 12.35. - i 

I. INTRODUCTION 

A.Summary 

The problem of stabilized analytic continuation from 
the interior to the boundary of the domain of holomorphy 
has been studied in detail in some recent papers. 1,2 The idea 
is to use physically based hypotheses to provide the stabiliza­
tion which is necessary to define a meaningful continuation 
process. It is possible in this way to formulate a systematic 
procedure for testing a hypothesis against data, data which 
may be either experimental or, in many interesting cases, the 
results of a theoretical calculation. For example, the meth­
ods which are used to determine resonance parameters from 
QCD fall into this category. The data set considered in Ref. 1 
is a finite one, that is, the continuation is made from a finite 
set of discrete interior points. In Ref. 2, the problem of con­
tinuation from a continuous data set is treated. An essential 
aspect of both problems is that the input data, whether ex­
perimental or theoretical, are not exact, and errors must be 
incorporated. The significance of introducing errors is more 
than the simple admission of possible inaccuracy in the in­
put; it allows a flexibility in the output without which the 
continuation procedure would be meaningless. This is ap­
parent when one considers the second case above where the 
input forms a continuum. If the input were treated as exact, 
with no provision for errors, the analytic continuation would 
be fully determined even though it would be unstable in the 
sense of Hadamard, i.e., extremely sensitive in relation to 
minute changes of the input. 

In Ref. 2, the problem of continuation from a contin­
uum, subject to a defined error function and stabilized as 
indicated above by means of a supplementary physical as­
sumption, is solved. The required analytic function is ex­
pressed in terms of the solution of a Fredholm integral equa­
tion of the second kind. Having solved this problem, it is 
however important to find precise error bounds for the re­
sult. Specifically, we would wish to answer the following 
question. Let X O(s) be the result of the continuation proce­
dure off the data given on r; as in Ref. 2, we will suppose that 

the input region, denoted by r, is a continuous open curve 
inside the cut s-plane, s being the relevant variable with re­
spect to which the true function X T (s), the actual physical 
amplitude or Green's function, is supposed to be analytic. If 
IIX T(S) - XO(s)il y < E, where 11·ll y is a certain X 2-type norm 
defined on r,can we say that IXT(S) -XO(s)I-o, whenE-o, 
for all points s of the holomorphy domain of X T (s), and, 
specifically, on the cuts? This question is answered in the 
affirmative. This stability analysis is the main purpose of the 
present paper and it is carried out in Secs. III and IV, where 
we obtain precise bounds on IX T (s) - X O(s) I in the spectral 
region (on the cuts) in terms of E. But before proceeding to 
this detailed analysis, it seems desirable to discuss the phys­
ical background to the problem; so, in Sec. II, we shall out­
line and develop the results obtained in Ref. 2. 

Throughout this paper, we shall use the variable z_z(s) 
which maps the holomorphy domain of the function of inter­
est onto the unit disk, so that the boundary cuts come on the 
unit circle Izl = 1, and the data region r becomes a contin­
uous curve inside the unit z-disk. 

B. Background 

An important problem in physics, which has attracted 
much attention, is to extend the results obtained from per­
turbative calculations to yield information which is essen­
tially nonperturbative. The background to this is that very 
often the only method of calculation which is available is an 
iterative procedure, whereas many results of physical impor­
tance are nonperturbative in the sense that they will not be 
revealed by a standard perturbation calculation. One well­
known method which has been applied to this problem is 
that of Borel summation,3 where the information contained 
in the numerical values of the coefficients of a series, possibly 
divergent, is used to construct an integral representation 
with a specified domain of validity, provided certain condi­
tions are satisfied. Unfortunately, for the problems of phys­
ical interest, it is often impossible to ascertain whether these 
conditions are met.4 
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Interest in this problem has received a particular stimu­
lus from QCD.s The relevance here arises from the fact that 
the calculations which can be carried out in QCD (and which 
typically will include nonperturbative as well as perturbative 
components) are confined to a domain of validity which does 
not extend into the physical region and so, in particular, they 
cannot determine resonance parameters directly. 

The hope of extending results calculated within one re­
gion to regions of physical interest which are outside the 
domain of validity of the original calculations, is based on 
analytic continuation. But analytic continuation off open 
curves-this is the problem of interest, the usual objective 
being to continue to the boundaries of the holomorphy do­
main (to the cuts)-is infinitely unstable in the Hadamard 
sense. This means that although the continuation is unique, 
errors in the input are magnified arbitrarily, so that without 
some stabilizing recipe, the result is meaningless. There is 
also the difficulty that the truncated perturbation expansion 
which forms the input is itself an analytic function, so that a 
straightforward analytic continuation of the precise input 
data would yield exactly the same perturbative function 
which is known to be incorrect in the resonance region. This 
highlights the importance of introducing errors in the data2

; 

as we discussed above, quite apart from the recognition that 
the perturbative input is only approximate, errors are essen­
tial in order to allow sufficient flexibility in the analytic con­
tinuation that it may be possible to obtain the true function 
as a possible output, and not be uniquely restricted to the 
false perturbative function. 

It must be clear from this, that analytic continuation 
alone cannot achieve the objective being sought; some sup­
plementary information must be introduced to stabilize the 
problem and to remove ambiguity. The way in which this 
can be done, and the resolution of the above difficulties, is 
discussed at some length in Refs. 1 and 2. It is shown there 
how this supplementary physical information (which in­
cludes information about permitted behavior at singular 
points such as threshold and infinity, and which also in­
cludes physically based hypotheses about the types of struc­
ture permitted, such as discrete resonances) may be incorpo­
rated into the problem through a "filter" 1 acting within the 
function space. The operation of this filter, which acts by 
means of a suitably defined norm on the function space, is 
outlined in Sec. 2. We also show there how the discrepancy 
method6 can be used to incorporate whatever hypothesis we 
wish to make about the type of structure to be permitted. 

It should perhaps be emphasized that the need for stabi­
lizing information arises generally in problems of this kind. 
Even if one tries, for example, to sum the perturbative series 
by means of a Bethe-Salpeter (or equivalent) integral equa­
tion, it does not mean that this difficulty has been circum­
vented. The terms of a perturbative series mayor may not 
contain some latent information about the sought nonper­
turbative effect (see cases A and B discussed in Ref. 2). But 
even in case A, when the terms ofthe series do contain such 
latent information [as in the case with the coefficients of the 
series S = 1 + z + r ... , which contain all the needed infor­
mation about the position and residue of the pole S 
= 1/(1 - z)], it is necessary to go through a Hadamard ill-
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posed problem in order to make this information explicit, 
since indeed the results depend critically on the small terms 
of the above series. 

Hence, to obtain a stable output, some supplementary 
information or assumption is required. This may be the alge­
braic semigroup symmetry zOS = S - I, which is exact if 
S = 1 + z + zoz + ... but which otherwise represents a 
strong statement about the irrelevance of any other possible 
small terms of S. (If 0 means ordinary algebraic multiplica­
tion, S is the geometric series referred to above; if 0 means a 
convolution integral andzoz, zozoz, ... describe, for example, 
ladder graphs, then the integral equation zoS = S - 1 is just 
the Bethe-Salpeter equation.) Similar stabilizing symmetries 
are used when deriving linear integral equations for planar 
("parquet") or other graphs configurations. For a general 
review of the present status of the theory, the reader may 
consult the recent and comprehensive paper by Jackson, 
Lande, and Smith.7 

It is important to notice that it is not sufficient simply to 
assert that all terms which do not satisfy the semigroup 
translation symmetry zoS = S - 1 are small with respect to 
z (or tozoz, or tozozoz), since the position and residue of the 
pole 1/( I - z) are not determined by the coefficients of z or Z2 

but in fact just by these small terms (the terms " ... " in the 
expansions above!). Indeed, if one takes lOr instead of r in 
the above sum, one simply gets 1/( 1 - z) + 9z2 instead of 1/ 
(1 - z), the parameters of the pole remaining unchanged! 

So, one sees that the resonances and the other nonper­
turbative effects found by summing perturbative graphs by 
means of integral equations, depend critically on the alge­
braic symmetry which has been used in deriving these equa­
tions. This is a serious problem, the more so as the impreci­
sions of the small terms are not restricted only to some small 
graphs which possibly remain outside the summation 
scheme, but also to the imprecisions of the Lagrangian itself. 
This might effectively be the case with Higgs-like Lagran­
gian transformations and saddle point methods used with 
functional integrations in order to derive effective Lagran­
gians. 

Bearing all that in mind, we attach much importance to 
the requirement that the stabilizing procedures should be 
based on physically controllable facts (or on physically con­
trollable hypotheses) rather than on purely algebraic as­
sumptions. Papers like that of Jackson, Lande, and Smith, 
where the results are checked against alternative proce­
dures-variational schemes and hypernetted chain approxi­
mation in their case7-are extremely valuable for a sound 
founding of the theory. The methods described in this paper 
(and in Refs. 1 and 2) are intended to reflect this emphasis. 

II. SOLUTION OF THE CONTINUATION PROBLEM-THE 
INTEGRAL EQUATION 

A standard procedure is to map the complex E-plane, 
with cuts along the real axis, into the unit disk Izl, 1 so that 
the cuts map onto the unit circleS and the segment of the real 
axis which is not a cut becomes the diameter - 1 ,Z, 1. The 
data region is a continuum, denoted by y, which for conve­
nience (and also because in practice this is frequently the 
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case) is taken to lie on the real axis y: Z1<Z<Z2' where IZ11, 
IZ21 < 1. The data (which we may, if we wish, suppose to be 
the result of a perturbation calculation) will be denoted by 
a(zy), where ZyEy, and we will suppose that on y these differ 
from the values ofthe true function (the actual physical am­
plitude) A (Zy) by only a small amount E(Zy): 

(1) 

The actual deviation E(Zy) is of course unknown but we will 
require it to satisfy a X 2-condition 

X2= i n(z)(E(z)f dz< 1, (2) 

where n(z) gives a measure of the expected reliability of the 
data. 

The discrepancy method,6 which enables us to intro­
duce a physically based hypothesis about the type of struc­
tureA (z) may possess on the boundary, works in the follow­
ing way. 

Having decided on an appropriate hypothesis, we must 
express this in terms of a suitable trial function Tk (z). We 
should stress that the trial function does not need to be, and 
in the spirit of our method will not normally be, an ansatz for 
the whole structure of the amplitude. It is only expected to 
describe this structure in some specific and limited range of 
the spectral region, and it will do this in terms of a set of 
variable parameters k. When testing the hypothesis T, one 
asks the following question: Can a set of parameters k = ko 
be found for which the data are compatible with the struc­
ture of the trial function Tko (z)? Since the parameters k typi­
cally describe such physically important quantities as reso­
nance pole positions or residues, the determination of the 
values k = ko from the data is the physical problem in which 
we are interested and the motivation for the whole analysis. 
It is important to remember that any hypothesis Tdz) we 
may wish to test will be set against the data and rejected if it is 
found incompatible. For any trial function Tk (z), the dis­
crepancy function Ddz) is defined as 

Ddz) =A (z) - Tk(z), (3) 

and using the data a(zy) for A (z) we can define corresponding 
data dk(zy) for Ddz) 

ddzy) = a(zy) - Tdzy). (4) 

A physical hypothesis which is of particular interest is that 
the dominant structure of the spectral function, particularly 
over some specified range of energy, comes from a set of 
discrete poles on the second Riemann sheet. This is repre­
sented by a trial function Tk which, when written as a func­
tion of the energy variable E, has the form 

where k ir must be real and k4r negative to ensure that the 
poles are on the second sheet. As we have already. stress.ed, 
the method is however in no way dependent on thls partlcu­
lar form (5) of Tk (E), which in what follows may be regarded 
as a quite general function. 
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The hypothesis that the structure of A (z) on some speci­
fied part ofthe cuts can be described by Tdz) for suitable 
values ko of the parameters, may now be expressed in terms 
of the discrepancy function Ddz) by requiring that its struc­
ture on that part of the boundary Izl = 1 should be minimal. 
To implement this condition, one must define a measure of 
the structure on the boundary; this is done in terms of a norm 
on the function space, defined as follows: 

{ i2~ }1/2 
IIX 11==8[X] = 2~ 0 (x r (1,6 )flT{1,6 )dl,6 . (6) 

Here X (z) are functions which are holomorphic in Izl < I and 
x r (l,6) are the "tangential derivatives" of their imaginary 
parts, defined as 

a(lm X (z'==ei'!l )) 
x r (l,6) al,6 

= a(Re X (z' ==rei'!l)) I ' 
ar Iz'l = I 

(7) 

and IT{1,6 ) is an appropriately chosen, strictly positive weight 
function emphasizing that part of the boundary where we 
wish to test the hypothesis Tdz). We will normally ~onsider 
only functions X (z) which are real analytic, X (z) = X (z), this 
means that IT{1,6 ) may be defined as an even function a( - 1,6 ) 
= IT{1,6 ), wherelT{ -1,6 )=IT{21T -1,6 ). Other alternative norms 

can be defined, but this one is particularly suited to detect 
strong variations of the cross section [of 1m A (z)). Also, as 
will be seen in Sec. III, its stabilizing properties are particu­
larly effective. 

Strictly speaking, Eq. (6) does not define a norm over 
the whole space of hoI om orphic functions, as x r (1,6 ) will only 
determine the function X (z) within the ambiguity of an arbi­
trary additive constant. However, if one considers the space 
of those functions X (z) which vanish at some specified point 
z = zo, which are holomorphic for Izl < 1, and have a tangen­
tial derivative x r {1,6 ) as defined in Eq. (7), then Eq. (6) does 
define a valid norm for this space. In this space X (z) is unique­
ly determined by x r (1,6 ) and has the representation 

1 i2~ ei'!l z 
X(z) = - In i - 0 x r {1,6 )dl,6. 

1T 0 e'!l-z 
(8) 

The kernel ofEq. (8) is the complex extension of the Neu­
mann kernel 

ff(zo;z,z')=2Inl(z' - zo)/(z' - z)1 (9) 

(see the appendices of Ref. 9). 
The norm IIX 11_8 [X], as defined in Eq. (6), is a func­

tional of the boundary derivative function x r {I,6). We define 
the functional Y I [ X r] as 

1 l2~ Y I [x r ]-8
2 [X ]=- (x r {1,6 )flT{1,6 )dI,6. 

21T 0 

If we adopt the notation 

Ddz) = X (z) + do, 

where 

(1O) 

(II) 

do-Ddzo) (12) 

we may use Eq. (8) to express the X 2-condition (which is con­
venient to use in the form of an equality X 2 = 1, rather than 
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the inequality X 2< 1) in terms of a second functional of the 
boundary derivative function xr(,p), Y 2 [xr ], as follows: 

Y 2[x r ] x2[Dd- 1 

= i dz n(Z){dk(Z) - do 

1 12" }2 - - ff(zo;z,ei¢)xr(,p )d,p - 1 = O. 
21T 0 

(13) 

The Neumann kernel ff(zo;z,ei¢) is defined in Eq. (9). 
The problem to be solved is to find the extremum of the 

functional Y 1 [ X r] subject to the constraint Y 2 [ X r] = O. 
This may be done, using a Lagrange multiplier A, by requir­
ing that the Frechet differential ay[ xr~] of the functional 

Y[xr]=Ydxr] +AYdxr] (14) 

should vanish, and also that the derivative of Y [ x r ] , with 
respect to the subtraction constant do, should be zero. The 
Frechet differential is a two-variable functional ay[x~], 
possibly nonlinear in x(,p ), but, by definition, linear in y(,p ), 
which, when it exists, may be computed by means of the 
Gateau differential formula 

ay[X~] = lim ay[x(,p) + ay(,p )] , 
a---<J aa 

(15) 

where a is a c-number. Setting aY [xr~] equal to zero gives 
the result 

1 t17 { 
aY[xr~]=-; Jo d,py(,p) xr(,p)a(,p) 

- A [ i dz n(z)./V(zo;z,ei¢)(d k (z) - do) 

1 1217 I - - d,p' xr(,p ') dz n(z)./V(zo;z,ei¢) 
21T 0 y 

Xff(zo;z,ei¢ ') ]} = o. (16) 

The requirement that aY / ado be zero yields the value of the 
constant do 

do = _1_ ( n(zlddz) dz __ 1_ ( dz n(z) 
ny Jy ny Jy 

X {2~ f" d,pff(zo;z,ei¢)xr(,p )}, (17) 

where ny=S y n(z) dz. If we now substitute the value of do 
given by Eq. (17) into Eq. (16), and use the condition that this 
equation must hold for any functiony(,p ), we are left with the 
following Fredholm integral equation for the boundary deri­
vative function xr(,p ): 

(Xr0.1/2)(,p) = AGk(,p) + A 2~ f" d,p' K (,p,,p ')(Xro-l/2)(,p '), 

(18) 

where 

(19) 
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K(,p,,p ') 

0-1/2(,p )0-1/2(,p ') 

X { n
1

y 
i dz n(z)./V(zo;z,ei¢) J dz' n(z')./V(zo;Z' ,eW ) 

-i dz n(z)./V(zo;z,ei¢ )./V(zo;z,ei¢ ')}. (20) 

Notice that the kernel K (,p,,p ') is Hilbert-Schmidt (symmet­
ric, and, in this case, also uniformly continuous). 

Having solved Eq. (18) for xr(,p ) in terms of ,.1,,10 the 
solution must be inserted into Eq. (13) [after do has been 
replaced by the right-hand side ofEq. (17)] in order to deter­
mine the value of A. The optimal boundary derivative func­
tion x~(,p ) thus obtained can be inserted into Eq. (8) to yield 
the function XO(z) for Izl < 1. Using the value of do from Eq. 
(17) in Eq. (11), we obtain the optimal discrepancy function 
D ~ (z) for the parameter set k. The minimum value Do(k ) ob­
tained for the functional D [ D ~] is given by 

{
I (2" } 112 

Do(k )=D [ D ~] = 21T Jo d,p (x~(,p Wa(,p ) . (21) 

The above calculation allows one to evaluate Do(k ) for 
any parameter set k. If Do(k ) has a distinct minimum at 
k = ko then one can say that the data favor the particular 
trial function Tko (z), and, within the context of the hypothe­
sis represented by Tk , one can say that the data have selected 
the values k = ko of the parameters. As well as selecting a set 
of parameters within one hypothesis, the method also allows 
the data to discriminate between hypotheses. Thus, for an 
inadequate hypothesis Tk (z), Do(k ) would be expected to be 
consistently large, with no pronounced minimum. If, on the 
other hand Do(k ) is small with no significant minimum, the 
conclusion must be that the data are not sufficiently accurate 
to provide an adequate evaluation of the hypothesis. 

When a set of parameters ko has been selected, the func­
tion A t (z), which defines the analytic continuation from the 
data according to the criteria and procedures described 
above, is now completely determined: It is the following 
function: 

A t(z) = do + - In e. - Zo x~(,p )d,p + Tko(z), 1 12" (i¢ ) 
1T 0 e'¢> - z 

(22) 

where the constant do is given by Eq. (17), and where x~(,p ) 
now stands for the solution of the Fredholm integral equa­
tion (18) when k = ko. 

III. AN EXPLICIT ERROR BOUND 

Let us suppose that the integral equation (18) corre­
sponding to a specific physical problem has been solved and 
that the actual form of the function X O(z)==D ~ (z) - do hav­
ing the least norm Do [see Eq. (21)] is known. If the assump­
tions [i.e., the functions Tk (z), o-(z), n(z)] used to stabilize the 
continuation process were correct, the function 
X T ==A T(Z) - Tdz) - do corresponding to the true but un­
known amplitude A T(Z) should have a norm DT (also un­
known) not much larger than Do itself. It is the aim of this and 
the next sections to derive bounds for the deviation function 

F(Z)==%T(Z) -XO(z)==A T(Z) -A O(z), (23) 
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depending on OT' on 0o, and on the precision n(z) of the data 
in the input region y. In Sec. IV, we shall derive the least (the 
best possible) upper bound EO(z), for given weights a(z) and 
n(z), as the solution of an extremum problem (a Fredholm 
integral equation) similar to Eq. (18). Although the knowl­
edge of the precise value of this optimal bound is very impor­
tant when dealing with a specific physical problem, the solu­
tion of the corresponding Fredholm integral equation can be 
found only numerically. Therefore, we shall first derive here 
an approximate bound, E (z), for the deviation function IF (z) I, 
which has the advantage of being explicitly computable and 
hence gives us direct insight into the contribution of the var­
ious factors. One might use this information to derive an 
optimal strategy, taking for instance a suitable balance 
between the values of the weight function a(z) inside and 
outside the energy "window," and so on. 

Pursuing this objective, we make the following modifi­
cation in the initial problem: 

Instead of the inequality 

i dz(X O(z) - X T (zWn(z) < 4 (24) 

[which one obtains from the triangle inequality for the n­
weighted 2"2 -norms on y of X O(z) - d k (z) + do and X T (z) 
- ddz) + do], we shall use the 2"oo-condition 

IF(z)I-IXO(z) - XT(z)1 <E for zq'. (25) 

Here 1" is some subset of y. Indeed, in order that an inequa­
lity of the type 

i dzIF(zW<7]2/y (26) 

should hold [for simplicity we have taken here the case in 
which n(z) is constant and equal to 1/7]2, /y being the length 
of y], it is necessary that 

IF(z)ly' <E (27) 

on some subset y' of the initial interval y; if E = a7], with 
a> 1, then the measure /y' of y' must be larger than 
(1 - 1/a2 )/y. 

One could have specified the accuracy of the data from 
the beginning by means of a point-wise inequality 
lapert(z) - A (z)1 < E(Z) rather than by a 2"2 one. In this case 
the inequality (27) would have been the natural formulation 
of the problem, but we wanted to stress here that, with some 
loss of information, the inequality (27) also follows from our 
original 2"2 X 2-condition. 

The sole remaining information about F(z) [the differ­
ence between the (known) optimal continuation function 
X O(z) and the true but unknown one, X T (z)], is that it is 
holomorphic in the unit disk and that the u-weighted 2"2_ 
norm of the boundary values of the (tangential) derivative of 
its imaginary part 

',p 
fr(ifJ) a 1m F(e' ) = x~(ifJ ) - x;(ifJ ) (28) 

aifJ 
is bounded 

_1_ t1T difJf;(ifJ )a(ifJ )<..:1 2=(00 + {jTf«20T)2. (29) 
217" )0 
Here {jT is the {j-norm [Eq. (6)] of the discrepancy asso-
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ciated with the true (but unknown) amplitude A T(Z). If the 
definition (6) of norm (which is required to be small) and the 
choice of the trial function T leo (z) are physically reasonable, 
then {jT should be small, certainly finite. From (29) and from 
the integral representation 

F(z) = F(zo) + J... {21r difJ 'In (ei,p,p',_ zO)fr(ifJ ') (30) 
17" Jo e' -z 

of F(z) for Izl < 1, we may show that F(z) is bounded in the 
whole (closed) unit disk. Indeed, using the Schwartz inequa­
lity, we get 

IF (z) - F (zoW 

_ difJ' 2 In e ,- Zo U 'f' , lr(ifJ ') 11 i21T i,p' 1/2(A. ') 12 
217" ° e',p - z U

1
/
2(ifJ ) 

,,_1_ (21T difJ' -4-1 In e
W 

- Zo 12 
"" 217" )0 a(ifJ ') eW - z 

X_I (21T difJ' f;(ifJ ')a(ifJ '). (31) 
217" Jo 

The second integral satisfies the bound (29), while the first is 
bounded even if z is on the unit circle. (If z = ei,p, the integral 
is finite, in spite of the logarithmic divergence of the inte­
grand at ifJ ' = ifJ·) Taking Zo on 1", where IF (zo) I < E, we thus 
obtain the result 

(32) 

Our aim is to show that M~, when E~. The proof 
which follows will use a combination of the Nevanlinna 
bound (see below, Sec. A), and of a limitation on the growth 
of F(z) over any interval (ZI,z2) contained in the closed unit 
disk Izl < 1 because of the inequality (31) (see Sec. B below). 

A. The Nevanlinna bound 

Define cu(z) to be that (real) harmonic function which is 
equal to one on 1" and zero on the unit circle r, 

V2cu(z) = ° for z: Izl < 1, zE£1", 

CU(ZEY') = 1, cu(zEF) = 0. (33) 

Now let D ' be the domain obtained if one removes from 
the disk Izl < 1 the points of 1" as well as small circularneigh­
borhoods around the zeros of the function F(z), each neigh­
borhood being bounded by sufficiently small circles Yi so 
that inside any ofthem In IF (z) I will be less than both In E and 
In M. The function In F (z) being now holomorphic around 
each of the points ofD ',Re In F(z)=ln IF(z)1 will be harmon­
ic in D '. On the other hand, on the boundary aD ' of D ' we 
have 

InIF(z)1 <cu(z).ln E + (1 - cu(z)).ln M, zEJD '=y'UFuyi' 
(34) 

[This follows on y' from (27) and from (1 - cu(z)) I y' = 0, on r 
from (32) and cu(z)lr = 0, and on the circles Yi from the fact 
that IF (z) I is (there) less than min(E,M) and that cu(z) < 1 
throughout the whole unit disk.] 

But both sides of the inequality (34) being harmonic 
functions, this property, which is valid initially for the 
boundary aD " is automatically extended throughout the 
whole domain D " and since it is also satisfied inside the small 
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[E=' 
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K =, 
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(r=o) 

-ty: 
e =1.11 

(Yc IM,=S)=.31) 

FIG. 1. Interplay between the Nevanlinna and the derivative bound near 
r = I, iny coordinates (r = I - .I). 

neighborhoods of the zeros of F (z), it is valid throughout the 
whole (closed) unit disk. Hence, 

IF(z)I..;;M (~ - w(z) for all Izl..;; 1. (35) 

The Nevanlinna bound (35) is not expected to be the 
best bound which one could find for IF(z)1 from (27) and (32), 
as the inequality (35) would have been valid even if y' had 
been a part of the boundary of the holomorphy domain of 
F(z), whereas in fact, r' is completely embedded into the lat­
ter. However, (35) is sufficient to provide, in combination 
with (31), a mechanism which makes M vanish with E. 

Although (35) predicts that for every interior point 
Izl < 1, IF(z)1 tends to zero when E tends to zero [for such 
points w(z) is strictly positive], the condition (35) has no pre­
dictive value at all for boundary points, since the inequality 
(35) merely repeats there the already known fact that IF (z) I is 
bounded on rby M (w(z = eit/> )=O!) However, even if no bet­
ter condition could be obtained, this would mean that, at 
least for small E'S, a huge increase of the modulus of F (z) 
would be allowed to take place in the immediate neighbor­
hood of the boundary (see Fig. 1). But considerations similar 
to those which lead to Eq. (31) limit the rate of growth of 
IF(z)1 near Izl = 1 (see Sec. B below) and this in tum imposes 
strong constraints on M, linking its value to that of E. 

The above discussion emphasizes the importance of the 
way in which the Nevanlinna bound behaves at points 
z = (1 - x)eit/>, for x small. As it is well known from elemen­
tary potential theory, w(z) should be harmonic in the entire , 

complex plane cut along r' [where W(ZEr') = + 1] and along 
the image y" of r' through the unit circle r, where 
W(ZEY") = - 1. This means that the points of r are all with­
in the domain in which w(z) is harmonic, with the result that 
w(z) has a well-defined gradient at points on the circle, so that 
we may write 

w(z) = (1 - x)eit/» = K(t,6)x + ''', 
where 

-K(t,6) aw( reit/» I 
ar r= I 

(36) 

is positive and bounded. Hence, for points close to r, the 
Nevanlinna bound (35) may be rewritten as 

IF(z = (1 - x)eit/»I<M exp[ - K(t,6 )In (M /E)x]. (37) 

B. A limit for the growth of F(z) 

For large M and small E, the right-hand side of the ine­
quality (37) has a very sharp growth when x tends to zero 
(Izl---+l). However, the other inequality (31) severely limits 
the rate of growth ofF (z) near the unit circle. Indeed, writing 
1/ oit,6 ) as the real part of the boundary values of the holomor­
phic weight function S (z) (see Ref. 9), where 

S (z) = _1_ f21T dt,6' e
W + z _1_ __I_=Re S (eit/» 

21T Jo eW - z oit,6')' oit,6 ) , 

the bound (31) reads 

IF(zo) - F(zx)1 ..;;(8T + 80 ){Re ~ f21T dt,6' 
21T Jo 

(38) 

(39) 

To see how (39) limits the growth of F(z) near the boundary 
we take Zx = (1 - x)eit/> and Zo = eit/>. The integral 

I=~j d(ei~') s(eit/>·)ln(eit/>. -zX)ln(l-eW~x) (40) 
2m J e't/> e't/> - Zo 1 - e't/> Zo 

may then be computed by moving the integration contour 
around the singularities of the integrand. Observing that the 
residue of the pole at z' = 0 is zero so that the sole contribu­
tion to the integral is due to the cut of the first of the two 
logarithms of (40) along the radial segment z' = r' eit/>, 
1 - x";;r'..;; 1, we get the result 

i
ZO S (z') 1 - z'z 

Re I = Re 4 dz' --In x 

Zx z' 1 - z'Zo 

=4( dr,ReS(r'e
i
t/»ln 1 - r'(1-x). (41) 

JI-X r' (l-r') 

If x is small, Re(S (r' eit/> ))/r' can be expanded around 
z' =zo(=eit/», 

Re(zo S (~')) = Re{zo[ S (zo) + ~(S '(zo) _ S (zo) )(Z' _ zo) + ... ]} 
z Zo 1. Zo ~ . 

Re(S(z')) 
r' 

, { a Re S (z') } = Re S (zo) + (r - 1) ar' I r = I - Re S (zo) + "', (42) 

where we have used the fact that (z' - zo)==Zo(r' - 1) and that 
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Re(S '(zo).zo) = a(Re S (rei;)) I . 
ar r= I 

The bound (39) on the rate of growth of F(z) in the neighborhood ofthe boundary, in terms of the value of the weight 
function S (z) and its radial derivative at z = zo now becomes 

!F(ei;) - F((l - x)ei¢W«.dF(ifo W=(80 + 8 T )2{x8In 2 Re S(zo) + 2x2 [(2In 2 _ l)Re S(zo) _ a Re~(z') I ]} + .... 
ar r= I 

This may be rephrased as 

l(Fei
;) - F((l - y2)ei¢)I«.dF(ifo))2 

= yA (ifo ) + y3 B (ifo ) + 0 (y5), (44a) 

where we have introduced the notationy = v' x and the coef­
ficient functions A (ifo ), B (ifo ): 

A (ifo )=2~2In 2 ~ReS(ei¢)(80 + 8 T ), 

(44b) 

B(ifo) = 1 1/2 [(2In2-1)"ReS(ei¢) 
2(2 In 2) 

_ 2 a"Re S}r' e
i
¢) I ] (8

0 
+ 8

T
). 

ar r=1 

If one is interested to have a bound for 
IF(ei<P) - F((l - y2)ei<P)1 independent ofthe magnitude ofy, 
this may easily be written in terms of the upper bound 

Re S (e i
;) ofRe S (rei;) in the interval 1 - y2 < r < 1. It reads 

IF(ei
</» - F((l - y2)ei¢)1 

<Y2~(2 - y2)ln 2/(1 - y2)-( ReS(ei;))1/2(80 + 8T ). 

(44c) 

Equations (44a) and (44b) make explicit the relative contribu­
tions of Re S (ei¢ )= 1/ a(ifo) and the derivative term 
a Re S (ei;)I ar. This is of practical importance in devising an 
optimum strategy with regard to the choice of the weight 
function a(ifo ). On the one hand, we may wish to increase the 
accuracy within a particular range [ifol,ifo21 by making a(ifo ) 
relatively large (and Re S small) within that interval, but this 
benefit is offset by the contribution introduced through the 
derivative term a Re S (ei;)I ar which can become large if 
a(ifo ) has a large variation. II 

C. Vanishing of the bound M of F(z) on the boundary 

If M is large with respect to E, there will be a sharp drop 
of the Nevanlinna bound near r = 1, as one may see in Fig. 1 

(where the variable y = IX =..JT=r has been used for con­
venience), 

(45) 

where (seeEq. (37)]Q =K (ifo )In(M IE). But,ashasbeenshown 
in Sec. B, such a violent variation of the modulus of Fis ruled 
out. So, starting with someM = Mo as in Fig. 1, we will end 
up with a smaller M = M I, if we take account of the fact that 
the modulus of the increase of Fbetween z x = (1 - y2)ei

</> and 
zo = ei¢ cannot exceed .dF(ifo ) given by Eq. (44). 

To simplify the discussion, we shall suppose for the mo­
ment that the coefficients entering the right-hand side ofEq. 
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(43) 
I 
(44) do not depend on ifo, or, more correctly, that by A, B, and 
K we understand sup;(A (ifo )), sup<p(B (ifo )) and inf¢K (ifo ), re­
spectively. At the end of this subsection we shall drop this 
condition. 

The new value MI which replaces M depends on the 
point y beyond which the rule (44) is applied. Obviously, the 
lowest M 1 is obtained if y 1 is chosen to be the tangential point 
Yr where the curves Me - QY' and const - Ay - By3 touch, 
the value of the constant being chosen to ensure tangency. 
This corresponds to M given by the implicit equation 

M = inf (Me - QY' + Ay + By 3). (46) 
O<y<1 

However, in order to simplify the calculation, instead of 
Yl' we shall use the (nearby) pointyc' where the second deri­
vative is maximal, given by the condition 

d
3
e-QY' {3 } d
y

3 - 8Q 3 e - Qy~y c y~ - 2Q = 0, (47) 

the relevant solution of which isyc = ~3/2Q. 
Substituting this value of y as an approximate solution 

in Eq. (46) above, we get the following fixed-point equation 
forM: 

M = Me- 3/2 + fI.(A + 3B) (48) \j 2Q 2Q ' 

which may be rewritten in the following form, which, if E is 
small, is convenient for iterations: 

e3/2 
M=-,.--­

(e3/2 _ 1) 
3 (A + 3B ) 

2Kln (M IE) 2Kln (M IE) . 
(49) 

(See Fig. 2.) An asymptotic solution M o, valid for vanishingly 
small E'S, which is necessary if we want to prove thatMo-o 
when E-o, can readily be found by observing that for large 
values of the ratio M lEthe B term is negligible with respect 
to the A term. Hence, for very small values of E, we have 

(50) 

But the asymptotic form of the solution of the transcen­
dent equation X In X = a, for a---+ 00, (a -1/ c), is 
Xo = alln a; indeed lima _ ao (1/a)Xo InXo 
= lima_ oo {(l!ln a)(ln a -In In a) 1 = 1. Hence the corre­

sponding form for M is 

e3/2 .j3A [ ( e3/2 .j3A 1)] -1/2 

Mo = (e3/2 _ 1) !i#{ In (e3/2 _ 1) #{ --; . 
(51) 

So, we have shown that the modulus ofthe difference 
F (z) between the unknown amplitUde A T (z) and the com put-
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FIG. 2. Because of its internal symmetries, it is convenient to rewrite Eq. 
(49) in terms of m:=M/(A/v'K) and €'EE/(A/v'K). Then, if 
b = B /(AK), we have 

e1.5 31/2 I { 3 b } 
m = e" _ €' 21/2 (In(m/€))112 1 + 2In(m/€') . 

In Fig. 2 the dependence on m versus x = 1/ €' is plotted for three different 
values of b. One should notice the initial sharp drop of M = m(A /$) with 
I/E, which slows down considerably for x greater than that corresponding 
to the maximum curvature point. Nevertheless, M-+fJ, when x- 00 (E-+fJ). 

ed oneA O(z) does tend to zero when the errors of the data tend 
to zero, even on the boundary Izl = 1 of the domain ofholo­
morphy. This is not a trivial consequence of the Nevanlinna 
principle alone, but follows from combining this with the 
stabilizing condition used on the cuts. To computeM for a 
value of E different from zero, one may start with the asymp­
totic form (51) and iterate it using Eq. (49); since the right­
hand side of (51) contains only terms which vary slowly with 
M, the whole procedure converges rapidly. 

In the above calculation, we took no account of the ¢­
dependence of either K (¢ ) or of the coefficients A (¢ ) 
and B (¢ ). We shall now indicate an approximate procedure 
for introducing this ¢-dependence, which will yield a ¢-de­
pendent bound on the unit circle 

(52) 

In the next section, we shall describe the calculation 
which leads to the best possible bounds for F (z) at each point 
z; here we are concerned to obtain a result which is explicit, 
thus displaying the individual effects of the various terms, 
even though in deriving this, we make approximations so 
that the bound obtained is not the optimal one. The iterative 
procedure outlined below is a reasonable approximation for 
small E and provided that r does not extend too close to the 
unit circle. We define a weight function C(z), holomorphic 
and without zeroes in the unit disk, in terms of a real func­
tion il (¢ ), as follows: 

C(z)=exp _ d¢ e. +z(il(¢)_n) , {
I l21T i4> } 

21T 0 e'4> - z 
(53a) 
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where 

n =_1 (21T d¢ il (¢ ). (53b) 
21T Jo 

The above construction ensures that I C (0) I = 1, since 

In IC(z)1 =_I_i
21T 
d¢Re(e~+z)(il(¢)_n). (54) 

21T 0 e'4>-z 

Being a harmonic function, the value of In I C (z) / at z = 0 is 
the mean of its value (il (¢) - n) on the boundary (which is 
zero by construction). We now use this weight function C (z), 
which is allowed to have an arbitrary ¢-dependence, to re­
place F (z) by F (z) 

F(z) = F(z)C(z). (55) 

Having defined C (z) so that I C (0) I = 1, we shall make the 
approximation of supposing that the error E applies un­
changed to F (z). This is reasonable provided that r does not 
extend too far from the origin and also provided that the ¢­
dependence of il (which will be determined below, and 
which reflects the ¢-dependence of A and B ) is not too 
marked. If we now start with a bound M for IF (e i

4» I and 
proceed as before, since 

IF(z)I<M(M IE)-OJ(z), 

then for z close to (and within) the unit circle, 
[putting z = (1 - x)zo, zo=ei4> ], we find that 

IF(z=(I-x)ei
4»1 

<M exp[ - K(¢)( In(M IE))x] IC((1 - x)ei
4» I 

=MIC(zo)lexp [ -K(¢)ln(~x] 

X(I-X aln Ic(re
i
4»11 + ... ). 

ar r~ 1 

Now define vIi(¢ ) as 

vIi(¢ )~ I C (zo=e i4> )1, 

(56) 

(57) 

(58) 

puty2==x as before, and combine Eq. (58) with the bound for 

I1F [Eq. (44)], takingy = yc=~3/(2K(¢ )In(M IE)), to obtain 
the equation for vIi(¢ ), 

( 
3/2 1 a In IC(re

i
4»11 3) 

e - - ar r~ I' 2K(¢ )In(M IE) 

X ,j3 fA (¢ ) + 3B (¢ ) } 
[2K(¢ )In(M IE)]'/2 2K(¢ )In(M IE) . 

(59) 

To solve this equation by iteration, one first neglects the 
term containing a In I C (rei4> ) I ar in the first denominator (this 
will be small relative to e3

/
2 

- 1 if E is sufficiently small), and 
one gives M the asymptotic valueMo from Eq. (51). This 
yields a solution vii I(¢) whose ¢-dependence comes from 
K(¢ ),A (¢ ),B (¢ ) and which determines the normalized func­
tion il (¢ ) - n appropriate to this state of the iteration, 

ilM) - nl = InIC I (e
i4»/=ln(vliM )lMI ), 

where 
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1 12

" InM1=- d¢lnvU'M)· 
21T ° 

(60) 

Equation (60) follows from Eq. (53a) which may now be used 
to construct C (z) and thus a InIC(rei¢>lI!arlr~ l' For small E, 

the iteration will converge rapidly to yield the desired bound 
vU'(¢ ) for the difference between the true (unknown) function 
A T (ei¢> ) and the computed one A O(ei¢» for each point ei¢> on 
the unit circle. 

Although the stability of the whole procedure has been 
proven (i.e., the vanishing of M for E-o), the dependence of 

M on E in Eq. (51) is, of course, a weak one [1/~ln(1/E), as 
E-o]. It is interesting to look at the graph of M with respect 
to 1/ E: At the beginning the variation of M with 1/ E is large, 
and so, the value of 1/ Ec for which this curve has a maximum 
curvature gives a useful target value for the required preci­
sion of the perturbative calculus. [For example, for the func-

tion 1/~ In X this point is Xc = 1.591, which, if we approxi­
mate M by its asymptotic form (51), corresponds to an 

Ec = 1.40A /$. Since this point is near that where the deri­
vative of the right-hand side ofEq. (49) with respect to M 
equals - 1, Ec may easily be recognized numerically by the 
slowing down/failure of the iteration (49) for E> Ec '] The 
benefit from reducing E much below this level is not great. 

Once again, we emphasize that the method of this sec­
tion, and in particular the way in which the Nevanlinna 
bound was applied [bearing in mind that F (z) is analytic on 
r], involved approximations which were not required in 
principle. Thus, the bounds derived above are not the best 
possible, 12 although their explicit form makes them interest­
ing and valuable. In the next section, we consider the prob­
lem of determining the best possible bound as a function of ¢ 
and show that this satisfies a Fredholm equation. 

IV. DERIVATION OF THE OPTIMAL BOUND EO(z) 

The problem to be solved may be stated simply. The 
function F(z)==A T(Z) - A O(z) is required (a) to be holomor­
phic in the unit disk, (b) to satisfy a X 2-condition on r of the 
form 

X2 [F]=i dzn(z)IF(zW=4, 

and (c) to have a norm less than some constraint..1 2, 

82 [F ]=_1 12

" ((r(¢ Wu(¢ )d¢ <..1 2
• 

21T ° 

(61) 

Subject only to these conditions, we want to know the 
maximum value E O(z) which IF (z) I could have at any point in 
the unit disk and more particularly on the unit circle. 

Observe that the value of IF (z) I at a specified point z is a 
functional ofF (z). But X 2 and 8 2 are also functionals ofF (z), 
so that the problem may be completely expressed in terms of 
these three functionals. Instead of being expressed in terms 
of F, they may equally be regarded as functionals of the 
boundary derivative function/,., sincelr (¢) [together with 
the subtraction constant do=F (zoll determines F (z). So, we 
define 
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Y 1 [/r ] = L dz n(z) 

X {do + ~ f"ln (~~¢> -=-~ )Ir(¢ )d¢ r -4, 

(62) 

Y 2 [/,.] = 2~ f" ((r(¢ Wu(¢ )d¢ -..1 2, (63) 

Y~)[/r ] 

= 1 do + ~ f" In(~: -=-~ )/,.(¢ )d¢ 12 (==(EO(zW)· 

(64) 
The conditions X 2 = 4 and 8 2 = ..1 2 thus become 
Y 1 [/,.] = ° and Y 2 [f,.] = 0, respectively; these are the 
two constraints subject to which we must maximize 
Y~) [/r ]. To incorporate the constraints, we introduce two 
Lagrange multipliers and define the combined functional 

Y[/r] =A1Y1[/r] +Yz[/,.] +A3Y~)[/r]' (65) 

(We have written Y aSA1Y) + Y 2 + A3Y 3 rather than 
AtY) + A2Y 2 + Y 3 for notational convenience.) The ex­
tremum condition is that the Frechet differential of Y and 
the derivative of Y with respect to do should both vanish, 

aY [/,.;y] = 0, 

aY 
-=0. 
ado 

(66) 

(67) 

As an alternative problem, we can look for bounds on 
the real or imaginary parts. To do this the functional 
Y~) [/,.] of Eq. (64) has simply to be replaced by the appro­
priate forms. Thus the value ofRe F (z) at a specified point z is 
given by 

y~,re) [/r] = do + 2~ f" JV (zo;z,ei¢> lfr(¢ )d¢ ( E Ore(z)), 

(64') 

and 1m F (z) by 

y~.im)[/r] = 2~ f" vU'(zo;z,ei¢>lfr(¢ )d¢ (=Eoim(z)), 

(64") 

where JV(zo;z,z') and vU'(zo;Z,z') are the real and imaginary 
parts, respectively, of 2In((z' - zo)/(z' - z)). The two func­
tionals for Re F (z) and 1m F (z) are simpler than that for IF (z) I, 
which is quadratic in/,.; so, in order to keep the derivation as 
simple as possible, and because the bounds for Re F(z) and 
1m F (z) are of comparable physical interest, we choose the 
Re F (z) case for the derivation which follows. In this case Eq. 
(66) gives 

Ir(¢ )u(¢) + A3 JV(zo;z,ei
¢» +AJdO ( dz' n(z')..ff(zo;z',ei<l» 

2 Jr 

+ ~ 12,,- d¢' ( dz' n(z') 
21T ° Jr 

xJV(zo;z',ei<l>)..ff(zo;z',eW }{,.(¢ ') = 0. (68) 

As for the derivation of the integral equations (18) [see Eqs. 
(15) and (16)], we have required that ay [/r;Y] should vanish 
for arbitrary y(¢ ) and so have put the factor multiplyingy(t,h ) 
equal to zero to obtain Eq. (68). The condition ay /ado = 0 
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[Eq. (67)] gives the value of do (nr==f l' dz' n(z')), 

do = - _1_{.&. + _1_ r21T 
dr/J' r dz' n(z') 

nr 211 21T Jo Jr 

Xff(zo;z',e;tP'l(,.(r/J ,)}. (69) 

Substituting this in Eq, (68) yields the integral equation 

0-1/2(r/J lfr(r/J) =A.3GZ(r/J) 

+ ~~ f1T K(r/J,r/J ')0-1/2(r/J 'l(,.(r/J ')dr/J', (70) 

where 

- 1 { '1,6 
G Z(r/J ) = 20-1/2(r/J) ff(zo;z,e' ) 

__ 1_ r dz' n(z'V(zo;Z',e;tP)}, (71) 
nr Jr 

K (r/J,r/J ') = 1/2 - ~ /2 r dz' n(z'V(zo;Z' ,e;tP ) 
0- (r/J)o- (r/J') Jr 

X {ff(zo;Z',e;tP'j - nIl' i dz" n(z"V(zo;Z",e;tP'j}. 

(72) 

We see at once that the kernelK (r/J,r/J ') is identical with that of 
Eq. (20). This means that the program which was used to 
obtain the numerical solution to the main problem, as set out 
in Sec. II, may be applied directly to the integral equation 
(70). The desired optimal error bound E ore(z) for 
Re A T(Z) - Re A O(z), [see Eq. (64')], given in numerical form 
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by means of the solution of the integral equation (70), may 
thus be obtained with little extra effort. 
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We consider all different possible definitions of commutants and bicommutants for an x-invariant 
family of operators on a partial inner product space. We investigate their behavior with respect to 
the weak topology and we describe the situation when all commutants (resp. all bicommutants) 
coincide. 

PACS numbers: 02.30.Th 

I. INTRODUCTION 

Unbounded commutants of unbounded operator fam­
ilies have been studied in recent years by many authors. 1-7 

In this paper we start with a x-invariant family &I of the 
space Op V of all operators on a partial inner product (PIP) 
space V,8.9 and we define the commutant of &I within Op V. 
The study of this commutant shows that it is too pathologi­
cal and this suggests another more suitable concept of com­
mutant, namely one starts with &I and defines the commu­
tant within the ·-algebra Reg V of all regular operators on 
the PIP space V 10 and the bicommutant within Op V. 

We assume that V is quasicomplete in its canonical 
Mackey topology 1'( V, V*'). This implies that Reg V is iso­
morphic to the ·-algebra L +( V*') of all operators A E Op V 
such that A and its adjoint leave V*' invariant. The space 
Op V is equipped with the weak topology defined by the 
following system of seminorms: A---+-I <AifJ, ¢ > I; ifJ, ¢ E V*' . 
On Reg V ~ L + (V*' ) we will consider the weak topology in­
herited from Op V. 

The paper is organized as follows. In Sec. II we recall 
briefly some basic facts about PIP spaces and operators on 
them. In Sec. III we introduce the different possible defini­
tions of commutant for an x-invariant family &I ofOp Vand 
we study the relationships between our commutants and bi­
commutants with the ones considered in Refs. 2, 4, 5, and 6. 
In Sec. IV we study the weak closedness of the commutants 
and bicommutants. In Sec. V we give some criteria in order 
that the bicommutant coincide with the weak closure of &I. 
In Sec. VI we compare our commutants with the one intro­
duced in Ref. I and we describe the situation when all com­
mutants (resp. all bicommutants) coincide. 

II. PIP-SPACES AND OPERATORS ON THEM8,s 

A PIP-space V is a complex vector space with the fol­
lowing structure. 

(i) Y = ! V" rEI) is a collection of vector subspaces of 
V which covers V and is an involutive lattice with respect to 
set interesection, vector sum, and lattice involution: Vr ~ VI" 
Besides elements of Y, we consider also the extreme spaces 

V*' = n Vr and V = u Vr. 
rEI rEI 

(ii) A nondegenerate Hermitian form (·1· > (the partial 
inner product) is defined on ur Vr X VI' . 

0) Boursier Administration generale de la Cooperation au developpement, 
Belgium. 

(iii) There exists a unique element 0 = (5 in I such that 
Vo = Va s;, is a Hilbert space with respect to (·1· >. 

The nondegeneracy assumption ( V*')1 = 10 ) implies 
that every pair (Vr, VI' >, as well as (V*', V> is a dual pair 
with respect to the form (·1· > . We may therefore equip each 
Vr with its Mackey topology 1'(Vr' VI') and similarly for 
V*',v. 

An operator A on a PIP space V is a map D (A )---+- V, 
where D (A ) is the largest union of Vr's such that the restric­
tion of A to any of them is linear and continuous into V. The 
set of all operators on V, denoted by Op V is isomorphic to 
2'( V*', V)= (linear continuous maps V*'_V). Equiv­
alently Op V ~ B( V*', V*') = {separately continuous sesqui­
linear forms on V*' X V*'). Thus, Op V is a vector space. 
Moreover Op V carries an involution A~Ax (adjoint of A ), 
but it is not an algebra for the multiplication is not always 
defined. Such sets are called partial-x-algebras. 11 In order to 
avoid this undesirable feature, one has to consider a smaller 
class of operators; the so-called regular operators. 10 

An operator A on a PIP space V is called regular if 
D (A) = D (AX) = V. Equivalently, a regular operator is a lin­
ear continuous map of V into itself, which maps V*' into 
itself continuously. The set of all regular operators on V, 
denoted by Reg V is a·-algebra. 

The space Op V contains another remarkable subset, 
namely 

c ( V*' , s;,) = lA-closable in s;,1 V*' C D (A) n D (A *)) 

= {A E Op VIA (01: V*' ---+-s;,). 

We have Reg V ~ C( JIll, s;,) ~ Op V. 

From now on, we will assume that Vis quasicomplete in 
its Mackey topology. This implies in particular that we can 
simply identify Reg V with the .-algebra L + ( V*') of opera­
torsAsuchthat V*' CD(A) nD (A ·)andA (01 V*' C V*' (see Ref. 
10, Proposition 2.5). An Op·-algebra on V is a ·-subalgebra 
with unit of L + ( V*'). The condition of Mackey quasicom­
pleteness of V is actually satisfied in almost all examples; the 
only known exceptions are quite pathological. 12 

We will endow Op V with the weak topology defined by 
the following family of seminorms: 

A f--+ 1 <AlP, ¢> I; lP, ¢ E V*'. 

On Reg V ~ L + ( V*') we will consider the weak topology in­
herited from Op V. 

3204 J. Math. Phys. 25 (11). November 1984 0022-2488/84/113204-05$02.50 © 1984 American Institute of Physics 3204 



                                                                                                                                    

III. COMMUTANTS AND BICOMMUTANTS 

Let A, B E Op V. Following Ref. 11 the operator A is 
called the left multiplier of B (resp.B is the right multiplier of 
A ) and we note A E L (B )[resp.B E R (A )] if the productAB is 
defined. Similarly if fYI is a subset of Op V, we may define 

LfYI= n L (B ) = ICE Op V I CB exists V B E fYI j . 
Be!J71 

Definition 3.1: A subset fYI of Op Vis said to be a partial 
x-algebra if the following conditions are satisifed. 

(i) fYI contains the identity. 
(ii) fYI is x-invariant, i.e., A E fYI implies A x E fYI. 
(iii) If A, B E fYI and A E L (B), thenAB E fYI. 

It is easily verified that Op V satisfies these conditions. 
Let fYI be an x-invariant subset of Op V. It is natural to 

define the commutant of fYI in the following way: 

fYI' = IX E Op VIX E LfYI n RfYI 

and AX =XA, V A E fYlj. 

This set is a vector subspace of LfYI n RfYI. Furthermore it is 
x-invariant and contains the identity, but it is neither a par­
tial-x-algebra nor a weakly closed subspace ofOp V. Now we 
may define the following bicommutant: 

fYI" = (fYI')' = lYE Op V lYE LfYI' n RfYI' 

and YX=XY, V XEfYI'j. 

This set is an x-invariant subspace of LfYI' n RfYI'. Moreover 
it contains the identity and fYI itself. From this fact and the 

• relationfYI J C fYl2impliesfYI2 C fYI; we get that fYI'" = fYI' 
and therefore fYI"" = fYI". But in general fYI" is not a partial­
x-algebra and furthermore it is not closed with respect to the 
weak topology. 

The lesson of these considerations is that the concept of 
commutant introduced above is too pathological and thus 
not interesting for applications. One can improve the situa­
tion by considering the case when the product of two opera­
tors is always defined. This is true in particular whenever one 
of the two operators is regular. 1O Thus another (well-be-

fYI 

fYI ~ 

fYI ~ fYI" Oc ~ 

IV. CLOSEDNESS OF THE COMMUTANTS AND 
BICOMMUTANTS 

I 

fYI" aa 
UI 

fYI" ac 

One of the main properties of the algebra B (.p) of bound -
ed operators in .p is that the commutant and bicommutant 
(in the usual sense) are weakly closed. Ifwe try to extend this 
property to the commutants and bicommutants introduced 
in this paper, it turns out that this property remains valid 
whenever one starts with an Op*-algebra on 0' , i.e., PJt band 
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haved) concept of commutant suggests itself: let fYI be an x­
invariant subset ofOp V. We may define the following com­
mutant: 

fYI; = IX E Reg V ..... L +( 0')IAX =XA, V A E fYlj. 

As Reg V C LfYI n RfYI, the commutant fYI; is contained in 
fYI'. The set fYI; is an Op*-algebra on 0'. To prove this, it 
suffices to show that if X, Y E fYI; then their product XY also 
belongs to fYI;. 

We have XA =AX and YA =AY, VA EfYI. From 
these relations, it follows that V f, g E 0' we have 

AXY f = AXg = XAg = XA Y f = XYA J, i.e., XY E fYI;. 

One can also start with a subset of regular operators and 
define the commutant within Op V. Namely: let fYI be an 
Op*-algebra on 0'. We may define the following commu­
tant: 

fYlb = IX E Op VIAX =XA, V A E fYlj 

This set is an x-invariant subset of Op V. Clearly 
fYI; = fYI b n L + ( 0') coincides with Inoue's commutant4 

and we have the following relation between the different 
types of commutants: 

fYI; ~ fYI~ ~ fYlb, 

where fYI~ is the "weak unbounded commutant" introduced 
in Ref. 2. 

Now we may define two different bicommutants. 
(i) fYI~=IYEOpVIYX=XY, VXEfYI;j, 

which is an x-invariant subset of Op V containing fYI. From 
the above definition, it follows that if fYI is a x-invariant sub­
set of Op V, then fYI;;;c = fYI; and fYI ~ = fYI ~ . 
This bicommutant is related to fYI" in the following way: 

fYI" C fYI~ = (fYI;)' C Op V. 

(ii) PJt~=IYEL+(0')IYX=XY, VXEfYlbj. 

This set is an Op*-algebra. 
The two bicommutants fYI~c and fYI~ are related to the 

four ones considered in Ref. 5 in the following way: 

~ fYI" ctl ~ Op V 
UI UI 

~ fYI" ca ~ C( 0',~) 
ul UI 

~ fYI" cc ~ L +( 0') , 

fYI~ are weakly closed in Op V. But if one starts with an x­

invariant subset of Op V, then the commutants [here fYI; and 
(fYI b);] need not be closed in L + ( 0') with respect to the weak 
topology. 

Proposition 4.1: Let fYI be an x-invariant subset of Op V. 
If fYl0' C 0', then fYI; is weakly closed in L +( 0'). 

w 

Proof Let IAu j be a net in fYI; such that Au-+A with 

A E L +( 0'), i.e., (Au'P, t/J)-+(A'P, t/J), V 'P, t/J E 0'. We have 
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to prove that A E &l;. Let B E &l. This means that 
BAa = AaB and we get the following relation: 

(Aip, B *t/J) = lim(Aaip, B *t/J) = lim(Bip, A :t/J) = (Bip, A *t/J). 
a a 

This implies that A E &l~, and since A E L +( 0'), we have 
that A E &l;. 

Remark 4.2: The condition &l V*' C V*' implies that &l 
is an Op*-algebra on V*' and therefore &l; is Inoue's commu­
tant, which is indeed weakly closed in L +( 0') (see Ref. 4). 

Proposition 4.3: If &l is an Op*-algebra on V*' , then we 
have the following. 

(i) &lh is weakly closed in Op V. 
(ii) Ifmoreover &lh V*' C 0', then &l;{" is weakly closed 

inL +( 0'). 
The proof is similar to that of Proposition 4.1. 
Remark 4.4: The condition &l h V*' C V*' means that 

&l h is an Op*-algebra on V*' , i.e., &l h = &l;. Thus &l ({c is not 
weakly closed unless it is equal to &l;c' 

Corollary 4.5: If &l is an x-invariant subset of Op V, 
then &l~ is weakly closed in Op V. 

Proposition 4.6: If &l is an x-invariant subset of Op V, 
then the commutant of &l is equal to the commutant of its 
weak closure, i.e., &l; = (~w);. 

Proof The inclusion (~w); C &l; follows clearly from 
the fact that &l C ~w. Let us now prove that &l; C (~w);. 
Let B E ~w. Then there exists a net I Ba J C &l such that 

w 

Ba~B. Let X E &l;, i.e., XBa = BaX. We have 

(&P, X*t/J) = lim(Baip, X*t/J) 
a 

= lim( Xip, B :t/J) = (Xip, B *t/J), 
a 

i.e.,x E (~w);. 
Corollary 4. 7: Let &l and &l I be two x-invariant subsets 

of Op V such that &l I C &l and &l I is weakly dense in &l. 
then (&ld; = &l;. 

Proof The inclusion &l; C (&l d; is obvious. Now since 
&l I is weakly dense in &l, we have ~f ~ &l and therefore 
(~n; C &l;. From Proposition 4.6 we know that 
(~f); = (&ll);' This implies that (&ll); C &l; and thus we 
obtain the equality (&l I); = &l;. 

Remark 4.8: In Proposition 4.6 one can start with an 
Op*-algebra and consider the commutant &lh. In this case 
the equality &lh = (~W)h does not hold since &lh does not 
leave V*' invariant. We have only the inclusion &l h ~ (~W)h. 

v. BICOMMUTANTS AND THE WEAK CLOSURE OF Yl 

For algebras of bounded operators, it is well known that 
the usual bicommutant of a nondegenerate *-algebra 1 of 
B (.\)) coincides with the weak closure of 1, i.e.,1" = :dw

• 

When one starts with an x-invariant subset &l ofOp V (or an 
Op*-algebra on 0'), this property need not be satisfied and 
our aim in this section is to find sufficient conditions on Yl in 
order that the above property remains true. 

Let &l be an x-invariant subset of Op V and consider 
Yl b -&l n B (.\)). Following Ref. 8 we will say that a sub­
space W of a PIP space Vis orthocomplemented in V, if W is 
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the range of an orthogonal projection P, i.e., W = PV. We 
will say that &l b satisfies the condition (a) if V ip E V*' the 
norm closure of &l b ip is orthocomplemented in V. 

Proposition 5.1: Let &l be an x-invariant subset ofOp V. 
If &l b satisfies (a), then (Yl b)~ = ~ ~. 

Proof First, we know from Corollary 4.5 that (&l b)~ is 
weakly closed and hence ~'t: C (&lb)~' Now let 

ip E V*' C .\)andconsidertheclosedsubspace &lb ipl!'l! of.\). 

Let P be the projection on &lbipl!·l!. Since all elements 
A E &l b are bounded and &l b is an algebra, &l b leaves 

&lbiplHI invariant and this implies that AP=PA, i.e., 
P E (&l b);" =(&l b)~ n B (.\)). On the other hand P leaves the 

space &lbipll·11 invariant and therefore 
P E (&l b );=(&l b); n B (.\)), i.e., P E &l;. Let now B E (&l b )~ 
and t/J E V*' . Then 

((1 - P)Bip, t/J) = (Bip, (1 - P)t/J) = ((1 - P)ip, B *t/J) = 0, 

i.e., Bip = PBip, which in turn implies that 

Bip E &l b ip II'I! and hence B E ( &l b)' C ( &l b t· 
Proposition 5.2: Let &l be an x-invariant subset ofOp V. 

If &lb satisfies (a) and (&lb); = &l;, then &l~ = ~w. 
Proof The inclusion &l~ ~ ~w follows from the fact 

that &l~ is weakly closed. Now, the equality &l; = (&lb); 
together with Proposition 5.1. imply that 
Yl~ = (&l b)~ = ~b' Taking into account the relation 
~~ C ~w, we obtain the inclusion &l~ C ~w. 

Corollary 5.3: Let &l be an x-invariant subset ofOp V. If 
&l b satisfies (a) and &l b is weakly dense in &l, then 
&l~ = ~w. 

Proof Since &l b is weakly dense in &l, it follows from 
Corollary 4.7. that (&l b); = &l;. Now using Proposition 5.2 
we obtain the needed equality. 

Proposition 5.4: Let &l be an x-invariant subset with 
unit of Op V and assume that V ip E 0', the a( V, V*' )-clo­
sure of &lip is orthocomplemented in V. If 
Vip E 0', P'f' E &l; [where P'f' E L +( 0')] is the projection 

on &lipoj v, V#I then &l~ = ~w. 

Proof The inclusion ~w C &l~ is obvious since &l~ is 
weakly closed. Now let ip, t/J E V*' and B E &l~. Since 
P'f' E Yl; C L +( V*' )c::=:Reg V, P'f' is defined on the whole 
space V and PB = BP. On the other hand, we have the fol­
lowing relation: 

((1 - P'f')Bip, t/J) = (Bip, (1 - P'f')t/J) = ((1 - P'f')ip, B *t/J) = 0, 

i.e., Bip = P'f'Bip which implies that Bip E &lip oj v, V"I and 
therefore B E ~w. 

Let now Yl be an Op*-algebra on V*' and P the projec-
--oj V" V"I tion on the space &lip' :ip E 0'. Then on one hand 

every element A E &l is a( 0', 0') continuous and hence the 
space &lip oj V", V"I is invariant under &l, which means that 
PA = AP, i.e., P E &l h. But on the other hand, by definition P 
belongs to L + ( 0') so that finally P E &l h n L + ( 0') &l;. 
So, if in Proposition 5.4 one starts with an Op*-algebra on 
V*' , the assumption P E &l; is automatically fulfilled. But in 
this case we have to consider the bicommutant Yl;{" which is 
not weakly closed in L + ( 0') unless it coincides with &l;~. 
We summarize these considerations in the following. 
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Proposition 5.5: Let &I be an Op*-algebra on JIIi. If 
V (j'J E JIIi the oi JIIi, JIIi) closure of &I(j'J is orthocomplement­
ed in JIIi, then &I;:' = ~w. 

VI. COINCIDENCE OF DIFFERENT TYPES OF 
COMMUTANTS AND BICOMMUTANTS 

Ifwe start with an Op*-algebra &I on JIIi, we may define 
three different commutants, namely &I;, &I ~, and &I b, and 
six different bicommutants: &I~, &I;;", &I;~, &l0c , &1;<7' and 
&I;c (see Refs. 2, 5, and 6). We should like to have only one 
concept of unbounded commutant and unbounded bicom­
mutant for unbounded algebras. Thus our aim in this section 
is to find sufficient conditions in order that all the commu­
tants (resp. all bicommutants) coincide. 

Let &I be an Op*-algebra on JIIi. We can define 
&I' &I' and &lb. In general these commutants are related 
in c;he ;~llowing way: &I; ~ &I~ ~ &lb. At this stage one 
question arises immediately: when do they coincide? Obvi­
ously a necessary condition for the coincidence of these com­
mutants is that they all belong to L +( JIIi). 

To answer the above question we will compare &I b with 
a commutant introduced in Ref. 1 for closed Op*-algebras. 13 

This commutant, to be denoted by &I ~ will be described 
below. We will say that a closed Op*-algebra &I satisfies the 
condition /0 (see Ref. 1) if &I contains a generating monotone 
increasing sequence An> 1 such that An JIIi = JIll. 

Let &I be an Op*-algebra on JIIi . Then &I defines on JIIi 
a locally convex topology (y; (see Ref. 13) (the so-called &1-
topology) by the following seminorms: fl---+ IIAfll; 
f E JIll, A E &I. This topology is the coarsest locally convex 
topology on JIIi such that every A E &I is continuous from 
JIIi [t IY? ] into s;, endowed with the usual Hilbert space norm 
topology. 

Definition 6.1: The Op*-algebra &I is called closed if 
JIIi [t IY? ] is complete. 

Definition 6.2: Let &I be a closed Op*-algebra on JIIi 
and B ( JIIi [t IY? ], JIIi [t IY? ]) the set of all sesquilinear forms 
which are jointly continuous in the &I-topology, i.e., for 
13 E B ( JIIi [t IY? ], JIIi [t IY? ]) there is an A E &I such that for 
some constant M and all x, y E JIIi, 

113(x,y)I<MIIAx IIIIAyll· 

One can define the following commutane: 

&I~ = [13 E B ( JIIi (tlY? ], JIIi (tlY? ] )113 (Af,g) = 13 (f, A *g); 

V f, g E JIIi and A E &I J . 
Proposition 6.3: (See Ref. 1). If &I is an Op*-algebra on 

JIIi satisfying/o, then (i) &I~ is an Op*-algebra on JIIi satisfy­
ing /0' but &I ~ is not closed; and (ii) the &I - topology is 
metrizable; it is defined by the seminorms 

fl---+llAnfll; nEN, fEJIIi. 

From now on we assume that the closed Op*-algebra &l 
satisfies /0' Let us compare &I ~ with &I b. First, we know that 
Op V is isomorphic to the space B (V~, V~) of all Mackey 
separately continuous sesquilinear forms on JIIi X JIIi (see 
Ref. 8). Thus &I~ will coincide with &lb if in particular 

B (JIIi [t IY? ], JIIi [t IY? ]) B ( V~, V~). 
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Since the PIP space V possesses a central Hilbert space s;" the 
topologies t IY? and r( JIll, V) are comparable. In general the 
Mackey topology is strictly finer than the &I-topology and 
we have the following situation (where V IY?' the dual of 
JIll [t IY? ], and VI" the dual of JIll [ r], are endowed with 
their Mackey topologies, and each arrow denotes a contin­
uous embedding with dense range): 

JIIi [r]~JIIi [(gf ]~s;,~VIY?~VT' 

Now the &I-topology is metrizable and this implies thae4 on 
one hand t IY? = r( JIIi [t IY? ], V IY?)' On the other hand, 
JIll [t.Y? ] is a Frechet space; it is therefore barreled. Thus, 
JIll [ty? ] = JIIi [r] and the dual of JIIi (tlY? ] is r-quasicom­
plete, i.e., V IY? = VT = V~. Furthermore, since 
JIll [t IY? ] = JIll [ r] is a Frechet space, every separately con­
tinuous sesquilinear form on JIIi X JIIi is jointly continuous 
and we get that B ( JIll (tlY? ], JIIi (tlY? ]) B (V~, V~), which 
in turn implies that &I ~ = &lb. Since &I satisfies /0' &I b is an 
Op*-algebra on JIll and hence &lb = &I;. Now, taking into 
account the relation &I; ~ &I ~ ~ &I b we obtain the equa­
lity &I; = &I~ = &lb C L +( JIll). Summarizing this analy­
sis we get the following. 

Proposition 6.4: Let V be an arbitrary PIP space and &I 
a closed Op*-algebra on JIIi satisfying /0' Then 
&I; = &I~ = &lb = &I~ ~ L +( JIIi). 

In practice, it is much easier to start with the closed 
Op*-algebra &I on JIIi satisfying /0' and build the canonical 
PIP space V associated to it, following the construction of 
Ref. 15. In this way we get another PIP space structure 
around s;" namely the lattice generated by all the Hilbert 
spaces D (,,4 ) (with graph norm); A E &I. 

Proposition 6.5: Let &I be a closed Op*-algebra on JIIi 
satisfying /0' If V is the PIP space generated by &I, then 
&I; = &I~ = &lb = &l~ C L +( JIIi). 

Now, let us look at the bicommutants. If &I is an Op*­
algebra on JIll, then we may define six different bicommu­
tants, namely: &l;<7,&I~, &I;;", &I;:', &l0c , and &I::C. Obvi­
ously in order that these bicommutants coincide it is 
necessary that they all belong to L + ( JIIi). 

Assume that &I is closed and satisfies the condition /0' 
Then, &I ~ is an Op*-algebra on JIIi, but it is not closed. So in 
general 

&I;;A = [r EB ( JIIi [tlY?:' 1, JIll [tlY?:.])lr(Cf,g) 

=y(f,C*g); Vf,gEJIIi,CE&I~J 

is not an Op*-algebra and in this case no general connection 
can be found between &I;;A and, e.g., &I;~. But &I ~ is an Op*­
algebra and we know that it can always be extended by con-

tinuity to the Op*-algebra (its closure) &I~ on 

VI' [t IY?:' ] - JIIi [t9l':' ]. We can then consider the bicom­
mutant 

( &l~, JIIi [t IY?:' ])~-( &l~ )~ 

= {rEB ( JIll [t IY?:.]' JIIi [t IY?:.]) Ir(Cf,g) 

=y(f,C*g); Vf,gEJIIl,CE &l~}, 
which is an Op*-algebra on JIIi [t IY?:' ] • In general this com-
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mutantiscontainedin~:;A' Since~~ satisfies/o, ~~ also 
satisfies /0 (see Ref. 1). Thus Proposition 5.4 gives us the 

following result for ~~ : ( ~~); = ( ~~)~ 

= ( ~~ )b = ( ~~)~ C L +( JAI). On the other hand the 
Op*-algebra ~ itself satisfies the conditions of Proposition 
6.4 so ~; = ~ ~ = ~ b = ~ ~. These two relations together 
give the equality between the six different bicommutants for 

~~. 
Proposition 6. 6: Let Vbe an arbitrary PIP space and ~ a 

closed Op*-algebra on JAI satisfying /0' Then 

( ~ b); = ( ~ ~ ); = ( ~;); = ( ~ ~ )~ = ( ~;)~ 

=( ~;)o =( ~~)~ C L +( JAI). (*) 
Proposition 6. 7: Let ~ be a closed Op*-algebra on JAI 

satisfying /0' If Vis the PIP space generated by ~ ~ , then we 
obtain (*). 

VII. THE BOUNDED PART OF THE COMMUTANT ~o 

Definition 7.1: An Op*-algebra ~ is called symmetric if 
for every A E ~, (I + A * A ) - 1 exists and lies in 
~b==~ nB(~). 

Proposition 7.2: If V is a PIP-space and !?Jl a symmetric 
Op*-algebra on JAI, then ~ b = (~b )b· 

Proof The inclusion (~ b)O ::J ~ b follows from the fact 
that ~ b is contained in ~. Now assume that C E (~b)b and 
let A = A + ==A * I v.' Since ~ is symmetric we know that 
(1 +A 2)-1 andA (1 +A 2)-1 belongto~b' Forallf,gE JAI 
we have 

(CA (1 +A 2)-lflg) = (A (1 +A 2)-ICflg) 

= (AC(1 +A 2)-lflg)· 

Since (1 + A 2) -I JAI = JAI, we have C E ~ b and this implies 
the equality (~b)O = ~ b· 

Remark 7.3: A similar proof in Ref. 5 shows that 
~ ~ = (~ b)~ so that finally for symmetric Op*-algebras 
each commutant is equal to the analogous commutant of the 
bounded part. 

Proposition 7.4: (~b)b is a von Neumann algebra. 
Proof Since ~b is weakly closed in Op V, (~b)b is 

closed in B (~) = I (0, D)-representatives of ~b I (see Ref. 8) 
with respect to the weak topology inherited from Op V and 
therefore (~b)b is closed in B (~) with respect to the usual 
weak topology of B (~). 
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Assume now that the Op*-algebra ~ is closed and sat­
isfies the condition /0 (see Ref. I). Let fJ); be the Op*-algebra 
generated by :?ll and alIA n- 1, and N the von Neumann alge­
bra generated by all bounded operators in fJ);. Then we have 
the following. 

Proposition 7.5: Let Vbe a PIP-space and ~ a closed 
Op*-algebraon JAI satisfying/o. Then we have the following. 

(i) (~b)b = N' [commutant in the usual sense inB (~)]. 
(ii) If moreover ~o is symmetric then it is an EW*­

algebra in the sense of Dixon 16 (i.e., a symmetric Op*-alge­
bra whose bounded part is a von Neumann algebra). 

Proof (i) In Ref. 1 it is proved that if ~ is closed and 
satisfies /0' then (~~)b = N'. On the other hand ~~ = ~o 
by Proposition 6.4, so that finally (:?llO)b = N'. 
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The torsion and its curl form an anti-self-dual SO(8) tensor field F ABCD (y). The Maxwell equations 
are solved if this tensor is covariantly constant, while the Einstein equations are solved if it 
satisfies an algebraic relation at the origin. Such F ABCD are found as the kernel of the holonomy 
group in the 35 representation ofSO(8) and they extend the SO(8) of the round S7 to SU(8). 

PACS numbers: 02.40. + m, 04.50. + h, 1l.30.Pb 

Consider a general seven-dimensional compact but not 
necessarily connected Riemannian manifold M7 with spin 
connection B ~b and vielbein B ~. The structure equations of 
thisM7 read 

Ta=dBa+B'bI\Bb=O, (la) 

f7t ab _dB ab + B ~ I\B ~ = f7t~~B c I\B d • (lb) 

We recall that a Riemannian manifold satisfies (la) with B ab 

= B ~1Jcb = - B ba. We will assume that B a and B ab admit 
an isometry group G which acts transitively on M7 with sub­
group H. Hence, we shall have He SO(7), M7 will be identi­
fied with the coset space G / H, and the intrinsic components 
of the curvature R ~~ will be constants. 

A solution of supergravity must satisfy (la) and the 
Ricci tensors obtained from (lb) must satisfy the Einstein 
equation on M7 

f7t ac \ = - !(Facde F~de - ngab! F~def - 24e
2J) , (2) 

which follows from the Freund-Rubin ansatz,l where 
F MNPQ splits into a 7-part F abcd ( y) and a 4-part F mnrs 

= ie€mnrs' (Our conventions are the same as in Ref. 10.) With 
this ansatz the Maxwell equations in 4-space-time are auto­
matically satisfied, while in 7-space they read 

D SO(7)Fabed + eV~edefghF = 0 
a efgh . (3) 

Indices M,N, ... run from I,ll while m,n, ... = 1,4 and 
a,b, ... = 1,7. All indices are flat andF MNPQ has unit strength. 

The spin connection and vielbein in (la) and (1 b) can be 
combined into an SO(8) connection [J! (A,B = 1,8) 

[J ab = B ab, [J b 8 = _ [J 8b = pB b , (4) 

wherep is at this point an arbitrary constant. With this SO(8) 
connection we will define SO(8) covariant derivatives. 

We now show that the Maxwell equation in (3) is auto­
matically solved by introducing an SO(8) covariantly con­
stant anti-self-dual tensor F ABCD (y) 

DSO(8)FABCD = dFABCD + 4[J[D D'FABC]D' = 0, (5) 

F ABCD = - (l/4!)CABCDEFGFDEFG. (6) 

Decomposing the SO(8) indices into SO(7) indices, one finds 

alOn leave from The State University of New York at Stony Brook, Stony 
Brook, New York. 

D ~O(7)Fabed + 4pOe[d F abe ] 8 = 0 , 

D ~O(7)Fabc8 - pFabee = 0 , 

(7) 

(8) 

F abed = - (1!3!)c3cd F efg8 . (9) 

Equation (8) is the definition of the photon curl and tells us 
that F abe8 is proportional to the photon field A abe . Recalling 
that F abed has unit strength we obtain 

F abe8 = - pAabc . (10) 

Equation (9) defines what we call sesquiduality, namely the 
fact that the potential Aabe is dual to its curl. The anti-self­
duality in (6) makes (7) and (8) equivalent. Contracting the 
indices e and a in (7) and using (9) we retrieve the Maxwell 
equation (3), provided we fixp appropriately, namely, 

p= -6ev'L:. (11) 

The integrability condition of (5) reads 
D' 

R[D FABC]D' = 0, (12) 

where R ab = f7t ab _ p2 B a 1\ B band R a8 = pTa are the com­
ponents of the SO(8) curvature 2-form defined on M7 • Since 
M7 is by assumption Riemannian, T a in (Ia) vanishes and 
(12) is equivalent to 

"" d' c' 
.7l[d Fabe]d' =0, f7t[c Aab]e' =0. (13) 

For the round S7' 
2 where M7 is maximally symmetric, f7t~~ is 

a product of Kronecker delta functions. Choosing the nor­
malization of f7t~~ such that R ~~ vanishes, the integrability 
condition (13) is satisfied. In general the R ~~ do not vanish 
although they are constant, and the subalgebra ofSO(7) gen­
erated by the following linear combination of SO(7) genera­
tors: 

Ccd = (f7t~~ - p20~~)Jab , (14) 

must annihilate all SO(7) irreducible representations con­
tained in the SO(8) representation F ABCD ' Because of sesqui­
duality there is only one independent SO(7) irreducible part 
in this case, namely F abed . We see thus that a covariantly 
constant anti-self-dual representation F ABCD of SO(8) exists 
if and only if there exists an F abed which is a singlet under the 
group generated by the Ced in (14). 

The group generated by SO(7) generators in (14) is 
called the holonomy group. Its relevance for supergravity 
was first noted in the case of covariantly constant spinors on 
the squashed S7. 3 Our general discussion applies to any re-
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presentation and any manifold. The holonomy group is re­
presentation independent on a given manifold. For example, 
the holonomy group G2 for covariantly constant spinors on 
the squashed S7 is also the holonomy group for our Fabcd on 
the same manifold. It was recently shown that the squashed 
S7 is the coset Sp(4) X Sp(2)1Sp(2) X Sp(2).4 

On a different manifold, the holonomy group will be 
different, examples being the round sphere whose holonomy 
group is the unit group, or the coset spaces SU3 XSU2 

xU ,/SU2 XU, xU ,,5 whose holonomy group is SO(7) or (in 
one case) SU3 as we shall discuss. 

Let us briefly discuss the relation between our defini­
tion of holonomy group and the holonomy group one is fa­
miliar with in general relativity, that is, the holonomy group 
of Riemannian geometry. In general relativity one parallel 
transports a vector va around a closed curve and finds a ho­
lonomy group generated by Y?~~ Jab while in our case it is 
generated by R ~~ Jab' Thus, the maximally symmetric n­
sphere has in general relativity the holonomy group SO(n) 
while in our case So has as holonomy group the unit group. 
Said differently, in general relativity one considers the ho­
lonomy group of the metric connection ( = spin connection) 
while we consider here the holonomy group of the de Sitter 
connection [SOtS) in our case] which is the sum of the spin 
connection plus the vielbein term. The vector representation 
of the de Sitter group splits into a vector plus a scalar under 
the Lorentz subgroup, and since one restricts one's attention 
in general relativity to Lorentz vectors, one cannot consider 
the de Sitter holonomy group. However, for such representa­
tions as spinors and anti-self-dual FABCD which remain irre­
ducible under the Lorentz subgroup, one can define both 
holonomy groups. 

Returning to the main theme, we note that we have 
solved the Maxwell equations provided we can find an SO(7) 
tensor Fabcd which is invariant under the Ccd in (14). The Y?~~ 
which appear in (14) must also satisfy the Einstein equation 
in (2). The Ricci tensors Y?~~ in (2) are constant, but the 
Maxwell curls Fabcd depend on the coordinates y of M 7 • Be­
cause of the covariant constancy, the dependence of 
FABCD (y) on y can be obtained by sweeping out FABCD (0) 
from the origin in a way we will now first describe. After­
wards, we will come back to the Einstein equations. 

Consider any SOtS) covariantly constant SOtS) repre­
sentation, denoted generically by F (y). Consistency of the 
covariant constancy requires that the sotS) Lie algebra val­
uedcurvaturesR AB JAB in(14) annihilateF( y) at ally. Hence, 
F( y) must belong to the null space N of the matrix R AB JAB 

RABJABV=()<;::?vEN, F(y)EN for ally. (15) 

The 21 SotS) Lie algebra valued matrices R:: JAB-Ccd lie 
actually in SO(7) since the torsion T a vanishes as explained 
above. [Our connection is the Riemann ( = metric) connec­
tion which has per definition vanishing torsion, and not the 
connection which appears in the Maurer-Cartan equation of 
the coset manifold G / H. This Riemannian connection is in 
general not equal to the H-connection, but we need it since it 
appears in the field equations of supergravity.] In general the 
Ccd do not already span a Lie algebra; however their commu­
tators generate the holonomy algebra C of the given mani-
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fold, which may coincide with SO(7) or be a proper subgroup 
thereof. Given the null space N of C, we denote by.I the set 
of generators of SOtS) which annihilate N. Clearly.I is a 
(proper or inproper) subalgebra of SOtS) and contains C: 

C = SO(7)nI. (16) 

SinceCF(y) = Oforally,andF(y)EN,also.I F(y) = o for all 
y. Let us denote by g(y) the SOtS) matrix which sweeps F(y) 
out from the origin and the group generated by.I by S. Then 
gSESO(S) and (gS - Sg)v = 0 for vEN. Hence, 

F (y) = g( y)F (0), g( Y)ESO(S) for all y . (17) 

Clearly, g( y) maps nul vectors of.I into null vectors of .I. Let 
us denote the generators of g( y) by Z. Then we must have 

[Z,.I 1 C.I. (IS) 

These generators Z define a new subalgebra ofSO( S) because 
of the Jacobi identities. Z is the normalizer of.I in SOtS), i.e., 
Z is the largest subalgebra ofSO(S) in which.I is an invariant 
subalgebra (an ideal). The matrix g( y) can now be written as 
exp c' (y)Z[, where! labels the generators of Z. The relation 
between c' (y) and the SOtS) connection flAB (y) is dictated 
by the requirement that F be covariantly constant, namely 
by 

( 19) 

Example: Suppose .I = SO(p). Writing SOtS) as 
SO(p + q), clearly [SO(p), SO(q)] = 0, hence Z contains 
SO(p)XSO(q). Since the Grassmann manifold SO(p + q)/ 
SO(p)XSO(q) is symmetric, no other generators of 
SO(p + q), when commuted with SO(p), produce SO(p), 
hence, Z = SO(p)XSO(q). 

Having discussed how FABCD(y) depends on y, let us 
now come back to the Einstein equations in (2). Since 

Fabcd(y) = Y:(y)Y:(y)Y~(y)Y~(y)FABCD(O), (20) 

where Y! (z) are SOtS) matrices in the vector ( = defining) 
representation [the product off our Y's is the matrix g( y) in 
(17)], we can write 

Facde ( y)F~de(y) 

= Y:(y)Y:(y)FACDE(O)F~'D'E'(O) 

X(D~, - YfY~,)(D~, - Yfy~,)(D!, - y:y~,). 

(21) 

Due to the antisymmetry of the FACDE(O), only terms with 
three and two Kronecker deltas contribute 

Facde ( y)F ~de( y) 

= Y:(y)Y:(y)[FACDE(O)F~DE(O) 

- 3FACDE(0)FBCDE(0)Yi( y)Yi'(y)] . (22) 

For the completely contracted term F~bcd(Y) in (2) one finds 

F~bcd(Y) = F~BCD(O) - 4FACDE(0)FACDE'y:(y)y~,(y). 

(23) 

Since Y?~~ in (2) is constant, so must be (22) and (23). Requir­
ing that (22) and (23) must each separately be constant (clear­
ly a sufficient as well as a necessary condition) we can fulfill 
this requirement by imposing the following condition on 
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TABLE I. Table ofholonomy groups of solutions." 

G/H C 
Internal Holonomy 

coset space group in SO(7) 

S = SO(8) 
7 SO(7) 

s,q _ SO(5) ® SO(3) 
7 - SO(3) ® SO(3) 

G2 

SU(3)XSU(2)XSU(\) SO(7) 
SU2 XU,XU, 

p/qf=l 

SU3 XSU2 XU, SU(3) 
SU2 XU,XU, 

p/q= 1 

SU2 XSU2 XSU2 SO(7) 
U,XU, 

pf=qf=r 

SU2 XSU2 XSU2 SU(3) 
U,XU, 

p=q=r=l 

• The last two cases are treated in Ref. 9. 

FABCD(O): 

FACDE(O)FBC'DE(O) = a((j!(j~' - (j~'(j~) + h !~', (24) 

where a is a constant and where h is antisymmetric in AB 
and CC '. In that case the y-dependence drops out of the Ein­
stein equations and one is led to the following two algebraic 
equations: 

Y?~~ = - !(7a - 3a - n128a - 24e2 J)(jab , (25) 

Y?:"" = -!( - 6e2 
- n{28a - 24e2 J)(5mn . (26) 

Due to the condition in (24), M7 is an Einstein space and M4 
an anti-de Sitter space-time. The constant a is not arbitrary, 
but must be fixed such that the Y? ab satisfy the holonomy 
condition, namely such that Ccd in (14) have a nontrivial null 
space. Hence, the radii of internal and external space are 
fixed and universal. 

To appease the anxieties of the reader that a tensor 
FABCD(O) with the properties in (24) may not exist, we merely 
give an example. Consider FABCD(O) = aTjrABcD1], where 1] is 
any constant Majorana-Weyl spinor in 8 dimensions with 
Tj1] = I. Then, by Fierzing, one finds (24) with h equal to zero 
and a = 12a2

• (The 8 X 8 matrix r 8 is here equal to - i.) 
This concludes our general treatment. We now give 

three examples, see also Table I. 
(i) Round S7 with torsion: Since Y?~~ is maximally sym­

metric, the holonomy group C is either SO(7) or the unit 
group, depending on the value of the cosmological constant 
A. By choosing A such that the SO(8) curvature vanishes, 
C = O. This value of A is indeed the one which follows from 
the Maxwell equations. Since the null space is the whole 
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I Z 
Extension Centralizer 

of the holonomy of the I 
group to SO(8) 

SO(8) 

SO(7) 

SO(8) 

SO(6) SO(2) ® SO(6) 

SO(8) 

SO(6) SO(2)X SO(6) 

space, there are no SO(8) generators which leave the null 
space invariant. Hence also..!' = O. It follows that the norma­
lizer of..!' in SO(8) coincides with SO(8): Z = SO(8). Hence, in 
this case a general representation F depends on y as 
F (y) = g( y)F (0), whereg( y) is any SO(8) matrix whose coeffi­
cients depend ony.6 

(ii) The squashed S7 with torsion: In this case C equals G2 

(recall, C is a subgroup ofSO(7) and representation indepen­
dent). From the explicit form of the Riemann curvatures, C 
was identified as G2•

3 Hence, the subalgebra ofSO(8) which 
leaves, for example (recall that..!' is representation indepen­
dent), an SO(8) spinor invariant, is SO(7). The normalizer Z 
ofSO(7) in SO(8) is this SO(7) itself(see the example). Hence, 
the spinor is invariant under Z, and thus the spinor is actual­
ly constant. Thus the solution is FABCD (y) = FABeD (0) 
= TjrABcD 1], which is the dual of the associator of the octon­

ions. 
(iii) S~ XSU:z X U/ISU:z X U/ X ~ with torsion: There 

is actually an infinite class of these coset spaces, depending 
on the choice of the V( I) subgroups.5 The topology of these 
coset spaces depends only on the rationplq of two integersp 
and q. If p=/-q, the holonomy group is SO(7) in which case 
there is no sesquidual torsion and at least our method does 
not provide a solution. If p = q, the holonomy group is SV3 

[G2 is the subgroup of spin (7) which leaves one spinor invar­
iant (8 spin = 7 + 1). The subgroup of G2 which leaves an 
element of this-l invariant is SV3'] The subgroup of spin (8) 
which leaves two spinors invariant is SO(6), thus..!' = SO(6). 
[Indeed, SO(6)rspin(7) = SV3• Note also that spin (7) 
nSO(7) = G2 .] The normalizer of SO(6) in SO(8) equals 
SO(6)XSO(2); see the example. Hence, g(y) lies in 
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SO(6) X SO(2). Since SO(6) lies in.I, it acts trivially on F(O), 
hence g(z) depends on only one coordinate cp: 
g(y) = exp E(cp)T(S02)' One may first compute all the com­
ponents of n AB and then explicitly solve (dy + ng) F = 0. 
The n AB connection is an algebraic expression in terms of 
the vielbein and H-connection of the coset manifold. The 
only 0(2) generator which does not act trivially on F(y) is 
multiplied by a linear combination of coset vielbeins and H­
connections. Hence, calling this combination V, we must 
solve d exp E(cp)T(S02) + Vexp E(cp)T(S02) = 0. 

Now we will argue that we can choose coordinates on 
the coset manifold M7 = G / H such that Vonly depends on 
cpo The argument goes as follows: Since there are two covar­
iantly constant spinors (SU3 is the holonomy group), the su­
pergravity model will have an N = 2 supersymmetry. The 
supergroup will be Osp(2/4)XS', where S' is a purely bo­
sonic group. Hence, in the bosonic sector, there will be an 
SO(2) generator which commutes with all other bosonic gen­
erators [namely Sp(4) and S ']. Choosing the coordinate cp 
along the direction of this generator, V = V(cp) is a well-de­
termined function of cp, and one can solve the different equa­
tion for E(cp), 

We now change gears and come back to a property of 
the torsion tensor on the round seven sphere. As we will now 
derive using the formalism outlined above, its symmetry 
group is SO(7) as first conjectured by Warner, and proven by 
Castellani and Warner, and Englert et al. 8 and not G2 , as 
initially advocated by several authors, the present authors 
included. 6 We recall that 

FABCD(y) = y~'(y) ... Yg'(y)FA'B'C'D'(O), (27) 

where Y f (y) defines the coset elements at y. We recall the 
definition of a Killing vector k .fB (y). Let g be an arbitrary 
group element of SOtS) near the identity, g = I + ~B JAB 
with constant ~B. Then [we use here the right cosets HY (z) of 
SO(S)/SO(7)] 

Y(y)g = H(y,g)Y(y') , (2S) 

where y'll = yll + ~Bk .fB(y), and H(y,g) is an element of 
SO(7) subgroup given by H (y,g) = 1 + ~BW~~ (y)Jab' Thus 
we find for the Lie derivative of the spherical harmonic 
Y! (y) the following result: 

~B [/kABY~(Y) + WAB.CC'(y)Y~(y)] = Y~'(Y)ED,D, 
(29) 

(30) 

In particular, if we use the sweeping out matrix Y ~ (y) to 
define vielbeins and connections by dYY ~ \ the rigid SOtS) 
transformations cancel and these vielbeins and H-connec­
tions are invariant under the Lie derivative up to H-gauge 
transformation with parameter WAB,c c' (y). 

Returning to the problem of the invariance group of 
FABCD(y), we must find which Killing vectors ~BkAB leave 
FABCD (y) invariant up to a WAB SO(7) transformation. Clear­
ly, the sum of the action of a Killing vector and a (WAB)~ 
rotation of the index a of the harmonic Y:( y) is equivalent to 
an SOtS) rotation of the index B. Hence, the symmetry group 
of Fabcd (y) is the same as that of Fabc8 (y) and is equal to the 
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SOtS) subgroup which leaves FABCD (0) invariant. Since 
FABCD(O) is equal to fJrABcDTJ and the Dirac matrices are 
SOtS) invariant tensors, the answer is the following: The in­
variance group of Fabcd (y) is the stability group of a spinor in 
spin (S). Now spin (S) are the same matrices as SOtS) in the 
vector ( = defining) representation, and the subgroup of the 
latter which leaves a given S-component vector invariant, is 
SO(7). Thus, 

Fabcd(y) = Y~'(Y)YnY)Y~'(Y) [Y~'(y)Fa'b'c'd'(O) 

(31) 

is physically invariant under a full SO(7). The G2 subgroup 
leaves each term separately invariant, but the remaining sev­
en generators leave only the sum invariant. 

In (6) we introduced the notion of Killing vectors and 
saw that there were as many of them as there are generators 
in the group G. For the round seven sphere with G = SOtS) 
there are thus 2S Killing vectors. One can use covariantly 
constant spinors to give an explicit representation. 2 Actual­
ly, there are two sets of covariantly constant spinors which 
can be written as6 

There must be a relation between the two sets of Killing 
vectors 

K~j + = TJ[ + (y)raTJJ, + (y) 
and 

K~j ~ = TJ[ ~ (y)raTJJ. ~ (y). 
(33) 

Although it was clear to most that such a relation should 
exist, its form was unknown. We now present it here. 

Define SJ = (0,0, ... ,1,0, ... ,0). Then, 

K~j+(y)= [(1-j)(1 +y2)~lra(1 +j)1u. (34) 

Contract now with S X S matrices r 1l where the 16 X 16 
SOtS) matrices r A are related to the SO(7) matrices r a by 
r A = raX?, r 8 = I xr', so that r 8a = ira. Since in a 
trace one gets the same answers if one replaces r a by - r a 

we have the identity 

(
rab) ( r

ab 
) 

K ~j + 'r a = - K ~j ~ 'r a • 
1 JI - 1 JI 

Using the completeness relation 

r1!r1cf = S(DJKDJL - DJLDIK) ' 

we arrive at the desired relation 

(35) 

(36) 

Ki:(Y)=foK~j~(y)(r~1r';}'L +r~IraKL)' (37) 

The last issue we want to address ourselves to is a group 
theoretical aspect of the parallelizing torsion [i.e., of the in­
ternal photon A a /3y( y) on the roundS7 (Ref. 7)]. Consider the 
SU(S) Cartan~Maurer equation instead of the SOtS) 
Maurer-Cartan equation. Decomposed with respect to 
SO(7) they read 

(3S) 

(39) 

dB abc + 3B Icc' ABablc' + (pI6)Eabcdele2e3Bd A Bele2e, = 0. 

(40) 
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We obtained these results in Ref. 6 by evaluating 
dM + M AM = 0 with M =g-l dg = !Babrab 
- (i/2) pB ara + B abcrabc' Suppose that we express these 

SU(8) connections in terms of the SO(8) connectionsB (~ and 
B (0) as follows: 

B a - AB a B ab - B ab + aA abe B (0) 
- (0) , - (0) c , 

(41) 
Babe = (3B abedB~), F abcd = ± (e/2);qrabed1] , 

where a, (3, and A are constants. Let us further assume that 
B (~, B (0)' and A abc constitute the solution of the round S7 
with torsion. It is remarkable that in that case (41) satisfies 
(38)-(40). One could rewrite (38)-(40) in a suggestive manner 
as 

R AB + kB APQRB B PQR = 0 [k = constant] , 
(42) 

D SO(8)B PQRS = 0 , 

where B PQRS is anti-self-dual and Babe8 = (3FabcdB ~)' Clear­
ly one can split B ab into the parallelizing connection B ';i' of 
Englert plus a remainder .tJ.B 'It In that case the structure 
equations of SU(8) in (38) and (39) reduce to the structure 
equations of the parallelized S7' Equation (40) is a differential 
equation for the torsion field which, upon contraction of a 
pair of indices, yields the Maxwell equations. Thus, the tor­
sion which flattens the seven sphere is one of the components 
of a particular flat connection of SU(8). We conjecture that 
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the torsion of other solutions of d = 11 supergravity is also 
one of the components of the flat connection of a group 
which would be a "hidden symmetry" in the four-dimen­
sional theory. 
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Stringlike solutions of the self-dual Yang-Mills equations (dimensionally reduced to R 2) are 
sought. A multistring Ansatz results in the sinh-Gordon and Liouville equations. According to a 
general theorem, the solutions must be either real and singular and have infinite action, or 
complex and nonsingular, with zero action. In the Liouville case, explicit arbitrarily separated n­
string solutions of both classes are given. The magnetic flux for these solutions is found to be the 
Chern class of a Kaehler manifold, and it consequently assumes quantized values 41Tn/ e. The 
axisymmetric version of the sinh-Gordon is solved by the third Painleve transcendent P3' using 
the results onP3 by Wu etal. [Phys. Rev. B 13, 316 (1976)] and McCoy etal. [J. Math. Phys. 18,10 
(1977)]. The axisymmetric case can be cast into the Ernst equation framework for the generation 
offurther solutions. In the Appendix, the Euclideanized Ernst equation is shown to give self-dual 
Gibbons-Hawking gravitational instantons. 

PACS numbers: 02.40.Ky, 11.15.Kc 

I. INTRODUCTION 

Self-dual Yang-Mills (SDYM) equations in four Eu­
clidean dimensions share many properties with totally inte­
grable systems in two dimensions. For example, Bianchi­
Backlund transformations, nonlocal conservation laws, an 
associated linear problem, and a Kac-Moody algebra have 
been constructed! for SDYM fields. 

Our aim in this paper is twofold: The first is to point out 
that another feature of totally integrable systems, namely 
that of reducibility of the field equations2 under certain re­
strictions to ordinary differential equations of the Painleve 
type, also follows naturally from the SDYM equations when 
stringlike solutions of the SDYM equations are sought.3 

This, together with the fact that self-dual monopoles, i.e., the 
once dimensionally reduced form of the theory, have also 
been related to integrable systems,4 further strengthens the 
possibility that integrability is an inherent property of the 
SDYM equations, rather than a property limited to specific 
Ansiitze. 

Our second purpose is to present and examine these 
stringlike solutions. The search for such solutions consti­
tutes a natural step in dimensional reduction: Just as mono­
poles solve the static SDYM equations, one may expect to 
find Nielsen-Olesen strings5 when the theory is further re­
duced to R 2. Indeed, this reduction results in two "Higgs 
fields" (say A ~ andA :), which is just what is needed to break 
SU(2) completely. However, unlike with monopoles, here 
there is a price to be paid: A general theorem dictates6 that 
these solutions have to be either real and singular, or com­
plex and nonsingular. The action per unit X 3X 4 is then infinite 
in the former case and zero in the latter. Nevertheless, we 
believe there are good reasons to warrant an examination of 
both classes of solutions, in addition to the obvious one that 
they are there. 

(i) Complex Yang-Mills solutions may playa physical 
role, just as complex solutions of the anharmonic oscillator 
represent the WKB approximation. 7 

(ii) The complex solutions, owing to their vanishing ac-

tion, will have the same Boltzmann factor as the vacuum in 
the functional integral. 

(iii) The solutions exhibit flux quantization in multiples 
of (21T/e) as in the original Nielsen-Olesen model. The topo­
logical origins of the quantization is clearly seen in the Liou­
ville case, which also admits an explicit, arbitrarily separated 
n-string solution with flux equal to (41T/e)n. 

(iv) General approaches to the SDYM equations such as 
Yang's equations,8 the Atiyah-Ward method,9 and Back­
lund transformations! all involve a complexification of co­
ordinates and/or field quantities. Thus complex solutions 
are a natural part of this general framework. Indeed, Bums 10 

has recently given a class of complex nonsingular solutions 
based on the Atiyah-WardAnsatz. In the following, we will 
present a new set of explicit solutions, both in real and com­
plex forms. 

Finally, it should be noted that real, nonsingular strings 
also do not inherit all the attractive features ofSDYM mono­
poles: First of all, they can only be obtained by going outside 
the pure Yang-Mills system; second, their Bogomolny equa­
tions!! reduce to the Poisson-Boltzmann equation 

(1) 
which is believed!2 to be nonintegrable. The pure Yang­
Mills strings, on the other hand, are described by the sinh­
Gordon or the Liouville equations, both of which are inte­
grable. The previously mentioned Painleve equations are in 
fact just the axisymmetric special cases of these partial dif­
ferential equations. Notice that (1), in contrast, does not re­
duce to any of the Painleve equations. 

The contents of the paper, in more detail, are as follows: 
In Sec. II, we first reproduce the aforementioned theorem 
due to Lohe. 6 We then present a general Ansatz depending 
on two coordinates and show that self-duality results in a 
single function satisfying either the sinh-Gordon or the 
Liouville equation. In Sec. III, we consider the axisymmetric 
cases of these equations and thus obtain special Painleve 
transcendents of the third and fifth kinds, P3 and P5 • We then 
summarize the results found in a previous paper on a parti-
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cular P3 solution. The same P3 has been studied (see Ref. 13) 
in the context of the Ising model. Some of these mathemat­
ical results are directly applicable here. We treat the Liou­
ville equation in Sec. IV and present its multistring solutions 
in both real singular and complex nonsingular forms. The 
flux is seen to be the integral of a Kaehler form and given by 
(41Tle) times the number of strings. The axisymmetric solu­
tions are cast into the Ernst equation l4 formalism in Sec. V, 
with a view to generating axisymmetric n-string solutions of 
P3 using the solution generating techniques associated with 
the Ernst equation. After some concluding remarks in Sec. 
VI, we return in the Appendix to the Ernst equation, this 
time in Euclidean space-time, and point out that it, too, is 
related to self-duality, but in a different context: Solutions of 
this system are Gibbons-Hawking metrics l5 with self-dual 
Riemann tensors. 

II. GENERAL PROPERTIES OF SDYM STRINGS 

A. A no-go theorem 

An appropriate starting point for seeing what can be 
done with SDYM fields reduced to the plane is the following 
argument of Lohe6

: The action per unit time per unit length, 
i.e., the tension, can be written as 

T= J dX I dXzl!(Fij ± e€ij€"bct/lq/)Z 

+ 1((D;tW += €ij(DjqJ tf 
+ ((eI2jFij€ij€"bc,!lqJ C - €ij(DjqJ t(D;¢t) I, (2) 

where iJ = 1,2; t/I' = A ~ and qJa = A ~. For self-dual solu­
tions one is left with the last term. Using [D;,Dj] = eFij on 
it, one obtains 

T= J dX I dXZ{a l (t/I'(D2qJ )a) - a2(t/I'(D l qJ lan, (3) 

which, if converted to a line integral along a large closed 
curve, would appear to go to zero, being proportional to the 
covariant derivatives at infinity. As the original expression is 
positive definite for real Yang-Mills fields, one is forced to 
conclude that real, nonsingular self-dual solutions with as­
ymptotically vanishing covariant derivatives are pure gauge. 

As mentioned earlier, one possible remedy is to add a 
quartic Higgs potential by hand and thus abandon the pure 
Yang-Mills case. The Bogomolny equations then result in 
(1). However, if one decides to stay within the Yang-Mills 
system, the price to be paid is either a singularity or a com­
plex solution: Singularities prohibit the conversion of (1) to a 
line integral, while complex potentials can give zero action 
without vanishing field strengths. A third possibility of a 
doubly periodic solution, where the covariant derivatives do 
not vanish at infinity, will be mentioned in Sec. VI. 

B. A general Ansatz 

We restrict ourselves to the group SU(2) throughout. 
Let us first note an important difference between monopole 
and vortex solutions: In the former, a massless U(l) field 
A,. = ~·A,. survives, while in the latter the symmetry is com­
pletely broken, so that the magnetic field exponentially de-
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creases as we leave the center of the vortex. This broken 
magnetic field is projected out by Y12 = FI2'~ X~. Thus we 
should seek an Ansatz where the "massive photon" A I ,2 and 
the "Higgs fields" A3=t/l, A4 = cp are all nonparallel to each 
other. We may therefore try 

where theA,. = A ~eu al2i depend on (Xl> x2) only. Self-dua­
lity gives 

gl -!2 = 2hk, (Sa) 

kllh = hllk = 2g, (5b) 

k2/2h = h2/2k = - 2f, (5c) 

where!! = a! lax I' etc. Rearranging, one gets 

hh I - kk I = hh2 - kk2 = 0, 

which of course implies 

h 2 _ k 2 = const. 

(6) 

(7) 

The Ansatz thus corresponds to a hyperbola in (h, k) 
space, admitting equivalent parametrizations for (h, k ) for a 
given solution. If, however, the constant is set equal to zero, 
the hyperbola degenerates to its asymptotes, and one obtains 
a new and distinct solution. With a nonzero constant, we 
may use the two equivalent parametrizations 

h = a cosh(wI2), k = a sinh(wI2); 

h = a sec X, k = a tan X, 

(8a) 

(8b) 

while for the degenerate case we may set 

h = k = a exp;, (9) 

where a is an integration constant with the dimensions of an 
inverse length. Substituting (8) and (9) in (5) and using new 
dimensionless coordinates (x,y) = 2a(XI' x2), the self-duality 
equations reduce to 

V2w = sinh w, 

VZx + (VX )'(VX )tan X = tan X, 

and 

(lOa) 

(lOb) 

(11) 

C. Field strengths and invariants 

We shall not refer to (lOb) any further, except for a brief 
discussion showing the equivalence of a particular P3 to a Ps 
in the next section. Below we give the potentials and field 
strengths for (lOa) and (11); the former in Eq. (12) and (13) 
and the latter in (14) and (15): 

Al = - iu3(a/2)wy, A2 = iU3(a/2)wx, 

A3 = iu2a sinh(wI2), A4 = iula cosh(wI2), (12) 

F12 = F34 = ia2u3 sinh w, (13a) 

F13 = F42 = ia2(u2wx cosh(wI2) - ulwy sinh(wI2)), 
(13b) 

FI4 = F23 = ia2(ulwx sinh(w/2) + u2wy cosh(w/2)), 
(13c) 
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and 

Al = - iu3a;y, A2 = iu3a;x, A3 = iu2ae{;, A4 = iulae{;; 

F12 = F34 = 2iu3a
2e2{;, 

F13 = F42 = 2ia2(u~x - O"I;y)e{;, 

FI4 = F23 = 2ia2(ul;x + u2;y)e{;. 

(14) 

(15a) 

(15b) 

(15c) 

The tension T and the magnetic flux tP are also easily 
calculated. From 

T= ~2 J J dx dyiF12"F12 + FJ3·FJ3 + F 14·F14 l (16) 

and 

tP = ~2 J J dx dy F12"tPX¢, 

we find for the sinh-Gordon case 

T = :: J J dx dy V·(sinh liJVliJ) 

= :: J J dx dy V
2 

cosh liJ, 

tP = L J J dx dyV
2
liJ = ;e J J dx dy sinh liJ, 

while for the Liouville we get 

T = ~2 J J dx dy V·(e2{;V;) 

(17) 

(18) 

(19) 

= ~2 J J dx dy V2e2
{;, (20) 

tP = ~ J J dx dy V2; = ~ J J dx dy e2
{;. (21) 

Since all quantities have now been expressed in terms of 
liJ and;, it only remains to find explicit solutions of (lOa) and 
(11). In the following sections, an axisymmetric solution for 
P3 and a more general one for the Liouville equation will be 
given. 

III. PAINLEVE TRANSCENDENTS AND A SOLUTION OF 
P3 

A. Palnleve equations 

It has been shown that there are only 50 ordinary differ­
ential equations of the form 

d
2

u =F(U ~,z) (22) 
d~ 'dz' 

whereFis a rational function of its arguments, and the struc­
ture of the equation fixes the positions of the essential singu­
larities and branch points regardless of the values of the inte­
gration constants. 16 Forty-four of these define familiar 
elementary functions including the elliptic ones, while six 
give rise to new transcendental functions called the Painleve 
transcendentsP I - P6 (see Ref. 17). The interest of physicists 
in these functions stems from the experience that they al­
ways appear in connection with integrable systems: P2 and 
the modified KdV equation, 18 P5 and the Regge-Lund string 
model,19 P3 and the Ernst equation,19 to name just a few. 
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Furthermore, in integrable quantum theories, the P's para­
metrize correlation functions. 13,20 

In our problem, Painleve equations follow directly from 
(10) and (11) when axisymmetric special solutions are sought 
and the transformations exp(liJ/2) = U, exp( - 2iX) = - w, 

and exp; = v are made. Then, with r = ~X2 + y2, (lOa) and 
(lOb) lead to, respectively, 

u" + (1!r)u' = (1!U)(U')2 + !(u3 
- u- I

), (23a) 

w" + ~ w' = (W')2{_I_ + _l_} + 2w(w + 1) 
r 2w w-I w-I 

while the Liouville equation gives 

v" + (1!r)v' = (1!V)(V')2 + v3
• 

(23b) 

(24) 

In the notation of Ince,17 (23a) is a P3 with a = /3 = 0, 
r = - b =!; (23b) aP5 with a =/3= r = O,b = 2, and (24) 
a special case of(23a) with b = 0. From the fact that (23a) and 
(23b) come from the same constraint, it is clear that they 
must represent the same equation; and one can indeed be 
obtained from the other via the substitution cosh liJ/2 
= sec X- This shows that for certain values of the param-

eters a, /3, r, b, Painleve transcendents of different kinds can 
become identical. Similarly, (24) with r = 1, b = ° can be 
converted into a form with r = 0, b = - 1 by inverting v. 

B. A solution of P3 

Equation (24) is known to be soluble in terms of rational 
functions because of its special choice of coefficients. This, of 
course, is a consequence of the general solution to (11) given 
by LiouvilleY We shall therefore treat (24) in the next sec­
tion as a special case of the general equation. The P3 of (23a), 
on the other hand, has been studied in Ref. 13 by their deri­
vation of the correlation functions of the Ising model in the 
scaling limit. These authors give a simple one-parameter 
family of approximate solutions for r> I and r<, 1, and a nu­
merical solution in between for a value of the parameter cor­
responding to the critical point. We summarize below some 
of their pertinent results and those of an earlier paper. 3 

First, noting that liJ = 0 is a solution of (lOa), we can 
look for an axisymmetric solution for which liJ and liJ'-<) as 
r--+oo. This is needed to make the fields pure gauge at infin­
ity. Thus, neglecting nonlinear terms in (lOa), we get 

liJ" + (1! r)liJ' - liJ = 0, (25) 

which gives liJ--+cKo(r) as r--+oo. The corresponding solution 
of (23a) in Ref. 13 is 

u(A,r)--+1 - UKo(r). (26) 

Thus 4A = -c. 
In Ref. 13 the small-r behavior of u(A,r) is shown to 

depend crucially on the value of the parameter A, and explic­
it approximate solutions in terms of elementary functions 
are given. The case studied in most detail, A = l/1r, which 
represents the critical point in the Ising model, has also there 
been numerically solved for intermediate values of r, reveal­
ing a rapid monotonic increase to unity from zero at the 
origin. The role of the parameter A is not clear in the Yang­
Mills problem, but the case A = l/1r, being the least-singular 
and best-examined one, will also be the only one treated here. 

Cihan K. Saglio91u 3216 



                                                                                                                                    

The solutions for other values of A can, in principle, be 
brought to the same degree of completion when numerical 
work for intermediate r is extended to them. The A = Ihr 
solution behaves at the origin as 

u(r)---. - (r/2)(ln(r/8) + YE) + 0 (r 51n3 r), (27) 

where YE = 0.577 215 ... is the Euler-Mascheroni constant. 
To see what this behavior implies for the Yang-Mills 

field, we first apply the gauge transformation 
U = exp( - i()u3/2), where () = tan- I y/x as usual, on the 
axisymmetric case of (12). The result is 

Ar = 0, Ao = iu3a(OJ'/2 + l/r), 

A3 = iuoa sinh(OJ/2), A4 = iUra cosh(0J/2), (28) 

with Ur = (u l cos () + U2 sin ()) and Uo = (u2 cos () 
- U I sin ()). This form of the potential with only an azi­

muthal component is clearly suited for describing strings 

along the X3 axis. The asymptotic behavior OJ ---. - 4Ko(r)hr 

is now seen to give for the fields 

IA ~ I ---. l/eR - (4a/e1T)KI(2aR ), (29a) 
r~oo 

1"'1 = IA ~I ---. (4a/e1T)Ko(2aR), (29b) 
r~oo 

I'PI = IA ~ I ---.2a/e, (29c) 

lFi21 ---. (8a2/e1T)Ko(2aR), (29d) 
r~oo 

where clearly 2aR = r. Interpreting A4 as a scalar field, (29a) 
and (29c) are precisely the same asymptotic expressions 
found in the original Nielsen-Olesen solution. On the other 
hand, 1"'1 vanishes at large r, and this results in the break­
down of the usual Bogomolny proportionality between topo­
logical charge and the tension. At the origin, furthermore, 
some field components diverge like l/r In r unlike in the 
Nielsen-Olesen case. This of course is the singularity needed 
to circumvent the no-go theorem. 

The flux can be found using (19), (26), and (27): 

1T 100 

1 d ( dOJ) f/J = - rdr-- r-
e 0 r dr dr 

= .:!!.- rOJ' 10' = 21T !!£IO' = 21T (30) 
e e u e 

This is again exactly the Nielsen-Olesen value. The tension, 
on the other hand, diverges as expected: 

21Ta
2 100 

1 d 21Ta2 . T = -2- r dr - - (r cosh OJ) = -- [rOJ' smh OJ]O' 
e 0 r dr e2 

= 81Ta
2

lim . 
e2 r~ r 2 In2 (r/2) 

(31) 

IV. REAL AND COMPLEX SOLUTIONS BASED ON THE 
LIOUVILLE EQUATION 

A. The general solution 

Liouville21 in 1853 expressed the most general solution 
to the Minkowski version of (11) in terms of two arbitrary 
functions F (x - y) and G (x + y). In Euclidean space, one of 
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these becomes an analytic function of the variable z = x + iy 
and the other a function of the variable z*. If we also require 
that the solution be real (this will hold even for our complex 
Yang-Mills solutions), then; must be the following sym­
metric combination of an analytic function g(z) and its conju­
gateg*: 

;_.lln[4IdgI2 1 ] 
- 2 dz (1 - g*gf . 

(32) 

It is immediately obvious that the solution is singular along a 
curve defined by g*g = 1, in contrast to the singularity of P3 
which was limited to the origin. A famous theorem, also by 
Liouville, states that the singularity cannot be avoided un­
lessgis trivial, i.e., a constant. We can, however, trade a real, 
singular Yang-Mills solution for a complex, nonsingular 
one simply by (h,k )---.(ih,ik). Interestingly, gauge-invariant 
quantities such as the flux and the tension still remain real 
under this transformation. The Liouville equation now takes 
the form 

'il2; = _ e2{;, (33) 

to which the solution is 

; _ .lln[41 dg 12 1 ] 
- 2 dz (1 + g*g)2 ' 

(34) 

showing that the singUlarity has indeed disappeared. Note 
g(z) and l/g(z) correspond to the same solution;. The "mag­
netic field" Y 12 is given by 

.7 - F • ~ .i. _ 16a21 dg 12 1 
12- 12rpXor---;z d; (l+g*g)2' (35a) 

.712 = (16a2/e2)Jz Jz. In(1 +g*g). (35b) 

Thus Y 12 is a Kaehler form,22 obtainable from a Kaehler 
potentialln( 1 + g*g). The flux f/J is the integral of this form: 

f/J = ~2 f dx dy .7 12 

_ 16ia
2 fd Ad *1 dg 12 __ ~ 

- 8a2e z z d; (1 + g*g)2 

2i f dg Adg* 
= -; (1 +g*g)2 . 

(36) 

This is recognized to be proportional to the surface area of a 
sphere of unit diameter projected stereographically onto the 
complex g-plane. 

B. Particular solutions 

1. Nonsingular complex axisymmetric solutions 

To obtain these, we must clearly set g = zn = r neinO so 
that there is no angular dependence in (34). Furthermore, n 
must be an integer since otherwise the analyticity require­
ment fails along the positive x axis of our xy plane and (34) 
ceases to be a solution there. With this choice of g and the 
gauge used in (28), we find from (14) and (34) 

. ( _ 2nr 2n - In) 
Ar = 0, Ao = Iu3a + - , 

(l+r2n) r 
. 2nr n - I • 2nr n - I 

A3 = Iuoa , A4 = lUra , 
1 + r 2n 1 + r 2n 

(37) 
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and 

F12 = - i0"3(8a2n2r 2n - 2/(1 + r 2nf). (38) 

One can now check explicitly from (36), (38), or (21) that 
the flux tP is quantized in units of 417"/e: 

tP = _ 4'lTn r'" 2nr 2n - 1 dr = _ 4'lTn . (39) 
e Jo (1 + r 2n)2 e 

This, of course, agrees with the result found from the circuit­
al integral of Ao in (37), as long as one is careful to cancel the 
contribution of the pure gauge n/r term along the circle at 
infinity by that along a small circle around the origin. The 
quantization evidently comes from the fact that we cover the 
g(z) plane (and the spherical area it is projected into) n times 
as we cover the xy plane once. Note that the basic value of 
flux for the Liouville case is twice that in the sinh-Gordon 
one. 

The tension density is proportional to V Ze2
; by (20). 

This latter quantity is easily found to be 

V2e2; = 4nZ! [(2n _ 2)Zr 2n - 4 + (8 _ 16nZ)r 4n - 4 

+ (2n + 2)2r 6n -4]1(1 + r 2n)41. (40) 

This is invariant under n-+ - n as expected. Here J'l2 and 
the energy density (40) display increasingly sharp extrema 
approaching r = 1 with increasing n, and then rapidly di­
minish to vanishingly small positive values for r ~ 2. This 
accumulation of the tension density and the fields near r = 1 
for large n is reminiscent of the situation with axisymmetric 
multimonopoles. Z3 

2. Real singular axisymmetric solutions 

The real versions of the above set of solutions can be 
obtained by substitutingg = zn, this time in (32). This results 
in solutions which are singular on a ring r 2n = 1 and the flux 
integral becomes undefined. However, it is interesting that if 
one wishes to give meaning to the divergent integral 

I - dr-l '" 2nr2n -I f'" du 
Z - 0 (_ 1 + r 2n)Z - _ 1 U Z ' 

(41) 

via analytic regularization, Z4 one finds 

1z = [f'" d~] = 1, 
-\ U ,\=2 

(42) 

which is again the result (39). More generally, this could be a 
way of defining singular variants of integrals such as (36) for 
noncom pact Kaehlerian manifolds. 

3. Nonaxisymmetric solutions 

We have seen that g = zn gives a solution of flux 41Tn/ e 
centered around the origin. The flux value clearly does not 
change if one instead chooses 

(43) 

This is the case since g(z) still approaches z" at infinity for 
finite separations between the string centers Zk = X k + iYk' 

Hence at infinity one reobtains theAo in (37), whose circuital 
integral along a very large circle yields 41Tn/e. 

3218 J. Math. Phys .. Vol. 25. No. 11. November 1984 

V. THE ERNST EQUATION AND AXISYMMETRIC 
STRINGS 

We have so far obtained a general n-string solution of 
(11), but only a single axisymmetric solution of flux 21T/e of 
(lOa). It would also clearly be desirable to find more general 
solutions of this latter equation. Leaving aside for the mo­
ment the question of how separated n-string configurations 
satisfying (lOa) may be found, we address that of construct­
ing axisymmetric P3 solutions with a multiple of the basic 
flux. A successful strategy in the problem of axisymmetric 
multimonopole solutions employsz3 the solution-generating 
techniquesZ5 of the Ernst equation of general relativity by 
first casting known simple solutions into the Yang-Ernst 
formalism. Our aim here is to point out the applicability of 
the method to the string problem by showing how the given 
solutions fit into the Ernst framework, leaving the actual 
generation of new ones to a future note. 

In the Yang-Ernst formalism we must parametrize our 
solutions in terms of two functions F (R,x3) and G (R,x3) (no­
tice 2aR = rand 2aX3 = z) obeying the Ernst equations 

FV2F= VF·VF - VG'VG, (44a) 

F V2G = 2V F·VG, (44b) 

which guarantee self-duality. Here, unlike in (10), v2 a ~ 
+ a ~ + a ~. Potentials with self-dual field tensors are then 
expressed in terms of solutions of (44) by 

A\ = (i12F)(FzO"3 + G10"z + G20"1)' 

Az = (i12F)( - F\0"3 + GzO"z - G\O"\), 

A3 = (i/2F)Gp2' 

A4 = (i12F)(Fp3 + G30"d· 

(45a) 

(45b) 

(45c) 

(45d) 

The question here is what F and G should be in order to 
recover the solutions (28) and (37), and which, if any, gauge 
transformations are needed. This has been dealt with expli­
citly in Ref. 19 regarding P5 ; and it is not hard to find the P3 

and the Liouville F 's and G 's by following this example. For 
P3, the result is 

F = exp(2aX3)sech(li./(2aR )12), 

G = exp(2aX3)tanh(li./(2aR )12). (46) 

This is equivalent to (28) up to two gauge transformations: 
first, one of the form 

U1 = exp(iO"ztan-l(eaJ/2 )) (47) 

followed by Uz = exp( - i80"3/2). 
Although the general Liouville solution has already 

been given, we also write down the F and G for the axisym­
metric solution (37) for completeness: One simply takes 

F = exp;, G = 2aX3, (48) 

and no gauge transformation other than Uz is needed. 

VI. CONCLUDING REMARKS 

We have so far examined two ways of avoiding the no­
go theorem of Sec. II A: allowing singular or complex solu­
tions. Coupled with the two general multistring Ansatze 
based on the sinh-Gordon and Liouville equations, there are 
thus four classes of solutions to be studied. While both the 
complex and the real string solutions of the Liouville case 
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were presented, the only explicit solution of the sinh-Gor­
don case so far is the real, singular, axisymmetric P3 one. It 
would thus be of interest to (i) find a complex axisymmetric 
and nonsingular version of P3, (ii) search for axisYIl.lmetric 
solutions of higher flux by generating new solutions of the 
Ernst system set up in Sec. V, and (iii) look for separated 
multistrings. We intend to return to these problems in a fu­
ture publication. 

Should solutions of type (iii) exist, the no-go theorem 
might be beaten in yet another way: Finite tension, real and 
nonsingular Yang-Mills strings are not forbidden if the co­
variant derivatives do not go to zero at infinity. This would 
happen if one had a doubly periodic arrangement of vortices 
over the whole xy plane. The presence of a length scale (in the 
form of a lattice spacing) would presumably set a scale for the 
tension per string (the P3 vortex might be reobtained by put­
ting the origin at one vortex and letting the spacing as well as 
the tension go to infinity). Interestingly, this is exactly the 
picture of the Copenhagen "spaghetti vacuum, ,,26 before the 
spaghetti is "cooked" by quantum fluctuations and Lorentz 
invariance recovered. Mathematically, such a vacuum con­
figuration would also be described by a doubly periodic func­
tion. On the other hand, Painleve transcendents are known 
to be asymptotically related to elliptic functions. 17 The ap­
pearance of exactly the same P3 in an intrinsically doubly 
periodic problem, i.e., the Ising model, is another hint in this 
direction. In principle, one only needs to find a doubly peri­
odic solution of (1Oa) and check whether these expectations 
are borne out. 

Regarding the question of integrability the emergence 
of integrable equations and Painleve transcendents in both 
the twice dimensionally reduced SDYM equations consid­
ered here, and in the radial equations for a self-dual Yang­
Mills monopole,4 strengthens the likelihood that integrabi­
lity is an inherent property of the SDYM system. In fact, the 
particular equations found, i.e., the sinh-Gordon and the 
Liouville, have to do with a specific integrable system, the 
so-called Toda field theory, as do the radial equations for a 
self-dual monopole. As the Toda system of equations also 
naturally gives rise to the Dodd-Bullough equation,27 it is 
very likely that a Yang-Mills Ansatz leading to this equation 
also exists. It is possible that the class of solutions found by 
Burns lO are related to the Dodd-Bullough equation. 

Finally, there remains an interesting mathematical 
problem to be investigated. Nahm28 has recently shown how 
to adapt the ADHM formalism29 to the multimonopole 
problem. It should similarly be possible to incorporate the 
Painleve solutions found here into the ADHM framework. 
This would not only reveal an unexpected connection 
between the theory of differential equations and the ADHM 
construction, but could possibly lead to a generalization of 
the Painleve transcendents by using groups larger than 
SU(2). 
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APPENDIX: THE EUCLIDEAN ERNST EQUATION AND 
SELF-DUAL RIEMANN TENSOR 

The functions F and Gin Eq. (44) parametrize a station­
ary axially symmetric metric30 of Minkowskian signature: 

ds2 = - F(dt - il dO)2 

+ (l/F)[e2Y(dR 2 + dZ 2) + R 2 d0 2]. (AI) 

Here G is hidden in the function il, related to it through 

In going to Euclidean space, the metric (AI) must remain 
real after t~it; thus we must also have (il,G )~(iil,iG). The 
vacuum Einstein equations, to which (44a) and (44b) also 
belong, now become 

FV2F= VF·VF+ VG·VG, 

FV2G = 2VF·VG, 

V22y = (l/F2)(G; - F~), 

2yz = (R IF 2 )(FRFz - GRGZ )' 

2YR = (R 12F2)(F~ - F~ - G~ + G~), 

(A3a) 

(A3b) 

(A4a) 

(A4b) 

(A4c) 

where (A3) is obviously the Euclideanized Ernst equation. 
A remarkable simplification occurs if one looks for so­

lutions with 

F=G. (AS) 

Equations (A4b) and (A4c) then imply y can at most be a 
constant, which we set to zero for convenience. Further­
more, the single resulting equation 

(A6) 

simply means that V = F - I is harmonic: 

V2V=O. (A7) 

Introducing the vector fiB = ilelJIR we can now write 
the Euclideanized metric with V - I = F = G and y = 0 as 

(AS) 

On the other hand, using the freedom in the sign of G turns 
(A2) into 

(A9) 

which is also consistent with (A 7). 
The metric (AS), subject to the condition (A9), was first 

written down by Gibbons and Hawking,15 who gave a class 
of metrics with self-dual Riemann tensors. In their work, 
self-duality is guaranteed by (A9). Among all possible solu­
tions of (A 7) and (A9), the special case, where Vis a superpo­
sition of "Newtonian mass point potentials" and fiB a su­
perposition of corresponding "magnetic mass vector 
potentials," gives Taub--NUT or gravitational instanton me­
trics. But this special restriction is built into our metric: fiB 
is already in the azimuthal direction, so that with an axisym-
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metric Vof the form 

N m 
V = € + ~ --::------::-~ 

i~l [R 2 +(Z-zyr /2
' 

(AlO) 

fiH would indeed be a sum of Dirac monopole potentials. 
Here € = 0 and € = I represent collinear N - 1 gravitational 
instanton and N-center Taub-NUT metrics, respectively. A 
single m is necessary in order to avoid string singularities. 

One might wonder at what point self-duality has been 
introduced into the standard Ernst framework defined by 
(Al)-(A4). The answer is in Eq. (A5), which is an extra condi­
tion singling out the self-dual solutions to (A3) and (A4). 
Thus the Minkowski form of the Ernst equations corre­
sponds to self-duality for Yang-Mills fields, while a particu­
larly simple special case of the Euclidean version produces 
metrics with self-dual Riemann tensors. 

IL. L. Chau, in Group Theoretical Methods in Physics, Istanbul, 1982, edit­
ed by M. Serdarog1u and E. inonii (Springer-Verlag, Berlin, 1983). 

2M. J. Ablowitz, A. Ramani, and H. Segur, J. Math. Phys. 21, 715 (1980). 
3C. Sac<lioglu. Nucl. Phys. B 178, 361 (1981). 
4D. Olive, ICTP/81/82-8; A. Lenzov and M. Saveliev, Lett. Math. Phys. 3, 
207 (1979). 

5H. Nielsen and P. Olesen, Nucl. Phys. B 61, 45 (1973). 
6M. Lohe, Phys. Lett. B 70,325 (1977). 
7J. Richard and A. Rouet, Nucl. Phys. B 183, 251 (1981) and 185, 47 (1981); 
R. Abbott, Durham preprint DTP-82/1, 1982; R. Abbott and W. Zakr­
zewski, Durham preprint DTP-83/1, 1983; A. Lapedes and E. Mottala, 

3220 J. Math. Phys .. Vol. 25. No. 11, November 1984 

"Complex path integrals and finite temperature"; R. Stora (private com­
munication). 

8e. N. Yang, Phys. Rev. Lett. 38, 1377 (1977). 
9M. P. Atiyah and R. S. Ward, Commun. Math. Phys. 55,117 (1977). 
lOA. D. Bums, Durham preprint DTP-83/2, 1983. 
lIE. Bogomolny, Sov. J. Nucl. Phys. 24, 449 (1976). 
12B. Julia (private communication). 
I3T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, Phys. Rev. B 13, 

316 (1976); B. M. McCoy, C. A. Tracy, and T. T. Wu, J. Math. Phys. 18, 
10 (1977). 

14p. J. Ernst, Phys. Rev. 167, 1175 (1968). 
15G. W. Gibbons and S. W. Hawking, Phys. Lett. B 78, 430 (1978). 
16p. Painleve, Acta Math. 25, 1 (1902); B. Gambier, Acta Math. 33, (1910). 
17E. L. Ince, Ordinary Differential Equations (Dover, New York, 1956), p. 

345. 
18B. M. McCoy, C. A. Tracy, and T. T. Wu, Phys. Lett. A 61, 283 (1977). 
19p. Lund and T. Regge, Phys. Rev. D 14,1524 (1976); H. Morris and R. 

Dodd, Phys. Lett. A 75, 249 (1980). 
20M. Sato, T. Miwa, and M. Jimbo, RIMS (Kyoto), 207 (1976); E. Date, M. 

Jimbo, M. Kashiwara, and T. Miwa, RIMS (Kyoto), 362 (1981). 
21J. Liouville, J. Math. Appl. 18, 71 (1853). 
22T. Eguchi, P. Gilkey, and A. Hanson, Phys. Rep. 66, 213 (1980). 
23p. Porgacs, Z. Horvath, and L. Palla, Phys. Lett. B 109, 200 (1981). 
24E. Speer, Ann. Math. Stud. 62, (1969). 
25W. Kinnersly and D. Chitre, J. Math. Phys. 18, 1538 (1977). 
26p. Olesen, talk in Karpatz, Poland, 1981, NBI-HE-81-5, and references 

therein. 
27R. Dodd and R. Bullough, Proc. R. Soc. London, Ser. A 352, 481 (1977). 
28W. Nahm, in Ref. I. 
29M. Atiyah, N. Hitchin, V. Drinfeld, and Yu. Manin, Phys. Lett. A 65, 185 

(1978). 
30A. Papapetrou, Ann. Phys. 12, 309 (1953). 

Cihan K. Saglioglu 3220 



                                                                                                                                    

First integrals via polynomial canonical transformations 
P. G. l. Leach 
Department of Applied Mathematics, University of the Witwatersrand, Johannesburg, 2001, South Africa 

(Received 21 July 1983; accepted for publication 6 April 1984) 

Maharatna, Outt, and Chattarji [J. Math. Phys. 20, 2221 (1979)] discussed the use of time­
dependent canonical transformations for the determination of first integrals for time-dependent 
Hamiltonian systems. One particular proposal that successive time-dependent polynomial 
canonical transformations will enable first integrals to be found for a wider variety of time­
dependent polynomial Hamiltonians than can be obtained using time-dependent linear canonical 
transformations is shown to be not true for the paradigm which they selected. It is suggested that 
their ansatz is ill-founded in general. 

PACS numbers: 03.20. + i 

I. INTRODUCTION 

In a paper, which appeared in 1979, Maharatna, Outt, 
and Chattarji I (hereinafter referred to as MOC) discussed 
some applications of time-dependent canonical transforma­
tions to nonlinear nonconservative systems. Their aim was 
to determine first integrals for such systems. 

In the first instance they applied the method of time­
dependent linear canonical transformations2 to a one-di­
mensional time-dependent nonlinear Hamiltonian. To facili­
tate the discussion a Hamiltonian system with the lowest 
order of nonlinearity (Le., terms cubic in the canonical varia­
bles q and p were added to a quadratic Hamiltonian) was 
treated. It was shown that only when the time-dependent 
coefficient in the Hamiltonian had specific forms of time 
dependence could a first integral be found by this method. 
Even with this limitation the result was a useful addition to 
the then state of the art. The same method was applied to a 
linear damped system and a first integral was obtained with­
out restriction on the nature of the time dependence. 

Taking as a paradigm the Hamiltonian of a damped 
Ouffing oscillator, they showed that it was possible to reduce 
the degree of nonlinearity by means of a time-dependent 
quadratic canonical transformation. This resulted in the de­
gree ofthe Hamiltonian being reduced from 4 to 3. The coef­
ficients of the transformed Hamiltonian were still time-de­
pendent. 

They then proposed that it may be possible to remove 
the explicit time dependence of a nonlinear Hamiltonian sys­
tem by means of a succession of nonlinear canonical trans­
formations. In the particular instance of the Hamiltonian of 
the Ouffing oscillator which is a polynomial in the canoni­
cally conjugate variables q and p, the nonlinear canonical 
transformations were to be quadratic polynomials in q and p. 
The suggested procedure was to apply a canonical transfor­
mation of the form 

2 2 - j 

q' = L L aij(t )qpj, 
j=O i=O 

2 2-i 
p' = L L bij(t )qpi, 

j=O i=O 
(Ll) 

where q' and p' are the new variables and q and p the old 
variables, to a time-dependent polynomial Hamiltonian so 

that the degree of the transformed Hamiltonian was one less 
than that of the original transformation. This process was to 
be repeated until a quadratic Hamiltonian with time-depen­
dent coefficients was obtained. The time-dependence of this 
Hamiltonian would then be removed by means of a time­
dependent linear transformation as has been described else­
where (Leach2

). 

The calculations for this procedure published in MOC 
were not complete and further work along their lines does 
not seem to have appeared in the literature. The aim of this 
note is to examine two questions raised by this part of the 
work ofMOC. The first is whether a class of time-dependent 
systems wider than that which can be treated by time-depen­
dent linear transformations can be treated successfully by 
means of time-dependent polynomial transformations. The 
second is whether in fact such polynomial transformations 
exist in a canonical context. 

II. STRUCTURE OF THE FIRST INTEGRAL OF MDC 

As a paradigm for their method, MOC used the Hamil­
tonian of the damped Ouffing oscillator 

H (q, p,t ) = ! p2e - 2yt + !w2q2e2Yt _ .lEq4e2Yt. (2.1) 

We propose to use a slightly more general paradigm, viz. 

H(q,p,t) = !p2 +! q2 +.lA (t )q4. (2.2) 

We explain how the Hamiltonian (2.2) is more general below. 
Given a Hamiltonian 

(2.3) 

the function a(t) may be removed by means of the change of 
time variable 

t-t':t'= f'a(U)du, (2.4) 

giving an equivalent description of the same system by the 
Hamiltonian 

H '(q, p,t ') = ! p2 + !b 'It ')q2 + .le'(t ')q4, 

where 

(2.S) 

b '[t '(t)] = b (t )la(t), e'[t '(t)] = e(t )/a(t). (2.6) 

The function b '(t') is then removed by the time-dependent 
linear canonical transformation 
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(q, p)-(Q,P: Q = qlp, P = pp - pq), (2.7) 

where pit ') (the overdot denotes d I dt ') is a solution of the 
differential equation 

p + b 'p = p-3 . (2.8) 

The transformed Hamiltonian is 

(2.9) 

The further change of time variable 

t ' =_T: T= f'p-2(U)dU (2.10) 

gives the equivalent Hamiltonian 

H(Q,P,T) =! p 2 +! Q2 + ~A (T)Q\ (2,11) 

where 

A [T(t ')] = c'(t '106(t '). (2.12) 

The Hamiltonian (2.11) has the form given in (2.2). The re­
duction of(2.3) to (2.2) by the method outlined above enables 
us to use the point transformation of (2. 7) rather than a more 
general linear transformation which would introduce higher 
powers of the momentum. 

The method proposed in MDC was to apply (i) a time­
dependent quadratic canonical transformation of the type 
(1.1) to reduce (2.1) to a time-dependent Hamiltonian cubic 
in q' and p'; (ii) a second quadratic canonical transformation 
of the same form, viz. 

2 2-j 
Q I = L L cij(t )q'p'j, 

j=O i=O 
2 2-j 

pi = L L dij(t)q'p'j, (2.13) 
j=O i=O 

to reduce the cubic Hamiltonian to a time-dependent qua­
dratic Hamiltonian; and finally (iii) a time-dependent linear 
canonical transformation 

1 I-j 

Q= L L eij(t)Q'ip'j, 
j=O i=O 

1 I-j 

p= L L /;j(t)Q'ipli, 
j=O i=O 

(2.14) 

to convert the time-dependent quadratic Hamiltonian to a 
time-independent form. The resulting Hamiltonian is a first 
integral of the system it describes and so of the original Ha­
miltonian system. 

The suggestion in MDC is that, by the method outlined 
above, first integrals may be found for a wider class of time­
dependent systems than the class which may be treated by 
time-dependent linear canonical transformations. Their po­
sited first integral is quadratic in the final set of canonical 
variables, Q and P, hence quadratic in Q I and pi, quartic in q' 
and p', and so octic in q andp. Before we examine the exis­
tence of an octic integral for a Hamiltonain of the type (2.2), 
we shall determine the conditions under which (2.2) has a 
first integral in terms of a linear canonical transformation. 

III. A FIRST INTEGRAL FOR A HAMILTONIAN OF TYPE 
(2.2) 

First integrals for Hamiltonians of the form 

H(q,p,t) = !p2 + V(q,t), (3.1) 
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which are polynomials in p have been treated recently by 
Gascon, Ramos, and Aguirre-Dabon3 and Lewis and 
Leach.4 The approach was quite direct in that a first integral 
of the form 

n 

I(q,p,t) = L X;(q,l)pi (3.2) 
i=O 

was assumed and the Liouville equation 

aI -+ [I,H]qp =0 at (3.3) 

solved. 
For the case n = 2 it was found that when 

V(q,t) =p-2 (~ [lDq - bp-l)2 - W +pp)q2 + 2bq] 

+ G(q p-l + I bp-3 dt)) + g(l), (3.4) 

the first integral was 

I(q,p,t) = ~ (pp _pq)2 + G(qp-l + I bp-3 dt), 

(3.5) 

wherep(t), b (t ),andg(t ) are arbitrary functions of time and G 
is an arbitrary function of its argument subject to obvious 
restrictions of differentiability.5 Matching (3.4) to the Ha­
miltonian (2.2) for which 

V(q,t) = ! q2 + .lA. (t )q4, (3.6) 

we find that 

I(q,p,t) = !(pp _pq)2 + !(qp-l)2 + !K(qp-l)4, (3.7) 

A. (t) = Kp-6(t), (3.8) 

and that pit ) is a solution of the differential equation 

p +p =p-3, (3.9) 

i.e, 

p2(t) = Ao + A 1 sin 2t + A2 cos 2t, 

where 

(3.10) 

A~-Ai-A~=1. (3.11) 

[Note: It is conventional to make the coefficient of p-3 in 
(3.9) as unity. Any nonzero constant will suffice and this 
could be used to subsume theK of(3.7) and (3.8), but there is 
no gain in generality. A zero coefficient ofp-3 will causep(t) 
to have periodic zeros and so limit the domain in time of the 
problem.] 

The first integral (3.7) may obtained from the Hamil­
tonian (2.2) by means of the linear canonical transformation 

(q,p)_(Q, P: Q = qp-l, P=pp -pq), (3.12) 

which produces the transformed Hamiltonian 

H[Q(q,t ),P(q,p,t ),t] = p-2I(q,p,t). (3.13) 

IV. AN OCTIC FIRST INTEGRAL FOR A HAMILTONIAN 
OF TYPE (2.2) 

For the case n > 3, the solution of (3.3) cannot be ob­
tained explicitly for a general V(q,t) (see both Refs. 3 and 4). 
However, in this case for which the form of the potential is 
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given as a simple polynomial in q [cf. (3.6)], it is feasible to 
assume the fonn ofthe first integral in (3.2) for general n. In 
particular we may take the first integral to have the fonn 
implied in MDe, i.e., one which is octic in q and p by assum­
ing a first integral for the Hamiltonian (2.2) to be 

8 

I(q,p,t) = L x;(q,t)i, (4.1) 
;=0 

where X; (q,t ) is a polynomial in q of degree 8 - i with time­
dependent coefficients. 

Substitution of(2.2) and (4.1) into the Liouville equation 
(3.3) and separation by equating coefficients of powers ofp to 
zero gives rise to the ten equations 

axs =0 
aq , 

axs + aX7 = 0, 
at aq 

aX; aX;_I. 3 
-+--=(l+ l}x;+dq-Aq), i=7, ... ,1, 
at aq 

axo = xl(q + Aq3) . 
at 

(4.2) 

Given that each x; (q,t ) is a polynomialinq of degree 8 - iwe 
define 

S 7 

xo(q,t) = L aj(t )qj, xl(q,t) = L bj(t )qj, 
j=O j=O 

6 5 

x 2(q,t) = L cj(t )qj, x3(q,t) = L dj(t )qj , 
j=O j=O 

(4.3) 
4 3 

x4(q,t) = L ej(t )qj, xs(q,t) = L ~(t )qj , 
j=O j=O 

2 I 

x 6(q,t) = L gj(t )qj, x 7(q,t) = L hj(t )qj , 
j=O j=O 

xs(q,t) = ko(t ). 

The expressions in (4.3) are then substituted in Eqs. (4.2) and 
separated by equating coefficients of powers of q to zero. the 
resulting equations simplify considerably. For those func­
tions of time which are not identically zero (with one excep­
tion) the following set of equations remains to be solved: 

eo+dl =0, (4.4a) 

d l + 2c2 = 4e0 , (4.4b) 

Co + b l = 0, (4.4c) 

c2 + 3b3 = 3dl , (4.4d) 

c4 + 5bs + 3Adl, (4.4e) 

hi + 2a2 = 2co, (4.4f) 

h3 + 4a4 = 2c2 + Uco, (4.4g) 

hs + 6a6 = 2c4 + Uc2, (4.4h) 

a2 =bl , (4.4i) 

a4 = b3 +Abl, (4.4j) 

a6 = bs +Ab3, (4.4k) 

as = Abs, (4.41) 
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c4 = Aeo, 

4as = AC4 • 

(4.4m) 

(4.4n) 

The only function which is identically zero not included in 
(4.4) is ao(t) which is an arbitrary constantA. As I and I + A 
have the same meaning, it is of no import. 

Using Eqs. (4.4a), (4.4b), (4.4d), (4.4e), (4.4m), and (4.4n) 
we may express d I' C2' b3, c4 , and as in tenns of eo and A and 
their derivatives. Equation (4.41) becomes a consistency con­
dition on A and eo and reduces to 

Ueo + 3Aeo = 0. (4.5) 

Integrating (4.5), 

A 2e6 = const. 

If we let 

A (t) =p-6(t), 

we then have by back substitution 

eo = ap4, 

d l = - 4ap3jJ, 

C2 = 2a( p4 + 2p2jJ2 + p3p ), 

b3 = - 2a/3(1Op 3jJ + 6pjJ3 + 9p2jJp + p3p), 

(4.6) 

(4.7) 

(4.8a) 

(4.8b) 

(4.8c) 

(4.8d) 

bs = - 2ap-3jJ, (4.8e) 

C4 = ap-Z, (4.8f) 

as = l ap-s, (4.8g) 

where a is an arbitrary constant. Returning to Eq. (4.4), 
(4.4h) yields 

(4.9) 

and (4.4k) becomes a consistency condition on pIt ), viz., 

p3p + 3p2jJp + 4p 3jJ = 0. (4.10) 

Integration of (4.10) gives 

p +p =p-3, (4.11) 

in which the constant of integration has been taken as unity. 
Equations (4.4c), (4.4f), and (4.4i) may be solved inde-

pendently of the others to yield 

Co = Bo - B I sin 2t + B2 cos 2t, 

b l = - 2BI cos 2t + 2B2 sin 2t, 

a2 = Bo - B I sin 2t - B2 cos 2t. 

From (4.4g) and using (4.8d) and (4.11) we find that 

a4 = ~p-6(Bo + BI sin 2t + B2 cos 2t) 

(4.12) 

+a(jJ2+p-2)2. (4.13) 

Finally (4.4) produces the consistency requirement 

p2( _ 2BI cos 2t + 2B2 sin 2t) 

+ 2pjJ(Bo + BI sin 2t + B2 cos 2t) = 0, (4.14) 

from which it follows that 

(4.15) 

where fJ is an arbitrary constant. This is consistent with 
(4.11) which has the solution 

p2(t) = Ao +AI sin 2t + A2 cos 2t, 

where 

(4.16) 
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A ~ - Ai - A ~ = 1 . (4.17) 

We may now write down the first integral by substitut­
ing the various coefficients which have been determined 
above into (4.3) and thence (4.2). In doing this any second 
and third derivatives of p are replaced by expressions in p 
andjJ by using (4.11). We find that 

l(q,p,t) =/311 + an, (4.1S) 

where 

I I(q,p,t) = (pp _jJq)2 + (qp-I)2 + ~(qp-I)4, (4.19) 

is a first integral for 

H (q,p,t) = ~p2 +! q2 +! q4p -6. (4.20) 

This is essentially the first integral given by (3.7), i.e., the 
extension of the p dependence of the first integral to higher 
powers has not given rise to a first integral other than the one 
already calculated nor has it extended the nature of the per­
mitted time dependence in the potential beyond that which 
was already permitted. 

v. THE EXISTENCE OF A QUARTIC CANONICAL 
TRANSFORMATION 

For a paradigm of the type in MDC we have seen that 
there has been no advance over the result which would have 
been obtained using only a time-dependent linear canoncial 
transformation. In this case, the first question raised in the 
Introduction must be answered in the negative. However, it 
has been possible to obtain a first integral which is quadratic 
in a variable II' which is quartic polynomial in q and p. 

It is possible then that the second question can be an­
swered in the affirmative? Let us recall our argument of Sec. 
II. The combination of two successive quadratic transforma­
tions followed by a linear transformation is to produce a first 
integral quadratic in the new variables and so octic in the 
original variables. The composition of the series of three 
transformations is a transformation quartic in the original 
variables. So the argument was that a quartic transformation 
implies an octic first integral. However, the existence of an 
octic first integral, which was demonstrated in Sec. III for a 
limited type of time dependence in the potential, does not 
necessarily imply the existence of the proposed quartic 
transformation. We now turn to an examination of the sec­
ond question. 

It has been suggested in MDC that a Hamiltonian of the 
form 

(S.l) 

can be transformed by a canonical transformation of the type 

Q (q, p,t) = a + bp + Cp2 + dp3 + ep4, 
(S.2) 

P(q,p,t) =1 +gp + hp2 + kp3 + mp4, 

in which the coefficients a to m are polynomials in q of de­
gree 4 - i, where i is the power of p multiplying the coeffi­
cient, to a Hamiltonian which is quadratic in Q and P. We 
are at liberty to set the form of the quadratic. The reason for 
this is as follows. Suppose that a quartic transformation to 
some quadratic Hamiltonian exists. This quadratic Hamil­
tonian may then be transformed by a linear canonical trans-
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formation to any other quadratic Hamiltonian as was shown 
in Ref. 2. As the composition of a quartic and a linear trans­
formation is itself quartic, it follows that we can select the 
final quadratic Hamiltonian at will. We select 

Ji = 1 p 2 
2 • (S.3) 

We could attempt to match these Hamiltonians [(S.l) 
and (S.3)] by using the generating function approach in 
which for a generating function of the form Fo(q, p,t ), 6 

aFo =p_P aQ, 
aq aq 

aFo_ paQ 
ap - - ap' 

Ji = H + P aQ + aFo , 
at at 

(S.4) 

where all functions are expressed in terms of q, p, and t. 
However, this produces equations for the coefficients of p in 
Q (q, p,t ) and P (q, p,t) which are nonlinear. To avoid such 
equations we adopt a different procedure here. We require 
(cf. Refs. 1 and 2) that the equations of motion derived from 
H and Jibe the same when expressed in terms of q and p and 
then impose the canonical requirement 

[Q,P]qp = 1. (S.S) 

Hamilton's equations for Hand Ji are 

Q = P, if = p, P = 0, jJ = - (q + ..iq3). (S.6) 

Substituting for Q and P from (S .2) and using the expressions 
for if and jJ in (S.6), we separate the equations Q = P and 
P = 0 by equating coefficients of powers of p to zero to ob­
tain 

and 

O=~ 
aq , 

ad ae 
m=-+-, 

aq at 

k = ~ + ad _ 4e(q + ..iq3) , 
aq at 

h =~ + ac _ 3d(q +..iq3) , 
aq at 

g =!!!... + ~ - 2c(q +..iq3) , 
aq at 

aa 
1 = - - b (q + ..iq3), 

at 

o=am 
aq , 

0- ak am 
-aq+Tt' 

ah ak 3 
0=-+--4m(q+..iq ), 

aq at 

ag ah 3 
0=-+--3k(q+..iq ), 

aq at 

o = al + ag _ 2h (q + ..iq3) , 
aq at 

(S.7a) 

(S.7b) 

(S.7c) 

(5.7d) 

(S.7e) 

(S.70 

(S.Sa) 

(5.Sb) 

(5.Sc) 

(S.Sd) 

(S.Se) 
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(5.8f) 

respectively. [Note: The equations (5.7a) and (5.8a) were an­
ticipated from the definition ofthe transformation in (5.2).] 
The first of (5.7) and (5.8) give 

e=a, m =/3, (5.9) 

where a and /3 are arbitrary functions of time, subject to any 
later differentiability requirements, as will be any other 
Greek letter below. From (5.7b), (5.8b), and (5.9), 

d=(/3-a)q+y, k= -pq+o. (5.10) 

The next pair of equations becomes 

~= 4a(q + Aq3) - (P -ii) q - r-pq +0, 
aq 

!!!!.. = 4/3 (q + Aq3) + /Jq - 8 . 
aq 

(5.11) 

Since c and h are to be at most quadratic in q and A :fO, 

a = 0, /3= 0, 

so that 

c = (0 - r)q + €, h = - 8q + u . 

The next pair [(5.7d) and (5.8d)] becomes 

ab = 3y(q + Aq3) - (8 - r) q - E - 8q + u , 
aq 

ag = 30(q + Aq3) + 8q - 0- . 
aq 

As band g are at most cubic in q, 

y=O, 0=0, 

and so 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

b = (u - E) q + J-l, g = - o-q + 1/ . (5.16) 

Integrating (5.7e) and (5.8e) we obtain 

a = ~ €Aq4 + ~(2€ - 20- + e) q2 + (1/ - it) q + v, 

f = ~ UAq4 + !(2u - 0-) q2 - r,q + s . (5.17) 

The remaining equations (5. 7f) and (5.8f) impose consis-
tency requirements. Separating them by equating coeffi­
cients of powers of q to zero we have from (5.7f) 

3EA + €A = 3UA , 

J-lA = 0, 

€ + 4E = 4u + 30- , 

il + J-l = 2r, , 

s=v, 
and from (5.8f) 

30-A + uA = 0, 

1/A = 0, 

0'+40-=0, 

;;+1/=0, 

t=O. 
SinceA¢O, (5.18b) and (5.19b) give 
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(5.18a) 

(5.18b) 

(5.18c) 

(S.18d) 

(S.18e) 

(S.19a) 

(5.19b) 

(5.19c) 

(5.19d) 

(S.1ge) 

1/ = 0, J-l = ° , (S.20) 

and (5.18d) and (5.19d) are satisfied identically. From (5.19) 
we obtain 

u(t) = Ao + A I sin 2t + A2 cos 2t . 

From (S.19a) and (5.18a) 

A = Bu-3, €=(t+D)u, 

respectively, and from (5.1ge) and (5.18e) 

S = C, v = Ct + E, 

(5.21) 

(5.22) 

(5.23) 

where A through E are constants. The one remaining equa­
tion (5.18c) is satisfied identically. 

The coefficients in (S.2) are 

e = 0, d = 0, c = (t + D )u, b = - {t + D jo-q, 

a = (t + D) ! ~ UAq4 + !(2u + 0-) q2 + C 1 
+E - CD, (5.24) 

m = 0, k = 0, h = u, g = - o-q, 

f = ! UAq4 + ~(2u + 0-)q2 + C , 

from which it is evident that 

Q (q, p,t ) = (t + D ) P (q, p,t ) + E - CD . (5.25) 

Thus Q and P are not canonically conjugate and so the sec­
ond question raised in the context ofthe work in MDC also 
must be answered in the negative. 

VI. DISCUSSION 

In one sense the results obtained above are negative. 
For a polynomial Hamltonian of type (2.2) there has been no 
advance in the nature of the permitted time dependence in 
the potential over and above that which can be treated using 
linear canonical transformations. Increasing the degree in p 
and q of the polynomial first integral in the context of the 
proposal in MDC has not yet yielded any further results, just 
a lot of hard work. The assumption that polynomial canoni­
cal transformations, which are of equal degree (greater than 
1), exist also has been shown to be false in this context. 

Indeed it was more from a wish to follow the spirit of the 
work of Maharatna, Outt, and Chattarji that the calcula­
tions in Sec. V were made. We would not expect a result such 
as they proposed on more fundamental grounds. We may 
illustrate this point easily. We may without loss of generality 
[as discussed in Sec. Vin the lines preceeding (S.3)] select asP 
the invariant II (4.19) obtained in Sec. IV, i.e., take 

P(q,p,t) = (pp -jJqf + (qp-I) + !(qp-I)4. (6.1) 

To simplify the following discussion we interpose the linear 
canonical transformation 

q' = q P -I, p' = P P _ jJq , 

so that 

P(q',p',I) = p,2 + q'2 +! q,4 . 

(6.2) 

(6.3) 

A Q (q', p' ,I ) canonically conjugate to P (q', p' ,t ) satisfies the 
linear partial differential equation 

aQ ap _ aQ ap = 1 , 
aq' ap' a p' aq' 

(6.4) 

the characteristics for which are found from 
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dq' -dp' dQ 

JP/Jq' 
(6.5) 

JP/Jp' 

The two characteristics are 

u=P, Q Jq' JP ( )-'d v = - -- u,7],t 7] , 
Jp' 

(6.6) 

where in the integrand p' has been replaced by a function of 
u, q', and t by inversion of the first characteristic, With P as 
in (6.3), to within an additive function of P, 

Q = f' !(u - 7]2 -! 7]4)-1 d7], (6,7) 

which is an elliptic integral of the first kind, [Alternatively 
we could take as characteristics 

u = P, v = Q + JP

' JP (U,7],tj-1 d7], (6.6') 
Jq' 

for which the analog to (6.7) is 

Q= - r'U-l+~[1+2P-27]2ll-'/2 

xII +2P-27]2J - 1/2 d7]. (6,7') 

This also is an elliptic integral of the first kind.] Consequent­
ly it is not surprising tht Q (q', p' ,t ) is not a quartic polynomial 
in q' and p' and hence Q (q, p,t ) not a quartic polynomial in q 
and p. 

We must emphasize the restriction that both P and Q be 
polynomials. Sense can be made of the proposal in MDC if 
we take P, say, to be a polynomial and allow Q to be an 
infinite series. From (6.7), for example, we see that 
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Q (q', p' ,t ) = _1_ f (- il )i ( -: !) 
2.JP i=O P I 

X f' (7]2+ !7]4)id7] , (6.8) 

where ( ~ ~) is the binomial coefficient. However, this 

seems to be a cumbersome approach to a problem which can 
be solved more easily by other methods. When applied to a 
Hamiltonian with a general potential V(q,t) it is difficult to 
see how satisfactory progress could be made. 

We may conclude on a more positive note. It would 
appear that the results pertaining to the permitted nature of 
the time dependence in a potential V(q,t) are going to be the 
same whether a linear canonical transformation is used or 
something more complicated as suggested above in the com­
bination (6.3) and (6.8), Ifwe wish to expand the nature of the 
permitted time dependence, some other approach is neces­
sary, Two such approaches are found in Refs, 7 and 8. 
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The recursion operator for the infinitesimal transformations about solutions of the coupled KdV 
equation is a 2 X 2 matrix whose elements are of the fourth order. This formidable looking 
operator is written as the product of four 2 X 2 matrix operators whose elements are of the first 
order. Auxiliary functions introduced to factorize the recursion operator lead to the scattering 
equation for the equation. The factorization of the recursion operator for the sine-Gordon 
equation is also presented. 

PACS numbers: 03.4D.Kf, 02.90. + P 

I. INTRODUCTION 

The existence of a recursion operator which generates 
an infinity of infinitesimal transformations (IT) about an ar­
bitrary solution of a nonlinear evolution equation (NLEE) 

(1.1) 

is a necessary condition for the integrability of (1.1).1.2 A 
simple derivation of the recursion operator is also presented 
in these papers. Many properties of these operators have 
been studied in Refs. 3-5. The eigenfunctions ofthese opera­
tors have been shown, in many cases, to form a complete set 
and used to study near-integrable systems by perturba­
tion.6-9 The soliton solutions can be written as a linear com­
bination of the discrete eigenfunctions of the recursion oper­
ators.3

•
8 Finally the recursion operator and the operator 

determining the time evolution ofthe IT form a Lax pair. 1-3 

These properties of the recursion operator suggests their 
study in their own right. However, more often, the recursion 
operators are more complicated than the scattering operator 
which, on the other hand, might be more difficult to obtain. 
Simplification of the recursion operators might therefore 
prove useful. 

In this paper we simplify the 2 X 2 matrix recursion op­
erators for the coupled KdV equation and the sine-Gordon 
(SG) equation by factorizing them. Factorization of opera­
tors associated with integrable NLEE was first done by 
Fordy and Gibbons. lO

•
11 They factorized the third-order 

scattering operators associated with two fifth-order KdV­
like equations and were able to relate the equations to a sin­
gle modified equation. 

The recursion operator for the coupled-KdV equa­
tion lZ- 14 

U, = ~ U3x + 3uux - 6¢J<Px , 

<p, = - <P3x - 3u<px (1.2) 

is a 2 X 2 matrix whose elements are fourth-order opera­
tors!5 We show that this operator can be written as a pro­
duct of four 2 X 2 matrices whose elements are of the first 
order. New dependent variables introduced to factorize the 
recursion operator lead to the scattering operator for 
(1.2)Y·14 We also show that the inverse of the fourth-order 
recursion operator cannot be obtained in a closed form. 

In Sec. II we obtain the factors. In Sec. III we discuss 
the inverse. In Sec. IV the scattering operators are derived. 
In Sec. V the factors of the scalar recursion operator of the 
SG equation are derived and the inverse of the recursion 
operator obtained. 

II. FACTORIZATION OFTHE RECURSION OPERATOR 
OF THE COUPLED KdV EQUATION 

The recursion operator T(u,<p) is of the form ls 

T(u,<p)i'= (Tij(u,<p I), i,j = 1,2, 

where 

Tll(u,<p) = i D 4 + 2uD Z + 3uxD + 2uxx 
+! u3xD -I + 4uz + 3uuxD-1 

+ uxD -IU - 4¢ Z - 6¢J<PxD -I, 

(2.1) 

Tdu,<p) = - 4¢xD - <Pxx - 5<pD Z - 2uxD -I<p - 4u<p, 

Tz1(u,<p) = - <PhD -I - 3<pxx - ~ <PxD 
- 3<px uD -I + <PxD -IU, 

T22(U,<P) = - D4 - 4¢ 2 - 2<pxD -I<p - 4uD z - 2ux D, 

(2.2) 

where D =a/ ax and D -I is the inverse operator SX- "" dx I' 
We first write T(u,cP) as a product of two second-order 

operators because one could make a reasonable guess for the 
form of these second-operator operators: 

T(u,cP) = T1(u,<p ) Tz(u,cP ), 

where 

and 

fij(U,cP) = aijD 2 + bijU + cijuxD -I 

+ dijcPXD -I + eij<p, i,j = 1,2. (2.3) 

Theaij,bij , etc., are constants to be determined, and Tz(u,cP) 
is a matrix of the same form with different constants. The 
forms for TI(u,<p) and T2(u,<p) are chosen so that acting on 
(ux ,cPx)' they will give the most general third-order terms of 
the form that appear on the rhs of (1.2). Next we find the 
product T1(u,<p )T2(u,<p) and compare the coefficients with 
(2.2) to find the constants in (2.3) and in T2(u,<p ). The large 
number of equations are not difficult to solve and we get 
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T1(u,¢ ) 

(
mD 2 + 4mu + 2muxD -I 4n¢ + 2n¢xD -I ) 

- 4m¢ + 2m¢xD -I nD2 + 4nu + 2nuxD -I ' 

(2.4a) 

T ( A.) _ 4m m 2m 
2 U ,'f' - m 

(

_I D2+J...u+_1 uxD- 1 _J...¢ ) 

- J... ¢ - J... ¢x D -I I 2' 
n n --D 

n 
(2.4b) 

where m and n are arbitrary nonzero constants. The product 
TIT2 is independent ofm,n. It is interesting to note that with 
m =!,n = -I, 

T1(u,¢ ) (;:) 

is just the rhs of( 1.2). This means that, though there is no 
recursion operator connecting (ux ,rPx) and (u"rP,) [(u"rP,) is 
the rhs of (1.2)], the operator connecting these two is a factor 
of the recursion operator. We have observed a similar result 
for the fifth-order Sawada-Kotera equation 

u, = U SX + 5uu3x + 5uxuxx + 5u2ux 
whose sixth-order recursion operatorl6 does not connect Ux 

and u, but the fourth-order operator connecting them is a 
factor of the recursion operator. 

Now T1(u,rP ) and T2(u,rP ) can be written as products of 
first-order operators. For T1(u,rP ) the factors are easily ob­
tained. Consider the following two operators: 

T ± = D 2 + 4(u ± rP ) + 2(ux ± rPx)D -I . (2.5) 

Now T1(u,rP) withm = n = I can be written as (this choice of 
m,n is not necessary, i.e., one can proceed with arbitrary 
m,n) 

I (T + + T _ T + - T_) 
T1(u,rP) = 2 T + - T _ T + + T_ 

1 (D + 2fx/f D + 2gx/g ) 
= 2 D + 2fx/f - (D + 2gx/g) 

x(D(D - 2fx/f)D -I D(D - 2fx/f)D -I ). 

D(D - 2gx/g)D -I -D(D- 2gx/g)D- 1 

(2.6) 
In writing (2.6) we have made use of the result 

T+ = (D + 2fx/f)D(D - 2fx/f)D -I, 

T_ = (D+2gJg)D(D- 2gJg)D- 1, (2.7) 

where 

u + rP = - Ixx/f, 

u - rP = - gxx/g . 

(2.8a) 

(2.8b) 

To factorize T2(u,rP) (we put m = n = I), let 

T(urP)=( allD+fll a12D+fI2 ) 
2' W(a2ID + f2tl D -I D(a22D + f22) D- 1 

~(bIlD+glI)D-1 bI2D+gI2) 
XI' (b2P + g2tl D - b22D + g22 

(2.9) 

Constants ajj and bij and functions fij (x,t ) and gjj (x,t ) are 
to be determined. This form for the product matrices was 
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suggested by the following observations. The (1,2) element of 
T2(u,rP ) is - rP (x,t). This can be written as 

- rP (x,t) = -! {D 2 + u + rP - D 2 - (u - rP)j 
= -! {(D + fJf)(D - fJf) 

- (D + gx/g)(D - gJg)} . 
(2.10) 

The (2,1) element of T2(u,rP) is 

- (rP (x,t) + rPx(x,t) D -I) = - DrP (x,t) D -I, (2.11) 

that is, obtained by a similarity transformation of(2.1O). The 
(1,1) element of T2(u,rP) is the same as the (1,1) element of 
T1(u,rP) and can be written as the sum of T + and T _. The 
factors of these are given in (2.7). Thus from (2.7), (2.10), and 
(2.11) the forms of the products are fixed and these lead to the 
form of the elements in (2.9). Taking the product (2.9) and 
comparing it with (2.4b) we got two sets off actors for T2(u,rP ). 
The first factor is 

T2(u,rP ) 

I (D-~F-!G 

=4\n(D+ 3F- 3G)D- 1 

D- !F_3G ) 
- D (D -; + G)D -I 

(
!D(D -F+ 3G)D- 1 

X !D (D + 3F - G) D -I 
- 2D+F- G) 
2D-3F+3G ' 

where 

Fx - (2F- G)G= u +rP = - fxx/f, 

Gx -G 2=u-rP= -gxx/g· 

(2.12) 

(2.13a) 

(2.13b) 

This gives G = - gx/g. We obtain Fby solving (2.13a): 

where F(x,!) has a rather complex form. 
The other factor is 

I (D-~G-(F D-!G-fF ) 
= 4 \n (D + G - F) D -I - D (D - 3G + 3F) D -I 

(
!D(D-G+3F)D- 1 -2D-3G+3F) 

X !D(D+3G-F)D- 1 2D+G-F j' 
(2.15) 

where 

Gx -G 2 =u+rP= -Ixx/f, (2.16a) 

Fx - (2F - G) G = u - rP = - gxJg . (2.16b) 

The forms are very similar to (2.13a) and (2.13b) with (u + rP ) 
and (u - rP) interchanged. In (2.16) it is u + rP that obeys a 
simple Riccati equation. 

Combining (2.6) and (2.12) or (2.15) we have the recur­
sion operator T (u,rP) as a product of four 2 X 2 matrices 
whose elements are of first order involving new dependent 
variables f(x,!) g(x,!) defined by (2.8). 

We wish to remark that all the elements of TI (u,rP ) and 
T2(u,rP ) given by (2.4) except the (2,2) element of T2(u,rP ) can 
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be written as a sum or difference of the following operators as 
can be seen from (2.6), (2.7), (2.10), and (2.11): 

D2 + 4(u ± f/» + 2(ux ± f/>x)D -1, (2.17a) 

D2 + (u ± f/», (2.17b) 

D 2 + (u ± f/» + (ux ± f/>x) D -1 = D (D 2 + (u ± f/> )) D -1 • 

(2.17c) 

These are the only operators, of all the operators of the form 

D 2 + a(u ± 4> ) + f3 (ux ± 4>x) D - 1 

that can be factorized using the substitutions (2.8). 
The scattering operator L (u,f/» for (1.2)14,15 can also be 

simply factorized using (2.8). Thus 

The inverse of T2(u,f/> } could not be obtained in a closed form. 
To obtain the inverse of a matrix operator of the form. 

(;;"D + III al2D + 112 ) (3.3) 
(a2P + 121}D -I D (anD + 122) D- I 

appearing in (2.9), in a simple closed form we found that the 
condition 

Ill/all =/12/a I2 (3.4) 

has to be satisfied. Similar conditions should hold for other 
hj and gij' It is seen from (2.12) or from (2.15) that the ele­
ments in (2.12) and (2.15) do not satisfy (3.4). In deriving 
(2.12) we had fixed ail and bij in (2.9) early in the calcula­
tions. Leaving these constants undetermined until the end to 
see if the constants could be adjusted to give the desired 
relation for hj andgi } did not help. Another alternative was 
to see if the factors could have a different form from the one 
assumed in (2.9). We wrote 

T2(u,f/> } = N , 

where rand s are 2 X 2 matrices whose elements are of the 
form 

r i } = aijD + hj(x,t) , 

sij = D (buD + gij(x,t))D -1, i,j = 1,2, 

where the constants ail and b ij and the functions hj (x,t ) and 
gij(x,t) are to be determined. This did not give consistent 
solutions for hj and gij' However one can write each of the 
factors in (2.12) or in (2.15) as a sum of matrices which have 
simple inverses. But this would lead to an infinite series for 
the inverses of the matrices in (2.12) or in (2.15) and hence not 
of interest. 
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L (u,f/> ) = (D 2 + u + f/> )(D 2 + u - f/> ) 

= (D+ 2/x/I)D(D- 2fx/I)D- 1 

x(D+ 2gJg)D(D - 2gJg)D -1. (2.18) 

III. INVERSE OF THE RECURSION OPERATOR T(u,f/» 

The inverse of TI(u,f/> ) is simply obtained because of the 
symmetry of the matrix. One needs to know only the inverse 
of each of the elements. Since 

(3.1) 

we get 

(3.2) 

, 
IV. SCATTERING EQUATIONS 

By differentiating (2.8b) twice with respect to x we get 

L (u,f/» g(x,t }=!D 4 + 2uD 2 + 2(ux - f/>x)D 

+ (uxx - f/>xx) + (u2 
- f/> 2) J g(x,t) = 0 . 

(4.1) 

It is easy to see by expanding L (u,f/> ) 
= (D 2 + u + f/>}(D 2 + u - f/» in (2.18) that it is the same as 

the rhs of (4.1). 
Differentiating (2.8a) twice with respect to x gives the 

adjoint of L (u,f/> ). 

v. SINE-GORDON EQUATION 

The polynomial recursion operator for the SG equation 

f/>xt = sin f/> 

We write 

Ts (f/> ) = (D + p) D -I(D + q)D . 

Equating this to (5.2) we get 

and 
p = - q = cf/>x, c2 = - 1 , 

Ts(f/» = (D + if/>x) D -I(D - if/>x)D 

= (D - if/>x)D -I(D + if/>x)D. 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

The ordering ofD ± if/>x isofnoconsequenceasc = ± i. No 
new dependent variables are needed to factorize Ts (f/> ). 

Since the inverse (D ± if/> x) - I of D ± if/> x is 
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(D ± i¢x)-' = e=F i4>(x.II f~ 00 dx, e±i4>(Xl.'I, (5.6) 

one immediately obtains 

T s-'(¢) = ~ {fX dx, /4>(Xl.'lf
xl 

dxz e- i4>(xz,11 
2 -00 -00 

+fX d -i4>(X I.'lfxl 
d i4>(X2.

, I} x,e xze, 
-00 -00 

the result derived in Ref. 17, after considerable algebra. 

VI. CONCLUSION 

Recursion operators for the IT about solutions of inte­
grable NLEE can be found directly from the given NLEE. 
The eigenfunctions of these operators have interesting prop­
erties and it will be useful to study the recursion operators 
directly. Hoping that factorization of these operators would 
be a step in this direction we have shown that the 2 X 2 recur­
sion operator of the coupled KdV equation with fourth-or­
der elements can be written as a product of four 2 X 2 matri­
ces whose elements are of the first order. We have been able 
to show from these factors that the inverse of these recursion 
operators cannot be written in a closed form. The auxiliary 
functions introduced to factorize the recursion operator lead 
to the scattering equations for the NLEE. We have also fac-
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torized the polynomial recursion operator of the SG equa­
tion and very simply obtained its inverse. 
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An algorithm is given for finding the density and bulk modulus (refraction coefficient) of an 
inhomogeneity from the knowledge of the scattered field on the surface of the earth for all 
positions of the source and receiver on this surface and for two arbitrary fixed frequencies in the 
Born approximation. An alternative inversion method using the low-frequency data is also given. 

PACS numbers: 03.40.Kf, 91.90. + p 

I. INTRODUCTION AND BASIC FORMULAS 

Consider the reduced wave equation describing the 
acoustic wave propagation in the three-dimensional space 

(J)2G 1 
- +V·-VG= -8(x-y), (1) 
K(x) P 

where x, y E R, K (x) is the bulk modulus and pIx) is the den­
sity. Let us assume that 

1 _ 1 al(x) 1 a2(x) 
K (x) - Kr - -;;:' P Pr - -;;:' 

(2) 

where Kr and Pr are positive constants, al(x) and a2(x) are 
smooth functions with compact support, i.e., a I = a2 = 0 for 
Ixl > R, where R > 0 is an arbitrary large fixed number. 

Equation (1) can be written as 

(V2 + {J)2/c2)G - (J)2a l(x)G - V.(a2(x)VG) = - Pr8(x - y), 
(3) 

where c2-Kr Pr- 1. For simplicity let us choose the units in 
which 

Pr = 1, c = 1. (4) 

This is possible: if one sets x = ax', (J) = f3{J)', Y = ay', 
where a andf3 are constants then Eq. (3) takes the form 

(a-2V'2 + (f3 2/c2)w'2)G - f32{J)'2aIG - a-2V'.(a2V'G) 

= - Pra-38(x' - y'). (5) 

One can choose a = Pr' f3 = clpn and define ai = c2a l , a~ 
= a2• Then (3) takes the form 

(V,2 + {J)'2)G - (J),2ai G - V'.a~ VG = - 8(x' - y'). (6) 

Therefore, one can study Eq. (3) under assumption (4): 

(V2 + {J)2)G - (J)2a l(x)G - V·(a2(x)VG) = - 8(x - y). 
(7) 

This equation can be written as (S = S ft' , dz = dz I dZ2 dz3) 

G (x,y) = g(x,y) - {J)2 I g(x,z)aI(z)G (z,y)dz 

- I g(x,z)Vz·(a2(z)VzG(z,y))dz, (8) 

g= exp(i{J)lx-yl). 
41Tlx - yl 

In the operator form (8) can be written as 

(9) 

G=g_{J)2gaIG-gV.a2VG g-gVG, (10) 

where 

V = {J)2a l + V.a2V. (11) 

Notice that G = g - GVg, so that GVg = g VG. Let us define 
the T-matrix: 

T=V-VGV. (12) 

It is obvious (and well known) that T satisfies the equation 

T= V - VgT (13) 
and 

Tg= VG. (14) 
An equivalent definition of Tis T = VGg-l. The operator 
(11) in the wavenumber representation is an integral opera­
tor with the kernel (21T)-3V(k,p), where 

V(k,p) = II dx dy V(x,y)exp[i(k.x - p.y)]' 

so that 

V(k,p):={J)2iil(k - p) - k-pii2(k - p), 

ii(k ) = I exp(ik.x)a(x)dx. 

The quantity G - g = Gs is the scattered field, 

Gs = -gVG= -gTg. 

(15) 

(16) 

The last equality follows from (14). Let us keep the x and y 
variables (the position of the geophone and the source) on the 
plane X3 = 0 and Fourier transform (16) in x = (X I,x2) and 
y = tvl'Y2). Then (k.x=klx l + k~2) 

Gs(k,P,{J)) = I exp(ik.x - ip·Y)Gs(x,y,{J))dx dy 

= - I exp[i(k.x - p.y)]gTg dx dy 

= - II dz' dz" T(z',z") 

xI exp(i{J)lz' - xl + ik.x) dx 
41Tlz' -xl 

X I exp(i{J)lz" - yl - ip.y) d A 

41Tlz" - yl y 

= - J J dz' dz" T(z',z") 

X eife.i ' - ip.Z-h (lz;l, Ik I)h (lz3'l, IPI), (17) 
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where [see Appendix A and Ref. 1, formula (8.6.21)] 

i exp[ilz;l(ui - Ik 12)1/2] 

2: (ui - Ik 12)1/2 

h(lz;I,lkl)= 1 exp[-lz31(lkI2_w2)1/2] 

2: (Ik 12 _(2)1/2 

00, 

Let us define 

_ {((U2 _ Ik 12)1/2, 
k3 - i(lk 12 _ ( 2)1/2, 

and P3 in the same way. Then 

Ik 12 + q = w 2
, liW + p~ = w 2

• 

W = Ik I· 
(18) 

(19) 

(20) 

Vectors k,p are real valued but k3 and P3 may be complex 
numbers. If V has compact support (and this was our as­
sumption) then T has compact support as follows from (12). 
Therefore, the Fourier transform of Tmakes sense for com­
plex k3 and P3' From (17) and (19) one obtains 

as = ~ f f dz' dz" T(z',z") 

exp [i(k.z, + k3Iz;I)] exp [ - i( p.Z" - P3Iz;' I)] 
X--~~----~~~ 

k3 P3 
(21) 

Let us assume that the support of Vbelongs to the half-space 
Z3 < O.Then IZ31 = - Z3 and (21) takes the form 

as = (l/4k3P3)T(k ',p), Ik 1= Ipi = w, 

k' (k, - k3), Ik'i = Ik I, (22) 
where 

T(k,p)- f f dz' dz" T(z',z")ei1k,z'-P,z"l. (23) 

The basic problem can be formulated as follows. Given 
the scattering data G (x,x3 = 0, y, Y3 = O,w) for all x, y and 
smallw find a I (x) and a2(x). This problem is discussed in the 
next section. In Ref. 2 the case a2 = 0 was treated. Our meth­
od uses some ideas from Refs. 2 and 3 but the presentation is 
self-contained. Formulas (12), (15), and (22) are basic for our 
first inversion scheme presented in Sec. II. In Ref. 2 the in­
version scheme was considered for w~ in which case the 
Born approximation reduces to the exact solution. In the 
present paper the inversion scheme is given in the Born ap­
proximation for arbitrary w > O. The scheme can be general­
ized to include the dissipative terms corresponding to first 
derivative in time with a coefficient depending on x but not 
on t. The reason why we cannot handle the inversion within 
the exact theory (as in Ref. 2) rather than in the Born approx­
imation is that the perturbation we consider does not become 
small as w~ (unlike in the case a2 = 0 considered in Ref. 2). 
An alternative inversion scheme similar to the one given in 
Ref. 2 is described in Sec. III. The scheme in Ref. 2 can be 
carried through for any w > 0 in the Born approximation. 

II. BASIC INVERSION SCHEME 

3232 

Formulas (12) and (15) show that under the assumption 

Ikl = Ipi = w (24) 
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[which means that the T-matrix in (22) is known "on shell"] 
the potential V is 

V(k,p) = w2W, W=a l(k-p)-ko.poa2(k-p), (25) 

wherek 0 = k /Ik I,po = p/IPI are unit vectors which do not 
depend on w. Since the functions a I and a2 have compact 
support, the functions a I and a2 are entire functions of the 
three complex variables kl,k2,k3' These functions decay at 
infinity in the real space JR3. 

In the Born approximation T= V [see (14)] and (22) 
becomes in this approximation 

as = (l/4k3P3)V(k ',p) = (w2/4k>fJ3)W(k ',pl. (26) 

Thus 

4ask3P3/w2 = W(k ',pl. (27) 

Let 

k' - P = q, k' + p = s, (28) 

k' = (s + q)l2, p = (s - q)l2. (29) 

Then 

k '.p = (lsl2 - Iq12)14, s·q = 0, (30) 

k ,opo = (lsl2 - Iq12)1402, (31) 

Iql2 = 2w2(1 - k 'OpO), 
(32) 

Isl 2 = Ik '1 2 + Ipl2 + 2k'p = 2w2(1 + k 'O.pO), w > 0, 

Isl 2 
- Iql2 = 402 - 21q12, (33) 

thus 

W(k ',p) = W = aM) - a2(q)(lsI 2 - Iql2)1402 

=aM)-a2(l-lqI2/2w2), w>O. (34) 

Let us take two arbitrary frequencies WI and W 2 =l=WI and 
solve the two equations 

WI = al(q) - a2(q)(1 - IqI2/2wT), (35) 

W2 = al(q) - a2(q)(1 - IqI2/2w~), 

for ill and il2 • The result is 

il _ 2(WI - W2) wTW~ 
2- Iql2 2 2' w2 - WI 

a - W (W _ W ) 2WT w~ (1 _ ~) 
I - I + I 2 (w~ -wT)lqI2 2wi' 

(36) 

(37) 

(38) 

Taking the inverse Fourier transform one obtains al(x) and 
a2(x). An important point is that one cannot find both func­
tions a l and a2 if the data are given at a fixed frequency. 
Indeed, from (34) it follows that for a fixed frequency the 
data depends on q only and there is no parameter to vary in 
order to find both ill and il2 • This conclusion is not at all 
obvious: at first glance one can think that the two conditions 
I k I = IP I = w leave four degrees offreedom in the six-dimen­
sional space JR! X R !, which should be enough to determine 
two functions a I and a2 of three variables. This argument 
however does not work as one saw above. The reason is that 
the function W (k ' ,p) has a very special structure as a function 
of two vectors k' andp. One more remark: Eqs. (37) and (38) 
determine the Fourier transforms of a I and a2 for real-valued 
vectors q in the ball Iql < 2w only. Since a I and a2 vanish 
outside of a compact domain by assumption, their Fourier 
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transforms are entire analytic functions. Therefore, if their 
Fourier transforms are known in the ball Iql < 2w they are 
uniquely defined everywhere. From the numerical point of 
view, if (U is large one can Fourier invert the functions iij(q) 
which are set to be zero for Iql > 2w. A more elaborate nu­
merical inversion and a study of the stability of the Fourier 
inversion of entire functions measured in a ball of finite radi­
us is given in Ref. 2b. 

III. AN ALTERNATIVE INVERSION SCHEME 

If (U-+O the limit of Eq. (8) is 

G(x,y) =go(x,y) - J go(x,z)Vz ·a2(z)Vz G(z,y)dz, 

go = 1/(41Tlx - yil. (39) 

Consider the scattered field in the Born approximation on 
the plane X3 = 0: 

G.(.x,Y)=G.(.x,y,{U = 0) 

= - -- ---V·a2(z)V --dz. 1 J 1 1 
16~ Ix-zl z z Iz-YI 

(40) 

This equation can be solved analytically by the method given 
in Ref. 2. Let us take the Fourier transform in x and y: 

Here we used the formulas 

_1_J exp(iA..x) dx = 
(21T)2 Ix - zl 

exp(iA..z - IA. I IZ3il 
21T1A. I 

-IZ31 =Z3' (42) 

The second formula (42) holds since we assume that a2(z) = 0 
if Z3 > O. From (41) it follows that the scattering data Go(x,y) 
determines the function 

¢(A.,,u)- _ (21T)2f(A.,,u)IA.II,u1 
IA. I l,u I - A..,u 

= f dz a 2(z)exp [itA. + ,u )·z + (I,u I + IA. 1)z3]' 

(43) 

Let A. +,u = P = (PI,P2)' IA. I = P3' l,ul = P4' 
q = P3 + P4' (Do not confuse these P and q with P and q in 
Sec. II.) Then l/J, defined in these variables, can be written as 
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l/J = F(PI,P2,P3,P4)' 

F (p I' P2' P3' P 4) = J dz a2(z)exp( ip.z + qZ3)' 

Let us setp3 = P4 = q/2. Then 

F (PI' P2,q/2,q/2) 

-h2( PI' P2,q) = h (p,q) 
00 

= J J dz exp(i p.z) LX> d; exp( - q; )a2(z, - ; ). 

(44) 

From the data h (p,q) one finds az(z) = a2(z, - ; ) by taking 
the two-dimensional inverse Fourier transform and then the 
inverse Laplace transform. If a2(z) is found then Eq. (8) in the 
Born approximation can be rewritten as (x = x,y = y) 

- 16~ lim Gs - Q = J a I (z)dz 
w--oO (U2 Ix - zilY - zl' 

(45) 

where Q in (45) is defined to be the third term in the right­
hand side of(8) withgsubstituted in place ofG. If a2 is found 
then Q is known so that the left-hand side of (45) is known. 
Let us denote this known function by hl(x,y). 

Equation (45) which can be written as 

J a I (z)dz - h (A A) 
-----''''-'--- - I x,y 
Ix -zlly-zl 

(46) 

was solved in Ref. 2. Thus, the alternative inversion scheme 
which requires the knowledge of the scattered field 
Gs = G - g on the plane X3 = 0 for all positions x and y of 
the receiver and source and for small {U is as follows. First, 
find a2 from Eq. (44). Secondly, find a l from Eq. (46). 

IV. BIBLIOGRAPHICAL SKETCH 
Born (1926)4 first used the approximate linear data-per­

turbation relationship in atomic scattering calculations. 
This approximation was applied to an inverse acoustic scat­
tering problem, with T-matrix data, by Wolf(1969).5 Cohen 
and Bleistein (1979)6 applied this approximation to the con­
stant density acoustic equation for coincident source receiv­
er data on the Z3 = 0 plane. The Born inversion of the vari­
able density acoustic equation was addressed in Raz (1981),7 

Clayton and Stolt (1981),3 and Wilcox (1983).8 These works 
require, for a single determination of bulk modulus and den­
sity variations, sources and receivers everywhere on the sur­
face of the earth and all temporal frequencies. In contrast, 
the techniques presented in this paper require reflection data 
at either a single, very small temporal frequency or two arbi­
trary frequencies. Coen, Cheney, and Weglein (1984)9 pres­
ent an exact, two-dimensional, two-temporal-frequency, 
acoustic inversion method which requires transmission as 
well as reflection data. A two-temporal-frequency Born in­
version method which also requires transmission and reflec­
tion data is given in Devaney (1983).10 
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APPENDIX A: DERIVATION OF Ea. (18) 

Here the details of the computation of integral (18) are given. One has 

f exp( - ik.x + iwlx - z) dX/ = e - ik.z f exp[ - ilk Iluicos ¢ + iw(liW + ~)1/2] du 
41T/X-zl x-z=u 41T(luI2+~)1/2 

=e- ik.z_1_ ('" drrexp[iw(r +~)1/2] (21T e-ilklrCOS4>d¢ 
41T Jo (r +Z~)1/2 Jo 

e- ik.z 1 i'" dr~ exp[iw(r +~)1/2]~rlk I A e- ik.z 
= ~ - ---..:........,--...,......,.,..,.-----=-----'--'- 21TJo(lk Ir) = ~X 

Ik 11/2 41T 0 (r + ~ )1/2 21k 11/2 ' 
(AI) 

where [Ref. 1, formula (8.6.21)] 

H(~ 1I2(Z) = (2/1Tz)1/2eiZ, KI/2(Z) = (1T/2z) 1/2e- z• 

From (AI)-(A3) formula (18) follows. 

APPENDIX B: SUFFICIENT CONDITIONS FOR 
CONVERGENCE OF THE BORN SERIES IN 
ACOUSTICAL PROBLEMS 

Let 

u=g+w2 f galudz+ f gV·a2Vudz 

g + wZTlu + T2u, f = i; 
Let a I = az = 0 if Ix I > R. By C we denote various constants. 
The Born series l:;;'=0(w2T I + Tz)nl converges in some 
space H if IIw2TIII + IIT211 < 1, where IITII is the norm of a 
linear operator T acting on this space. Let us take as the 
space H the Sobolev space H ~ of the functions defined in the 
ball B R = {x: Ix I <,R J. Notice that since a I and az have sup­
port in this ball the values of! outside this ball do not influ­
ence the values of 1j J,j = 1,2. The following estimate is well 
known: 

Ildllz,R <,cR Ilfllo,R' 

where 

Ilfll~,R = ( i: IDi12 dx, 
J1xl<.Rj=0 

(BI) 

Di denotes an arbitrary derivative of order j. Since we are 
going to let w-<) it is sufficient to give conditions under 
which II TI II <,c, IIT211 < 1. We have [using the inequality (BI)] 

II Tdll2,R <,cR Iladllo,R 
<,cR maxlall'llfllo,R (B2) 

<,cR maxla l l·llfI12,R· 
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Thus, II Till <,const ifmaxlall < 00. Furthermore, 

II Tzfll2,R <,cR IIV.a2 V/llo,R 

(A2) 

(A3) 

<,cR maxlazlllVYllo,R + CR maxlVazlllV/llo.R 

<,cll lazll·llfI12.R' la211 = maxla21 + maxlVa21· 
(B3) 

Therefore, IIT211 < 1 if CR la21 < 1. The following result is 
proved. 

Theorem: Let a I and a2 have support in the ball B R • If 
maxlall <CI, maxlazl + maxlVazl <CZ, and q WZCICR 

+ CZCR < 1 then the Born series converges in H~ and is ma­
jorized by the geometrical series with ratio q, i.e., 
II(wZTI + Tz)n II <,qn , 0 < q < 1. 
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Electrodynamics of memory-dependent nonlocal elastic continua 
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Balance laws and constitutive equations are given for elastic continua with memory of past 
motions and electromagnetic fields. Nonlinear, finite-linear, and linear constitutive equations are 
obtained and restricted by the second law of thermodynamics. Memory-dependent nonlocal 
piezoelectricity, piezomagnetism, heat and electric conduction, viscoelasticity, and other allied 
physical phenomena are in the domain of the general theory. The theory is applied to discuss 
infrared dispersion and lattice vibrations, natural optical activity, anomalous skin effect, and 
superconductivity, indicating the power and the potential of the nonlocal theory. 

PACS numbers: 03.50.De 

I. INTRODUCTION 

In a previous paper, I I presented a nonlocal continuum 
theory of elastic solids subject to electromagnetic (EM) inter­
actions. The electric and heat conductions were not included 
in the theory and the memory dependence was not consid­
ered. In order to discuss the absorption and damping of 
waves at all frequencies, one needs to take into account the 
effect of strain and EM field histories in the constitutive 
equations. Moreover, the heat and electric conduction can­
not be discussed without the development of constitutive 
equations for the heat and current vectors generalizing clas­
sical Fourier and Ohm's laws. The raison d 'etre of the pres­
ent paper is the development of a rather general continuum 
theory which includes these effects. The power and potential 
of the theory is then demonstrated by treating certain prob­
lems which fall clearly outside of the domain of classical 
(local) continuum theory. 

There exist many interesting physical phenomena for 
which classical field theories are not applicable without 
proper modifications. The failure of classical theories stems 
from the fact that they do not possess a natural internal char­
acteristic length and a characteristic time. Yet all physical 
phenomena depend, to some extent, on such characteristic 
scales because of the discrete (atomic) nature of materials 
and the relaxation time. In order to explain such physical 
phenomena, classical theories are modified, often in an ad 
hoc fashion, without reference to fundamental laws. For ex­
ample, anomalous skin effects and superconductivity re­
quire approaches not entirely within the realm of Maxwell's 
theory of electromagnetism. Yet, these can be shown to be 
part of the nonlocal continuum theory (Secs. XI , XII), 
which also include Maxwell's theory as a special case. Much 
of the nonquantum aspects of the electron theory can be 
explained by means of the nonlocal theory, e.g., interaction 
of electrons with lattice vibrations, scattering of excitons 
near the boundaries of the Brillouin zone, infrared disper­
sion, absorption of waves, phase transition, nonlinear optics, 
streaming birefringence, piezoelectricity, etc. Some of these 
problems are treated here (cf. Secs. VIII-XII). 

There exist a large number of references and texts on 
each of these topics with approaches based on semiclassical, 
atomic, and quantum mechanical ideas (to cite a few, cf. 

Refs. 2-7). Wave-number-dependent dielectrics are exam­
ples of nonlocality8 which are relevant to semiconductor de­
vices. However, quantum and statistical mechanical ap­
proaches are difficult and cannot be carried out, except in 
simple situations. Nonlinear, nonlocal problems which are 
especially relevant to phase transition pose insurmountable 
difficulties on microscopic grounds. 

A macroscopic field theory of rigid-body electrody­
namics, based on Fourier formalism, exists as surveyed by 
Rukhadze and Silin.9 However, this approach is entirely for­
mal treating only the linear theory and thermodynamical 
restrictions are not considered. In other fields, e.g., nonlocal 
elasticity, 10,11 fluid dynamics, 12.13 liquid crystals, 14 and elec­
tromagnetic theory,15-17 nonlocal theory, have registered 
significant advances and resolved some long standing con­
troversy.18,19 

Motivated with this progress, I develop here a general 
theory of memory-dependent nonlocal electromagnetic elas­
tic solids. Balance laws and the second law ofthermodynam­
ics are given in Secs. II and III. In Secs. IV and V, I develop 
general constitutive equations and thermodynamics for the 
nonlinear theory. 

Section VI contains an account of the finite-linear con­
stitutive equations which are useful for materials with weak 
memory, but large fields. In Sec. VII, I give the linear consti­
tutive equations for anisotropic heat and electric conducting 
electro-magneto-elastic solids. Section VIII presents a dis­
cussion of elastic dielectrics. With Sec. IX, applications of 
the theory begin to infrared dispersion and lattice vibrations. 
Natural optical activity is discussed in Sec. X; anomalous 
skin effect in Sec. XI and superconductivity in Sec. XII. Re­
sults obtained are in conformity with other approaches 
based on semiclassical formalisms or electron theory. They 
are unified under one theory and contain other possibilities 
for the treatment of more general and nonlinear problems. 

II. BALANCE LAWS 

The body at the natural state occupies a region V - ~, 

the volume V excluding a discontinuity surface~. The mo­
tion carries a material point X E V - ~ to a spatial place 
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X E r - 0', where r - 0' is the image of V - .I at time t. 
The motion is a bijective mapping expressed by 

x = x( X, t)~X = X( x, t). (2.1) 

We employ a rectangular frame of reference so that rectan­
gular coordinates of x and X are denoted by x k and X K' 

respectively (k, K = 1,2,3). Since (2.1) is bijective, the Jacobi­
an must be positive 

J =det(xk, K) > 0. (2.2) 

Henceforth, we employ a comma to denote partial derivative 
and a dot to express the material derivative. The usual sum­
mation convention on repeated indices is also assumed, e,g., 

aXk x -k,K - ax
K

' 

. aVk 
ak =Vk =-+VkIVI' at ' 

(2.3) 

Balance laws of nonlocal electromechanical continua were 
given in Ref. 15. Here we are concerned with inert bodies 
consisting of single substance, i.e., mixtures and chemical 
reactions are excluded. Moreover, we assume that the ba­
lance laws are valid for a macroscopic volume element large 
enough to contain large number material points (atoms, mol­
ecules), but small enough so that the body contains a large 
number of these elements. This situation is reminiscent of 
statistical mechanical ensembles, Under these conditions, 
nonlocal residuals (action at a distance) appearing in the ba­
lance laws can be neglected as compared to fields at a refer­
ence point X in the body. Of course, the fields at a reference 
point are still influenced by the nonlocal intermolecular at­
tractions, For example, the stress and electric polarization at 
X depend on the strain and the electric field at all other 
points of the body, but gravitational variations with distance 
is unimportant. Under these conditions, Maxwell's equa­
tions remain valid in r - 0'. 

V·D=q, (2.4) 

VXE+~ aB =0, 
c at (2.5) 

V·B=O, (2.6) 

1 aD 1 
(2.7) VxH---=-=-J, 

c at c 

~+v.J=O, at (2.8) 

where D, E, B, H, J, and q are, respectively, the electric 
displacement vector, electric vector, magnetic induction 
vector, magnetic field vector, current density vector, and the 
charge density. c is the speed of light in vacuum. 

Maxwell's equations are supplemented with the me­
chanical balance laws, valid in r - 0' (cf. Ref, 20, Sec. 10.9) 

po!p = detxk,K' 

tk/,k +P(jl - VI) + Mil = 0, 
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(2.9) 

(2,10) 

(2.11) 

pE - tklVl, k 

- qk, k - ph - p~ . (Pip)' + vi( . B - / . ~ = 0, 
(2.12) 

where Po is the mass density in V - .I and p, 
tkul" v" E, qk' h are, respectively, the mass density, 
stress tensor, body force density, velocity vector, internal 
energy density, heat vector, and the heat source in 'Y' - 0'. 

~, vI(, and / are the electric vector, magnetization vector, 
and current vector in the proper (comoving) frame, as defined 
by 

~ = E + (l/c)vXB, vi( = M + (l/c)vXP, / = J - qv. 
(2.13) 

Here M and P are, respectively, the magnetization and po­
larization vectors in the fixed frame so that 

D=E+P, B=H+M. 

The EM body force Mf is given by (Ref. 19, Sec. 10.6) 

1 
M f= qE + -=-JXB + (VE). P + (VB)· M 

c 

(2.14) 

1 1 a 
+-[(PXB)vd k +--(PXB). (2.15) 

c 'c at 
Accompanying Maxwell's equations and mechanical ba­
lance laws, we have thejump conditions across 0'. These con­
ditions give boundary conditions when 0' is made to coincide 
with the surface of the body. For brevity, we do not list these 
conditions here. They can be found in Ref, 20, Sec. 10.17. 

III. SECOND LAW OF THERMODYNAMICS 

The second law of thermodynamics is a statement about 
the dissipative process expressing the physical fact that the 
total dissipation in a body is non-negative. The localized 
form of the second law used in classical field theories places 
severe restrictions on thermodynamic behavior of materials. 
For the nonlocal theory, the local form of the entropy ine­
quality is given by lO,l1,20 

pi] - V· (q/O) - (ph 10) -ps>O, (3.1) 

where 1] is the entropy density, 0> ° is the absolute tempera­
ture, and s is the nonlocal entropy residual resulting from 
entropy exchanges between the reference point and the rest 
of the body. It is subject to the restriction 

L. _!s dv = 0. (3.2) 

If we eliminate h between (3.1) and (2.12) and employ the 
following expressions: 

J=po!p, CKL = (vk,l + V"k)xk,KX"L' (3.3) 

W= t/J -Po-lilK~ K = E - 01] -Po-lilK~ K' (3.4) 

TKL =JXK,kXL"tk" QK = JXK,kqk' 

ilK = JXK,kPk' MK = JXK,kvltK' 

CKL = Xk,KXk,L' 

O,K = O,kXk,K' 

we obtain 

'!f K = '!f kXk,K' 

Bk = BkXk,K 

/k = JXK,k/k, 
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-Po(1It + 1]0) + !ETKLCKL + (1I0)QK O,K -IlK'if K 

- MKBK + /" K ~ K - PO(JS>O, (3.6) 

By means of(3.3) to (3.5), the equation of energy (2.12) can be 
written in the material form 

Po(1It + Oil + 01]) - !ETKLCKL - QK,K -pr/I 
+ IlK'ifK +MKBK -/"K~K =0, (3.7) 

Eq. (3.7) serves as the equation of heat conduction. The ine­
quality (3.6) will be employed to place restrictions on the 
constitutive equations. 

After dividing (3.6) with the positive quantity 0, we inte­
grate it over the volume V - .I, to obtain 

( 1.[ - Po(1It + 1]0) + J..E TKL CKL + ~KO'K 
Jv-z 0 2 0 

-ilK 'if K - MKBK + /" K ~ K] dV>O. (3.8) 

It is posited that Eq. (3.8) must not be violated for all thermo­
dynamic processes that are physically admissible. 

IV. CONSTITUTIVE EQUATIONS 

According to the axiom of causality,20,21 all physical 
processes that take place in a body are the result of motions 
(deformations) in the past up to and including the present 
time. When the intrinsic deformations of sub-bodies in a vol­
ume element are considered, this implies the history of cen­
troidal motions of the volume element and the memory of 
temperature, temperature gradients, polarizations, and 
magnetizations. This is equivalent to the selection of the in­
dependent constitutive variables: 

jt'={X',O',O:K' ~~,B~j, (4.1) 

where a prime is used to denote the values of functions at 
(X', t - T'), e.g., 

x' = x( X', t - T'), B ~ = B ( X', t - T'), 

(4.2) 

Values of these functions at ( X, t ) will be denoted without a 
prime, e.g., x = x( X, t), BK = BK( X, t). 

Constitutive equations express the functional depen­
dence of the set 

z ={ '/I, 1], E TKL , ilK' M K, QK' /" K j 

at ( X, t) on the set (4.1), e.g., 

'/I ( X, t) = Y[x', 0', O:K' ~~, B ~]. 

They also depend on X for inhomogeneous materials. 

(4.3) 

(4.4) 

The response functionals, such as Y, must be form in­
variant under arbitrary spatial translations and rotations. 
This implies that '/I will depend on x' and x only through the 
distance Ix' - xl. Since the distance can be expressed as a 
functional22 of C KL' it proves to be convenient to replace x' 
in (4.4) by CkL =C KL ( X', t - T'). 

For the discussion of thermodynamic restrictions, we 
distinguish each of the set of dependent variables into two 
categories, e.g., 
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C'=C( X', t - T') 

C=C(X, t). 

{
when X' =1= X, 0,;;; T' < 00 

when X' = X, O<T< 00 
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(4.5) 

For brevity, we abbreviate the following collections by 

Gr={C', or, O~K' ~~, B~ J, 
G={C, 0, O,K' ~ K,BK j, (4.6) 

G'={Gr,Gj = (C',O',O:K' ~~,B~j. 

We assume that members of G ' are continuously differentia­
ble with respect to their arguments. In order to introduce a 
topology to the space of function Gr

, we define the inner 
product of two such sets by 

(G~,G~)H= ('" dr'( H(X'-X,r')G~ ·G~dV', Jo Jv-z 
(4.7) 

where 

G~ ·G;=tr(C~C~)+O~O; 

+O~,KO~,K + ~~K~~K +B~KB~K' (4.8) 

The influence function H is a positive decreasing function of 
its argument such that the integrals in (4.7) converge and 

H(O, 0) = 1. (4.9) 

This function emphasizes the dependence on deformations, 
temperature, temperature gradients, and EM field near the 
reference point X at the present time t over their past histor­
ies and distant points X' from X. This is in accordance with 
the attenuating neighborhood andfading memory hypothe­
sis,2o,21 based on the nature of intermolecular forces. There 
exist many choices for the influence functions. As an exam­
ple, we mention 

H(X', T') = exp( - aIX'I-{3T'), a,{3>O. (4.10) 

Physically, more realistic forms of these functions can be 
selected approximating the interatomic force potential. 23-25 
The space of functions Gr is a Hilbert space JY with a finite 
norm defined by 

IIGrl1 = (Gr, Gr)~2. (4.11) 

In a Hilbert space, any continuous, linear, real-valued func­
tion f(F) has the unique Riez-Frechet representation (cf. 
Ref. 26, p. 421) 

f(F)=(F,Gr)H (4.12) 

valid for all Gr . 

then 

It is now possible to calculate lIt. Let 

Po '/I = F, 

PolIt= aF G + of(GrIGr, G), 
aG 

(4.13) 

(4.14) 

where of is the Frechet derivative of F with respect to Gr. It 
is a linear functional of Gr. Consequently, it can be expressed 
in the form 

of= ('" dT' ( of Gr dV'. 
Jo Jv_zoGr 

(4.15) 

The operator 0 ( )/0 ( ) represents the Frechet partial deriva­
tive. 

Substituting (4.14) into the entropy inequality (3.8), we 
obtain 
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r .l[ _ (pO'T/ + aF)e 
JV-I 0 ao 

+ - ETKL - 2-- CKL 1 ( aF ). 
2 aCKL 

- IlK +-- WK - MK +-- RK ---OK ( 
aF ) . ( aF ) . aF . 

aw K aRK aO,K ' 

(4.16) 

This inequality is linear in the rates e, C KL' Iff K' B K' and 
e,K' For arbitrary and independent variations of these quan­
tities throughout V - ~, the inequality cannot be maintained 
unless 

1 aF 1 aft 

MK = 
aRK 

0= aF = ~ft, 
aO,K aO,K 

- a Iff K ' 

aft 
- aB ' 

K 

r .l(.lQKO'K + / K W K - OF) dV>O. 
JV-IO 0 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

On the right-hand sides of(4.17)-(4.21), we also give alterna­
tive forms of constitutive equations in terms of gradients of 
ft. These forms are useful in the construction of special con­
stitutive equations. From these equations, it is clear that 'T/, 
E T KL' II K' and M k are determined in terms of the free-ener­
gy functional alone. 27 Equation (4.21) indicates that F cannot 
depend on the present value of e.K at X. In general, nothing 
can be said on the dependence of F on 
O~K==e,K(X',t-1"),X'#X,1"#t. For the present treat­
ment, we shall assume that F is independent of the history of 
the temperature gradients of other points as well. 

To complete the theory, separate constitutive equations 
will have to be written for QK and1' K' 

Spatial forms of constitutive equations follow from 
(3.5): 

1 aF 
'T/= 

- Po ae' 

Etk,l = (plpO)ETKLXk.KXI,L' 

Pk = (plpO)IlKXk,K' 

Jik = (pIPo)MKXk,K' 

qk = (plpO)QKXk,K' 

1'k = (plpO)1'KXk,K' 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

We conclude this section by representation of the free­
energy functional by means of Stone-Weirstrass theorem. 
According to this theorem, a real, continuous, scalar-valued 
functional of G ' may be represented uniformly by a polyno­
mial in a set of real continuous, linear, scalar-valued func­
tionals of G'. Accordingly, we may write 
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N N N 

Pol[l=F= I Fa + I I FaFp, (4.29) 
a~l a~l.B~l 

where F is a linear functional in G', which, in accordance 
with the Reisz representation theorem, may be expressed as 

Fa =/~( X)G(X, t) + L_fa( X', 0; X)G(X', t)dV' 

+ r= d1" r ala ( X', 1"; X) 
Jo JV-I a1" 

X G (X', t - 1")dV'. (4.30) 

Note that in (4.30), the first terms give an explicit display of 
the dependence upon the current state at the present time. 
Alternatively, through integration by parts, (4.30) may be 
expressed as 

Fa =/~( X)G( X, t) 

+ f~ = d1''fv_fa( X', t - 1"; X) 

X aG ( X', 1") dV'. (4.31) 
a1" 

Carrying (4.31) into (4.29), we obtain a formal represen­
tation of the free energy in terms of the members of G ' listed 
in the third equation of (4.6). In this way, nonlinear, nonlocal 
constitutive equations are constructed. Explicit expressions 
are too lengthy to list here. 

V. ADDITIVE FUNCTIONALS 

For the additive functionals, Friedman and Katz28 gave 
a representation theorem according to which 

Potf;=F= r= d1',r S(Qr,Q,X',X,1")dV', (5.1) 
Jo Jv- I 

where an underline is used to indicate that the lists of func­
tions Gr and G exclude the temperature gradients. Since only 
the symmetric part of S in X and X' contributes to the total 
free energy of the body, we may select S as a symmetric 
function of its argument functions at X and X'. This can be 
done by decomposing Gras 

Gr = {Gs, G', Gst J, 
where 

GS-G( X', t), 

G'=G( X, t -1"), 

X'#X, 

0<1" < 00, 

GS'=G( X', t -1"), X'#X, 0<1" < 00. 

(5.2) 

(5.3) 

If we let a superposed asterisk represent interchange of 
X and X', i.e., 

A ( X'X) = A ( X, X'), (5.4) 

then clearly, 

* G' = G st, GS' =G', 

(5.5) 

S(G, GS, G', G st, X', X, 1") =S(G s, G, G st, G', X, X', 1"). 
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Introducing (5.1) into (4.17) to (4.20), we obtain 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

We also write constitutive equations for QK and /' K 

QK/02 = ("" dr' ( KK(Gr, G, X', X, r')dV', (5.10) 
Jo JV-I 

/' K/O = ("" dr' ( LK(G r, G, X', X, r')dV'. (5.11) 
Jo JV-I 

Polynomial constitutive equations of various degree, may be 
derived from (5.6) to (5.11) by expressing S, KK' and LK as 
polynomials in the vector and tensor variables. 

The set of constitutive equations (5.1), (5.6)-(5.11) rep­
resents an alternative set to those obtained in Sec. IV. This 
set is more limited in one sense, namely, they are expressed in 
terms of single space-time integral while those of Sec. IV 
contain multifold integrals in space-time. Here the kernel 
functions are nonlinear functions, whereas in Sec. IV they 
consist of polynomials. In most nonlinear cases, the present 
representation should be adequate for possible calculations. 

VI. FINITE-LINEAR CONSTITUTIVE EQUATIONS 

For a large class of materials, the memory dependence 
on the past history of fields may be taken linear, yet the effect 
of local fields at the present time may be large. In this case, 
constitutive equations are called finite linear and they are 
obtained by taking 

S=So+.IiLC KL +.Ii-~K +.IiB K, (6.1) 

where So, .I iL' .I L and .I k are functions of 
C,~, B, 0, X, X',andr'. Upon substituting (6.1) into (5.6) to 

(5.9), and dropping nonlinear terms in G ' arising from S , we 

obtain 

1]= -- dr' --+~C' 1 L"" i (as
O 

a.I) 
Po ° V-I ao ao KL 

+~~, + __ K_B' dV' a.I 2 a.I 3 ) 

ao K ao K , (6.2) 

(6.3) 
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Ilk = _ ("" dr" (aSO + a.I 1N C ~N 
Jo JV-I a~K a~K 

(6.4) 

+~~, +~B' dV'. 
a.I 2 a.I 3 ) 

aBK M aBK M 
(6.5) 

For the heat and electric conduction in Eqs. (5.10) and (5.11), 
we put 

KK =K~ +KiLMC~M 

+ Ki-L ~~ + KiLB ~ + KkLO :L' (6.6) 

LK =L~ +LiLMC~M 

+Li-L~~ +LiLB~ +LkLO:L' (6.7) 

where K a and La are functions of C, ~, B, O,O,K' X, X', and 
r'. As usual, Eqs. (5.10) and (5.11) are subject to the entropy 
inequality (4.22). 

We observe that first terms under the integral sign in 
these equations can be taken out of the integral by integrat­
ingSO, K~, andL ~ over the volume and time since the argu­
ment fields C, ~, B, and 0 are independent of X' and r'. 

The finite-linear theory should be useful in discussing 
problems related to nonlinear optics, magnetism, phase tran­
sition, and nonlinear piezoelectricity of materials with weak 
absorptions. 

VII. LINEAR CONSTITUTIVE EQUATIONS 

Linear constitutive equations are obtained by writing a 
second-degree polynomial for the free energy. To avoid 
lengthy expressions, we introduce abbreviation Gp for some 
members of G and Tp for some members of Z: 

G)=-T, G2=EKL , G3=-~K' G4 =-BK' 

T)=Po1], T2=ETKL , T3=IlK' T4 =MK· 
(7.1) 

In the spirit of the linear theory, we replace the finite strain 
measure C KL by the linear strain measure E KL and consider 
small temperature changes T from an ambient temperature 
To, i.e., 

(7.2) 

0= To + T, ITI<To, To>O, (7.3) 

where UK is the displacement vector. 
Employing (4.29) and (4.31), a second-degree functional 

for the free energy may be expressed as 
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1 
P IJI=F =/oG +_/0 G G ° pp 2 pqpq 

1f' f' i i +- dr' dri 
2 -00 -00 V-I V-I 

></pq( X', t - 1"; X;, t - ri) 

aGp ( X', 1") aGq ( X;, ri) 
X--'-----~---

ar' ar; 

XdV'; dV;, (7.4) 

where Gp=Gp( X, t) constitutive moduli 1~,f~q,J;,,f ~q, 
and J;,q are also functions of X. As discussed in Sec. IV, 
Gp ( X', 1") is assumed to belong to a Hilbert space with an 
influence function. Consequently, 

lim Ip = 0, lim I ~q = 0, lim f. = lim f. = ° 
-T--...-.,.co T-oo r'-oo pq Tl-

00 
pq • 

(7.5) 

Moreover, it is clear from (7.4) that I! andJ;,q may be con­
sidered to possess the symmetry regulations 

I~q =/~, Ipq(X', r';Xi,ri) =lqp(X;, ri;X', 1"). 
(7.6) 

If we now calculate the time rate of (7.4) and use (4.17) 
to (4.20), we obtain 

Tp = a!, =/~ + I~Gq 
aGp 

f' i aG + dr' I~ --; dV, 
-00 V-I ar 

f' i J2G X dr' 11 --p- dV' 
- 00 V-I pq ar,2 

+ f' dr' r r Ipq( X', t - r';X;, 0) 
- 00 JV-I JV-I 

1f' f' +- dr' dri 
2 -00 -00 

(7.7) 

(7.8) 

where, by means of by part integrations, we combined two 
integrals involvingJ;, andl ~ and used (7.6). 
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An alternative form for (7.7) would result by writing29 

l'pq( X', t -1") =1 ~(X', t - 1") 

+ I~q( X')8( X' - X), (7.9) 

where 8 ( X' - X) is the Dirac delta measure 

f' aG (X' 1") 
T =/° + I' (X' t-r') q , dV'. 

p p -oopq' ar' (7.10) 

The quantity I ~ represents the fields at the natural state of 
the body. If the body is free offields and underformed at the 
natural state, then I ~ = 0. 

The explicit forms of (7.10) may now be written as 

f' 'i 1 ( ,aT , aE KL 1/=1/0+ dr - A -, +B KL--,-
- 00 V-I Po ar a1' 

+w' __ K_+r' ~ dV' aw aB ) 
K ar' K ar' , (7.11) 

f' i ( - aT aEMN 
ETKL = ToKL + dr -BKL- +~KLMN--

- 00 V-I aT aT 

, aw M , aBM) , 
-EMKL ---HMKL -- dV, 

ar' a1" 
(7.12) 

n n f' d'i (-' aT E-' aELM 
K = OK + l' {i} K -, + KLM--,-

- 00 V-I ar a1' 

E aWL aBL) 
+XKL --+A KL-- dV', ar' ar' 

(7.13) 

f' 'i (-' aT -, aELM 
MK = M OK + dr r K -, + H KLM--,-

- 00 V-I a1' ar 

+A' __ L_+X'B __ L dV'. - aw aB ) 
LK ar' KL ar' (7.14) 

The total free energy of the body is obtained by integrating 
(7.4) over the volume V -~. In this expression, the double 
volume integral containing I ~ can be integrated by part 
with respect to 1", resulting in two separate integrals. From 
one of these integrals containingl ~ ( X', 0, X), with the use 
of(7.9) and an interchange of X' and X, we deduce that 

* I ;q( X', 0, X) =1 ~(X, 0, X') f ;q. (7.15) 

No such general expression can be obtained for 
I 'pq( X', t - 1"; X), however, unless we invoke Onsager rela­
tions. This assumption is often used in classical (local) theory 
of viscoelastic solids. Ifwe assume that it is also valid for the 
nonlocal theory, we will have 

A , l' B-' B'* -, ~ r-' r*' = , KL = LK , {i} K = {i} K' K = K' 

• - * 
~KLMN =~~NKL , EKLM =E~KL' 

- . 
HKLM =H~KL' (7.16) 

Because of the symmetry of Tn and EKL , we also note the 
symmetry regulations 
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TOKL = ToLK ' B'KL = B ~K' B iL = B ~K' 
.IiLMN =.I~XMN =.IiLNM' HMKL =HMLK , (7.17) 

EMKL = E MLK , liMKL =liMLx ' 

For homogeneous materials, constitutive equations 
must be invariant under translations of the material frame of 
reference. This implies that the constitutive moduli shall de­
pend on X' and X only through X' - X, i.e., 

I~ =const, I; =1;(X'-X,t-1") (7.18) 

I ~ =1 ;q( X' - X, t -1"), 

J;,q = J;,q( X' - X, t - 1";X; - X, t - 1';) 

In terms of the specific moduli appearing in (7.11) to (7.14), 
we have for example, 

TOKL = const, B iL = B iL ( X' - X, t - 1"), (7.19) 

.I 'xLMN =.I 'xLMN( X' - X, t - 1"), 

A 'xL = A 'xL ( X' - X, t - 1"), .... 

Constitutive equations for heat and electric conduction 
may be expressed as 

Qk ft 'I, (, aT.L ,E aWL 
-2 = d1' KKL-- + KKL--,-
(J - eo V-I ar' a1' 

+K,B_L_+ G , ~ dV' aB aE ) 
K a1" KLM a1" , (7.20) 

/ K = ft d1"I, (.I,T aT.L +.I' aWL 
(J KL a ' KL a ' 

-eo V-I l' l' 

+.I ,B _L_ + F' --.!:!!... dV' aB aE ) 
KL Jr' KLM a1" , (7.21) 

where the conduction moduli K'xL , ... ,F 'xLM are functions of 
X', X, and t - 1". For homogeneous materials, they depend 
on X' - X and t - 1". Various moduli appearing in (7.20) 
represent the heat conduction and those in (7.21) represent 
the electric conduction due to various fields. Some of these 
moduli may vanish or be severely restricted due to the sec­
ond law of thermodynamics. 

The second law of thermodynamics (4.22) places re­
strictions on the constitutive moduli 

r ~(~QK(J.K + / K W K - 8F) dV>O. (7.22) 
)V-I (J () 

In the special case of no conduction, we must have 

- r ~8FdV;;'O. 
)V-I(J 

(7.23) 

This means that the total dissipation in the body must be 
non-negative. Employing (7.8), we see that the first two inte­
grals involvingJ;, andl ~q are linearin a 2G p/ a1"2 so thatthey 
must vanish, i.e., 

(7.24) 

The third integral in (7.23) involves Ipq( X', t - 1"; X;, 0). 
This integral is also linear in aGp ( X', 1")la1" except for 
1" = t. Hence it must vanish. WhenJ;,q does not depend on 
1", we would have 
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r r r Ipq( X', t; Xi, 0; X) 
)V-IJv-IJv-I 

XGp ( X', t)Gq ( X;, t) dV' dV; dV>O. (7.25) 
For the general case, however, we have 

1ft ft I, I, I, . - dr' d1'; /, 
2 -<X> -<X> V-I V-I V-I pq 

x aGp aGq dV'dV' dV;;.O. 
a1" a1'; 1 

(7.26) 

Both of these inequalities can be made non-negative under 
the symmetry conditions (7.6) for J;,q. For example, a non­
negative definite form fori pq' will provide a sufficient condi­
tion for (7.25) and (7.26). Thus, if(7.23) is made non-negative, 
then all we need is to see that 

r (Q~ T.K + _1 / K W K)dV;;'O. 
JV-I To To 

(7.27) 

From this and (7.20) and (7.21), it is clear that for fixed 
T.K ( X, t ) and W K ( X, t ), the functionals Qx and / K can be 
varied arbitrarily over the past histories, consequently the 
conduction moduli must not depend on time. In this case, 
the integration on T' can be carried out leading to 

Q: = r (KiL T.L + Ki~ W L 
To JV-I 

+ K;.!iBL + G iLMELM ) dV', (7.28) 

/x = r (.IiiT.L +.IiLWL +~;.!iBL 
To JV-I 

+ FiLMELM)dV'. (7.29) 

If these are substituted into (7.27), we see that the resulting 
expression contains terms which are linear in B ~ and E ~M' 
Integrals containing these terms must vanish for T.K = ° or 
W K = 0. Hence, 

r r K;.!i( X', X)T.K(X).BL(X'jdV' dV = 0, (7.30) 
JV-IJV-I 

L_IL_I.I;.!i( X', X)W x( X).Bd XljdV ' dV= 0, (7.31) 

L_IL_IG'xLM( X', X)T.K( X)ELM( X')dV' dV= 0, (7.32) 

L_IL_IFiLM( X', X)W K( X)ELM( X')dV' dV= 0,(7.33) 

L-IL-I [KiL( X', X)T.K( X)T.d X') 

+.I id X', X)W K( X)W d X') 

+ Ki~( X', X)T.K( X)W L( X') 

+.I Z( X', X)W K( X)T.L( X')]dV' dV>O. (7.34) 

It may happen that (7.30)-(7.33) can be satisfied identi­
cally, because of the symmetry regulations valid for 
K;.!i , ... ,F iLM (and/or because of some of the fields being 
absent), without these moduli vanishing point-wise, unlike in 
the case oflocal theory.20 

Furthermore, (7.34) will not be violated when functions 
KiL' .I iL' KiIf, and.I ii constitute a non-negative, definite 

A. Cemal Eringen 3241 



                                                                                                                                    

set. In local theory certainly, this is the case.20 For ~ K = 0 if 
KKL is a non-negative form throughout V - 2, (7.34) will not 
be violated. 

A similar condition is valid for 2 XL in the case T.K = O. 
These conditions are, however, sufficient but not necessary. 
Much less restricted conditions can be found for the conduc­
tivity moduli appearing in (7.34), irrespective of values of W K 

and T.K through V - 2. We also note that only the symmet­
ric parts of these moduli contribute to the double integral, so 
that we take 

KXL (X', X) = K;'K( X, X'), 

2 XL ( X', X) = 2 ;'K( X, X'), 

Kx~( X', X) +2;'~( X, X') 

= K;'~( X, X') + 2 Ki( X', X). 

(7.35) 

Of course, the material symmetry imposes further restric­
tions on the conduction moduli. 

The spatial forms of constitutive equations are obtained 
by using (3.5) and 

(7.36) 

poIp'::::f.l - err' Xk,K = (8MK + EMK + R MK )8Mk , 

where 8 Mk is the Kronecker delta when the spatial and mate­
rial frames are coincident and eki and rkl are, respectively, 
the linear strain and rotation measures which are defined in 
terms of the spatial components Uk of the displacement vec­
tor by 

We also introduce spatial material moduli by 

(7.38) 

in (7.11) to (7.14), and drop nonlinear terms leading to 

It I. 1 (aT aekl 
1/ = 1/0 + dr' - A ' -a ' + {J kL Jt 

_ 00 v- u Po r r 

(7.39) 

I t 'I. ( (J aT aemn + dr - kl-a , + O'klmn-
a 

' 
- 00 V-u r r 

a'll m aBm) 
- e' kl-- - h ' kl-- dv' m a7' mar' , 

(7.40) 

(7.41) 
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(7.42) 

Equations of heat and electric conduction may be expressed 
as 

qk = ( (KkIT,1 + KkfW I + KkfBI + gklmelm)dv', Jv-u 
(7.43) 

/k = ( (O'~;T.I + O'klWI + O'kfB I + rklmelm)dv', Jv-u 
(7.44) 

where the conduction moduli Kk1, ... ,rklm are functions of x' 
and x and they are subject to the spatial forms of (7.30) to 
(7.34), i.e., 

L-u L_uKkfT.k( x)B I( x')dv' dv = 0, 

L_uL_uO'kfW d x)B I( x')dv' dv = 0, 

L _ u L _ ugklm T.k ( x)elm ( x')dv' dv = 0, 

(7.45) 

(7.46) 

(7.47) 

L_uL_/klm W k( x)elm ( x')dv' dv = 0, (7.48) 

L-uL-u [KkIT.k( X)T,I( x') + O'kl W d x)W II x') 

+ xii T,d x)W I( x') + O'k;W k ( x)T.II x')] dv' dv>O 
(7.49) 

with the symmetry regulations 

K"II x', x) = K1k ( x, x'), O'k/( x', x) = O'[k( x, x'), (7.50) 

Kkf( x', x) + 0'[[( x, x') = Klk( x, x') + O'kf! x', x). 

For homogeneous materials, conduction moduli are func­
tions of x' - x. 

In the special case of memory-independent materials, 
the material moduli appearing in (7.39) to (7.42) do not de­
pend on r'. In this case, the integrals on 7' can be carried out 
leading to constitutive equations of nonlocal piezoelectricity 
obtained before. 27 

The physical meanings of various material moduli are 
the same as in local theory, except that here they are volume 
densities: 

710 
lOki 

A' 

1T~ 
m~ 
/3 1,1 
CTklmn 

e:nkl 

h ;"kl 

entropy at the natural state 
the stress at the natural state 
heat capacity 
polarization at the natural state 
magnetization at the natural state 
thermal stress moduli 
viscoelastic moduli 
piezoelectric moduli 
piezomagnetic moduli 
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w" 
x"f 
A "I 
rIc 
x "f 
K"I 
0""1 
K"f 
O""r 

pyroelectric polarizability 
dielectric susceptibility 
magnetic polarizability 
pyromagnetic moduli 
magnetic susceptibility 
heat conduction moduli 
electric conduction moduli 
Peltier moduli 

Seebeck moduli. 

In the absence of a better terminology, we christen 
the following four moduli as: 

K"f thermomagnetic conductivity 
g"lm thermoelastic conductivity 
O""r magnetoelectric conductivity 
r"lm electroelastic conductivity 

assuming that they exist. 
The material moduli are Dirac-delta function sequence, 

so that in the limit when nonlocality in space-time vanishes, 
these equations revert to classical (local) forms. Note that the 
material moduli are densities in space-time. Consequently, 
they depend on a length scale a and a time scale l' so that 
when a-+O constitutive equations must revert to classical 
equations for memory-dependent materials and when 1'-+0, 
they revert to equations of nonlocal elasticity. When both 
a-+O and 1'-+0, we obtain classical theory EM elastic solids. 

The internal characteristic length can be taken as the 
lattice parameter, granular distance, pore size, etc. The char­
acteristic time could be considered as the relaxation time. 

If the material possess certain symmetry represented by 
a group of orthogonal transformations {8 I, then the materi­
al moduli must obey the following types of functional rela­
tions: 

SkpSlqx!(K, 1") = Xfl(8K, 1"), 

SkpSlqSmrepqr(K ,1") = eklm (8K, 1"), 

SkpSlqSmrS"sO"pqrs(K, (}) = O"klm" (8K, 1"), 

SkpSlq~(K, 1") = rll(8K, 1") det 8 

(7.51) 

for all members of the group {8 I, where K = x' - x. As a 
consequence of these, the material moduli will be restricted 
in their dependence on x' - x. For example, for the isotropic 
dielectrics, these imply that 

x"f = xflSkl + xfKkKI' 

e"lm = elKklSlm + e2(KIlSkm + KmlSkl) + e3KkKI Km, 

O""lm" = A1lSkllSm" + Ji-1(lSkmlSl" + ISk"lSlm) (7.52) 

+ O",(KmK"lSkl + KkKIlSm,,) 

+ 0"2(KkKmlSl" + KkK"lSml 

+ KIKmlSk" + KIK"lSkm ) + 0"3KkKIKmK". 

Similar expressions are valid for other moduli. Coefficients 
xf,xf, el'''''0"3 are functions of Ix' - xl and 1", e.g., 

xf = rl(lx' - xl, 1"), O"a = (Ix' - xl, 1"). (7.53) 

The appearance of the material moduli xl, ea , and 0" a indi­
cates that even for isotropic solids, interatomic orientations 
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cause piezoelectric effects which are missing in classical (lo­
cal) field theories. 

Finally, as noted before, the material moduli depend on 
characteristic length and time scales, e.g., 

A =A [( x' - xl/a, 1"h], 

so that 

lim A = Am (1" h)lS( x' - x), 
a-+O 

limA = As [( x' - x)/a]lS(t -1"), 
1'-+0 

lim Am = lim As = Ao, 
1'-+0 a-+O 

where Ao is a local material constant. 

(7.54) 

(7.55) 

Ifwe also recall the attenuating neighborhood hypothe­
sis as formalized by an influence function, we may employ 
such forms as 

A =A exp[ - (k 2/a2)( x' - x). (x' - x) _/ 2(1"2/r )], 
(7.56) 

where k, I, and A are constants, subject to the normalization 

L"" d1" r A du' = Ao· 
o Jv-O' 

(7.57) 

When the body extends to infinity in all directions in N-space 
dimensions, this gives 

(7.5S) 

Of course, other possibilities exist. We may, for example, 
determine A ' by comparing the dispersion and absorption 
curves obtained in lattice dynamics with those calculated by 
means of nonlocal theory. 23-25.30 

VIII. DIELECTRICS 

Most dielectrics are nonmagnetizable and all are non­
conductors. Thus, the effect of B-field and conductions are 
ignored. Equations (7.40) and (7.41) are then the only rel­
evant equations to consider. If the natural state is field-free, 
then we have 

ft 'i (, aem" , a'l? m ) , Etkl = d1' O"klm,,--,- - emkl--,- du, 
- 00 V-O' a1' a1' 

(S.l) 

(S.2) 

For rigid dielectric, the dependence on the strain tensor is 
ignored and we have the only constitutive equation 

P fl d'l 'E(' ') a'l? I( x', 1") , ) k = l' Xkl X -x,t-1' , du.(S.3 
-00 V-O' a1' 

For unbounded solids, the Fourier transform of (S.l) 
and (S.2) are useful. 

Etkl = - iCU[Uklm,,(S, cu)em,,(s, cu) - emkl(S, cu)~ mIS, cu)], 

(S.4) 
Pk = - icu [eklm (S, cu)elm (S, cu) + xfds, cu)~ tis, cu)], 

where a superposed bar indicates the Fourier transform, e.g., 
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F(S, w) = (21T)-21
OO 

dt f: 00 f: 00 f: 00 

XF(x,t)ei(~.x+wt)dx3. (8.5) 

Note that the Fourier transform with respect to time is one 
sided. 

Sometimes it is useful to replace xft by the dielectric 
moduli Ekl defined by 

Ekl = Okl + xrl' (8.6) 

FromDk = (kl(S, w)EI and (8.5) it follows thatth~realEwi1l 
cause real D if 

(8.7) 

where an asterisk denotes the complex conjugate. If Sand w 
are real, writing (kl = ("I + i (kl this leads to 

(kl( - S, - w) = E"ds, wI, 

Ekl ( - S, - w) = - Ekl(S, wI, 

(kl( - 5, - w) = (k;/(S, w) -lEkl(S, wI· (8.7a) 

Similar identities are valid for a klmn and eklm' 
When the memory dependence is negligible then the 

material moduli do not depend on r' and (8.1) and (8.2) be­
come 

Etkl = r [CTklmn(X'-x)emn(x',t) Jv- u 

- emkl ( x' - x)~ m( x', t)]dv', 

Pk = r [eklm ( x' - x)elm ( x', t) 
Jv-u 
+ xfl( x' - X)~I( x', t)]dv'. 

(8.8) 

(8.9) 

These are identical to those obtained in our previous work. 2
? 

Isotropic dielectrics 

Frequently, the analysis in the Fourier domain is used 
for analytical and experimental purposes. The material mod­
uli in the (S, w) domain can be expressed by merely replacing 
J( in (7.52) by S, specifically, 

(kl = (Okl - 5;~1 )ET(S2, w) + S;~I CL(5 2
, wI, (8.10) 

(kim = S -I( YISkOlm + YzSIOkm + Y2EmOkd 

+ Y35 -35k5ISm' (8.11) 

aklmn =XOkiOmn +ji(OkmOln +OknOlm) 

+ AIS -2(Sm5nOkl + SkSIOmn) 

+ AzS -2(5k5m Oln + 5k5n OIm 

+ 515m Okn + 515n Okm) 

+A35 -45k5ISmSn' (8.12) 

where ET and EL are the transverse and longitudinal dielec­
tricmoduli. Ya' -X,ji, andAa arefunctionsof5 2

:== S· sandw 
only. These expressions are identical to the forms given be­
fore2? except that here the material moduli depend on w as 
well. 
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The dependence of Ekl on the wave vector S indicates 
the space dispersion and w the presence of the longitudinal 
optical modes. In fact, as conjectured in our previous work, 
the dispersion relation for the longitudinal optical modes are 
given by 

CL (5 2,W)=O (8.13) 

so that the phase velocity v = w/ S and the index of refraction 
n = clv depends on the wave length 21T/5 indicating disper­
sion, which is particularly strong for high frequencies or 
short wavelengths. 

From (8.4), it is also clear that isotropic solids may ex­
hibit stress-optic effects since e mkl =1= O. This is particularly 
true, again in the short-wavelength region, i.e., near the 
boundaries of the Brillouin zone. Thus, isotropic solids at 
these boundaries can be spatially active and/or gyrotropic. 
Such effects are, of course, ruled out in classical theories. 
Equation (8.4) indicate Brillouin scattering from an exciton 
which have been observed. 

For anisotropic dielectrics material functions Ekl> eklm , 
and aklmn acquire other forms compatible with their group 
symmetry. For example, for an uniaxial crystal with axis i3, 

Ekds, w) is of the form2
? 

- ( 5dl) 5kSI (kl = Okl -7 (T + rL + (rJj3k 031 
+ ER 5 -1(5k031 + 5103d, (8.14) 

where E T> E L, Eo, and E R are functions of 52, w, and T. 
When the spatial dispersion is weak 5a< 1, Ekl may be 

approximated by a power series expansion of the form 

Ekl(S, w) = ~dw) + /Yklm(W)Sm + iiklmn (W)Sm5n' (8.15) 

similar expansions being valid for eklm and a klmn' In a space­
time domain this is equivalent to the operator 

o ) a a a (kl( x, t) = Ekl(t - Yklm (t )-- - a klmn (t )-- --. axm axm axn 

(8.16) 

Other approximate forms have been suggested/I e.g., 

Ekl(S,W)=EZI +gkl/[W-WL -F(s)], (8.17) 

where EZI, gkl' WL are constant andF(S) is a suitable function 
of S, which may be approximated by a polynomial in S. 

Rigid gyrotropic crystals possess no center of symmetry 
so that for these crystals one can neglect quadratic terms in 
powers of S also. The presence of linear terms in S, near the 
absorption lines, give rise to a new type of wave which is 
absent in classical theories. 3 

I 

The complex frequency dependence of the material 
moduli can be used to study absorption of waves. In the case 
of electric conduction, the nonlocality and memory effects 
are very important and they lead to highly damped EM 
waves and the anomalous skin effect. Thus, we can employ 
the nonlocal theory to predict various results associated with 
electronic conduction in a lattice. 

Eventually, by means of statistical mechanics, it should 
be possible to calculate the nonlocal moduli in terms of 
atomic parameters and force laws. Thus far, this has been 
possible only for very simple cases. Of course, experimental 
results can be used to find approximate expressions. 
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IX. INFRA-RED DISPERSION AND LATTICE 
VIBRATIONS 

Here, we consider the interaction of electromagnetic 
waves with lattice vibrations. It is well known that acoustic 
branches oflattice vibrations are identical to those of elastic 
waves in the long-wavelength limit. However, the optical 
branches of lattice vibrations are not included in classical 
elasticity. It will be shown that both acoustic and optical 
branches are included in the nonlocal theory. Therefore, it 
should be possible to study the interactions of EM waves 
with acoustic and optical branches. Consequently, infrared 
dispersion and the retardation effect on lattice vibrations can 
be accounted for in the range of infrared frequencies. More­
over, when the memory dependence is considered, the 
damping of waves and the energy dissipation can be calculat­
ed. The dissipative effects are important, especially in the 
neighborhood of resonance frequencies. Initially, we assume 
that the memory dependence is absent. The magnetization, 
conductions, and body forces will be assumed to be negligi­
ble. 

Fourier transforms of Maxwell's equations and equa­
tions of motion are given by 

~·D = 0, 

~XE + (w/c) H = 0, 

~·H=O, 

~XH - (w/c) D = 0, 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

iSkEtkl - PW2UI = o. (9.5) 

Constitutive equations for Etkl and 15k follow from (8.8) to 
(8.12) 

Etkl = - i{ [( A + AI)8kl 

+ S -2( AI + U 2 + A3 )SkS/]0· ~ 

+ (,u + A2)(sluk + SkUI!) + S -I [Y2(EISk + EksI! 

+ ~. E( y I8kl + Y3S -2SkSI!], 
(9.6) 

- - -2 -
Dk = ETEk + (EL - ET)S Sk E • ~ 

- is -I[(YI + Y2 + Y3) 

X S k 0 • ~ + Y 4 2U k ] , (9.7) 

where a superposed bar represents the Fourier transform. 
Substituting these into (9.1) and (9.5), we have 

ELE·~-is(YI +Y2+Y3)0·~=0, (9.8) 

[pw2 
- (,u + A2)s 2] ul 

- (A +,u + U I + 3..12 + A3)S/o· ~ (9.9) 

- is-I [Y4 2EI + (YI + Y2 + Y3)S/E.~] = o. 
Scalar product of (9.9) with ~ gives 

- is( YI + 2yz + Y3)E. ~ 

+ [pw2 - ( A + 2ji + U I + 4..12 + A3)S 2] 0 • ~ = O. 
(9.10) 

Equations (9.8) and (9.10) may have nonvanishing solutions 
for E . ~ and 0 • ~ if the determinant of their coefficients van­
ishes, i.e., 
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pEL = f[ ci - (W/S)2]-1, 

where 

ci = (A + 2,u + U I + 4..12 +A3)/p, 

Y = YI + 2Y2 + Y3· 

(9.11) 

(9.12) 

Equation (9.11) is the dispersion relations for waves which 
possess longitudinal components E . ~ and 0 • ~. In the clas­
sicallimit, EL = o and Y#O, we have the dispersion relations 
of the irrotational modes of elastic waves. 

If on the other hand, E· ~ = 0, then it follows from (9.8) 
that, for YI + Y2 + Y3#0, o· ~ = O. In this case, we have 
transverse waves only, and (9.6), (9.7), and (9.9) reduce to 

Etkl = - i(jl + A2)(Sluk + SkU/) + S -ly2(EISk + EksI!, 

15k = ETEk - i y4Uk' 

[pw2 - (,u + A2)s2]ul - i SY2EI = o. 
Eliminating 0 between (9.14) and (9.15), we have 

(9.13) 

(9.14) 

(9.15) 

15 = EEk , (9.16) 

where 

E = ET - p-lfs2{ [(jt + A2)/p ]S2 - ( 2) -I. (9.17) 

This relation indicates clearly the frequency dependence of 
the dielectric constant, consequently, the dependence of the 
refraction of monochromatic wave on its frequency (the dis­
persion). 

Comparison of this result with the classical treatment of 
photon-phonon interaction32 shows that 

E", = ET, Eo - E", = - f/(,u +..12 ), 

2 2 (9.18) Wo = [(jl + ..12)/ p] S . 
In the classical treatment E", , Eo, and w~ are considered con­
stants. Here they are functions of S 2 so that the space disper­
sion is included. Of course, in some region of infrared fre­
quencies, s-dependence is negligible and we may consider 
them contants in that region. With the identification (9.18), 
the nonlocal material moduli are determined since classical 
values of E", , Eo, and w~ are measured for various materials 
(e.g., alkali-halides). 

Cross product of(9.4) with S, using (9.2) and (9.7), leads 
to 

[ET(W2/c2) - s2]H + i Y2(W/C)S(sXo) = o. (9.19) 

Cross product of(9.9) with S, with the use (9.2), gives 

i Y2(w/c)sH + [pw2 - (,u + A2)s 2] sxo = O. (9.20) 

If(9.19) and (9.20) are to possess nonzero solutions for Hand 
sXo, we must have 

w4 -- (~ + ,u + ..12 _ ~ )s 2W2 + ,u + ..12 ~ S 4 = O. 
ET P PET P ET 

(9.21) 

This is the dispersion relations for optical modes which pos­
sess transverse components sXii, sXE = - wH/c. They 
are also valid when S . E = s . 0 = O. 

Note that the optical modes are brought into play 
through the presence of the space gradients of the displace-

A. Cemal Eringen 3245 



                                                                                                                                    

ment vector, indicated by the presence of the operators Skin 
the constitutive equation (9.6) and (9.7). In this way, terms 
involving A k and Y k give rise to higher-order space gradients 
of the displacement and electric vectors since in the physical 
space,Sk corresponds to - lolaxk • Thus, for example, if we 
set Y 2 = A2 = ° in (9.21), we can factor this equation leading 
to (aJ 2 

- e21 E r) (aJ 2 
- jil p) = 0, which give classical disper­

sion relations of EM and irrotational elastic waves in the 
long wave limit (when e21Er and jilp are independent of S 
andaJ). 

If we use (9.18), Eq. (9.21) can be expressed as 

(9.22) 

which is identical in form to the classical result. 32 
IfH = 0, then from (9.19) it follows that sXii = 0 and 

the waves will be longitudinal only. In this case, we have the 
dispersion relations (9.11). 

In dispersion relations (9.11), (9.17) and (9.21) and 
(9.22), constitutive moduli are functions of S 2, when the 
memory dependence is neglected. When the memory depen­
dence is included, the foregoing equations are modified by 
multiplying all material moduli by - iaJ. This factor arises 
from the time rates of ekl and ~ k in (8.1) and (8.2). In this 
case, the material moduli are functions of S 2 and aJ so that we 
will have complex roots for aJ = aJ(S ), indicating dispersion 
with absorption. Thus, the so-called polariton dispersion 
with absorption is fully accounted for. 

X. NATURAL OPTICAL ACTIVITY 

The dependence ofthe dielectric moduli Ekl on the wave 
vector can give rise to optical activity. For this to occur, the 
crystal must not possess a center of symmetry. 

The non local constitutive equation for rigid anisotropic 
dielectrics is given by 

Pdx, t) 

It d 'i E, , aEI( x', 1") d ') = l' X k/( x - x, t -1') , v( x . 
-00 r ~ 

(10.1) 

The total free energy, in the absence of other fields, is of the 
form 

It i aEd x, 1') 
d1' Pk ( x, 1') dv( x). 

- 00 r a1' 
(10.2) 

If we carry (10.1) into (10.2), interchange k and I and the 
order of the integrals on ( x, 1') and ( x', 1"), we see that we 
must have [see also (7.16)] 

xfd x' - x, l' -1") = xfi.( x - x', 1" -1'). (10.3) 

In terms of dielectric moduli, this is equivalent to 

Ekl( x' - x, l' -1") = Elk ( x - x', 1" - 1'). (10.4) 

The Fourier transform of Ekl is of the form 

Ekl(S, aJ) = Elk ( - S, - aJ). (10.5) 

But from (8.7) we also have 

(10.6) 
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If we expand (10.5) and (10.6) into power series about S = 0 

and t = 0 and retain only the first two terms, we will have 

Ekds, aJ) = Ekl(O, aJ) + Ekl,m(O, aJ)Sm 

= EldO, - aJ) - Elk,m(O, - aJ)Sm 

!I! •• • t 
= Ekl(O, - aJ)- Ekl,m(O, - aJ)S m' 

Consequently, 

Ekl(O, aJ) = EldO, - aJ) = tl(O, - ~), 

Ekl.m (0, aJ) = - Elk,m (0, - aJ). 

This approximation is equivalent to 

o aEI 
Dk = Ekl(aJ)EI + Yklm(aJ)--, 

aXm 
where 

E~I(aJ) = Ekl(O, aJ), YkIm(aJ) = l€kl,m (0, aJ) 

with the symmetry relations 

o () 0 ( ·0. Ekl aJ = Elk - aJ) = Ekl ( - aJ), 
• * Yklm (aJ) = - Ylkm ( - aJ) = Yklm ( - aJ). 

(10.7) 

(10.8) 

(10.9) 

(10.10) 

(10.11) 

Equation ( 10.9) is identical to the classical expression of 
the constitutive equation leading to natural optical activity if 
the memory dependence is ignored, i.e., aJ = 0 (cf. Landau 
and Lifschitz, Ref. 2, p. 338). 

For memory-dependent materials, using (10.11), the in­
verse Fourier transform of (10.9) with respect to aJ will show 
that the dielectric displacement D will depend on the mem­
ory of past electric fields. In this case, the crystal will exhibit 
absorption as well. 

XI. ANOMALOUS SKIN EFFECT 

Anomalous skin effect arises when a highly nonuniform 
field is established in a conductor, In this case the electric 
field varies rapidly within the skin depth and the nonlocal 
effects become important. 

Consider a semi-infinite isotropic rigid conductor occu­
pying the space Ix I 1<; 00 IX21 <; 00, O<;x) . We assume that the 
displacement current, magnetization and, temperature gra­
dient are negligible. In this case the Fourier transforms of 
Maxwell's equation reduces to 

SXE + (aJle)H = 0, sXH = (ile)J, (ILl) 

where J is given by the constitutive equation (7.44), i.e., 

(11.2) 

The Fourier transform of the conduction moduli (hI' for 
isotropic solids, are of the form 

akl =UoOkl +U1S- 2SkSI' S3=S'S, (11.3) 

where u 0 and u I are functions of S 2 and aJ. Eliminating Hand 
J among (11.1) and (11.2) we obtain 

(11.4) 

For the semi-infinite conductor under consideration, 
we take the applied E-field in XI-direction and assume that 
EM fields are independent of x 2-coordinate. Consequently 
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tk = t/>k3' Ek = E/>kI , 

Hk = H/>k2' Jk = J/Jk 1> 

with this (11.4) gives 

(11.5) 

i(cu/c2)u}} (tL cu) - t~ = o. (11.6) 

When the memory effect is absent then UlJ = UlJ (t ~) is a 
function of t ~ only. From (11.6) it is clear that the penetra­
tion depth depends on the frequency. This result can be used 
to determine O'lJ by comparing (11.6) with atomic calcula­
tions, or surface impedance measurements. 

The integro-differential equation for E} corresponding 
to the case (11.5) is given by 

d
2

E} = _iCUfoo O'lJ(x3-x;,cu)El(X;)dx~. (11.7) 
dxj c2

_ 00 

Comparing this with the Reuter and Sondheimer's result,33 
for the case of specular surface reftexion, we see that 

O'll( x, cu) = 0'01 Eil [( 1 - iCUT) Ixl] 
-Ei3[(1-icuT)lxllJ, (11.8) 

where 0'0 and T are constants and 

(11.9) 

In this way we establish a definite connection with the elec­
tron theory. 

Finally note that when ull is independent of t3 and cu, 
(11.6) gives the classical skin depth. 

XII. SUPERCONDUCTIVITY 

Below a critical temperature ranging from less than 
1 0 K to 18 oK large numbers of metals and alloys are super­
conductors. At this stage there is no resistance to the electric 
field inside of the metal. Here we show that the superconduc­
tivity is included in the nonlocal theory. 

Two surviving Maxwell's equations have the form 

VXH=J/c, V·H=O. (12.1) 

Of course Hand J are interpreted as the microscopic 
fields. For simplicity, we consider a rigid superconductor at 
a constant temperature and ignore the memory effects. 
From (7.44) it then follows that 

Jk = fr _ aO'kl( x' - x, T)H!l x')dv( x'), (12.2) 

where we wrote oil=O'kl' Since Ek = 0, it is clear that the 
entropy inequality will not be violated. However, J is a polar 
vector, while H is an axial vector. Consequently O'kl must be 
an axial tensor. This is possible since 0' kl depends on the 
vector x' - x. For an isotropic solid O'kl has the form (Ref. 
20, Appendix B) 

(12.3) 

where 0'0 is a function of Ix - x'i and T. Consequently for 
isotropic materials (12.2) reads 

3247 

J = fr _ aO'o(Jx' - xl, T)( x' - x) X H(x')dv(x'). (12.4) 

Carrying (12.4) into (12.1) we have 
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(12.5) 

where we wrote R = x' - x. This equation together with the 
second equation in (12.1) and the boundary conditions 

H· n = 0, [Hxn] = 0, ar (12.6) 

are adequate to determine H when the kernel O'o(R, T) is 
known. 

We now show that (12.5), in a special case, gives Lon­
don's equation of superconductivity. In fact, we calculate 
curl of J: 

(VXJ); = f/';jk€klm(aoRdjH;" dv' 

= fr[(O'oR;)jH; - (O'oRj)jH;]dv'. 

In the firstterm of the integrand we wrote a / aXj = - ax; so 
that 

(O'oR;)j = - (aoR;H;Jj + aoR;H L· 
Here the second term vanishes on account of (12.1) and the 
first term can be converted to a surface integral by means of 
the Green-Gauss theorem. Hence, 

VXJ = - r O'oRH'· da' - r H'V· (O'oR)dv'. Jar Jr 
The integrand in the surface integral on ar vanishes be­
cause of ( 12.6) and we obtain 

VXJ = - fr r(R, T)H' dv', (12.7) 

where 

r(R, T) = V· (O'oR). (12.8) 

Combining (12.7) and (12.1), we obtain 

VXVXH + ~ r y(R, T)H( x')dv' = O. (12.9) cJr 
This integro-differential equation reverts to London's equa­
tion in the classical limit when the r(R, T) becomes a Dirac 
delta measure. This is in perfect accord with the conditions 
(7.55) set on nonlocal kernels namely that they must be a 
Dirac delta sequence. Consequently, y~Yo(T~(lx' - xl) in 
the limit when the internal characteristic length approaches 
zero, and (12.9) converts to 

VXVXH + (yolc)H = 0, (12.10) 

which is the London's equation with Yo appropriately identi­
fied. 5 

We now introduce vector potential A by 

H = VXA, V • A = O. (12.11) 

With this the second equation in (12.1) is satisfied and (12.4) 
may be written as 

Jk = fr O'O€klm€mrsRIA ;," dv' 

= fr [(lToEklm €mrsRIAs),,, - (€klm€mrsO'oRl),,,A :]du'. 

By means of the Green-Gauss theorem the first part of the 
volume integral is converted to a surface integral so that 
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J =1 lTo(R· A' da' - R· da' A') 
ar 

_ f [alTOR • A' R _ (R alTO + 2lTo)A']dV'. Jr aR R aR 
(12.12) 

Clearly the functions 0"0 must be such that at large distance 
(large R = I x' - x I) from x the surface integral vanishes or is 
negligibly small. To assure this we take 

lTo=(C/2R2)e-RISo, R<So, (12.13) 

where C and So are constants. With this (12.12) reduces to 

J = C f {(A'. ~)R 
J?', R 

+ _1_[A'. R~ _ (1 + 4S0 )A']}e - Riso dv'. 
2soR R 2 R 

(12.14) 

For large So the second term may be neglected, resulting in 
the expression first given by Pippard3 

J - cJ: (A'· R)R -Rlso d , - e v. 
r R4 

(12.15) 

Coefficient C is determined by considering that A varies 
slowly over a distance So so that it can be taken out of the 
integral. Ifwe employ (12.13) in (12.8) we obtain 

y(R, T) = (C 12R 2)(1 - R ISo)e-RISo, (12.16) 

which is valid for R SSo and r = 0 for R > So. 
lt is clear that the origin of the superconductivity can be 

traced to the nonlocal theory. In fact, for an isotropic solid 
we can simply carry (12.4) into (12.1), resulting in an integro­
partial differential equation for H. For anisotropic solid it is 
necessary to determine the properly invariant form of 0" kl . 

Uniaxial crystal 

For a uniaxial crystal with axis in X3 direction we take 

(12.17) 

lTk is an isotropic function of two vectors R, i3 and a skew­
symmetric tensor Hkl = EklmHm (equivalent to H); linear in 
H. Hence, it has the general form (Ref. 20, Appendix B) 

lTk = aoRk + a!HkmRm, (12.18) 

where ao and a! are functions of the invariants 

R 2, R 3, H2, (R· Hf, (RxHb, H2R3 - (H· R)H3' (12.19) 

From (12.17) it follows that 

Hence, 

lTkl = O"OEklRm + Em13(lT!8km + lT2Rm 8k3 + lTRkR m), 
(12.20) 

where lTa' a = 0,1,2,3 depend on R 2 and R 3• Consequently 
(12.2) for uniaxial solids read 

J = Jr_}lToRXH' + IT!H'Xi3 

+ (RXH'b(0"2i3 + lT3R)]dv'. (12.21) 
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It is possible to construct appropriate kernels IT a similar 
to that of Pip pard, but the scope of the present work does not 
include such an investigation. It is rather to indicate how the 
superconductivity can be brought into the domain of field 
theories once the nonlocality is incorporated properly. 

Thus far, we have ignored the possibility of heat con­
duction under constant temperature. This question may be 
raised since the constitutive equation (7.43) for the heat ac­
quires the form 

qk = i_"Kkl( x' - x, T)H; dv'. (12.22) 

Similar to (12.4) for isotropic solids we have 

q = i_"lTo(IX' - xl, T)( x' - x)XH( x/)dv'. (12.23) 

From this it follows that 

V·q=O. (12.24) 

Hence, no super heat conduction is possible. 
Finally, we remark that the superconductivity of the 

second kind can be treated by means of the present theory. In 
this case we need the nonlinear theory with no memory ef­
fect. Such an investigation is left to a future study. 

XIII. PASSAGE TO LATTICE STRUCTURE 

At the atomic scale, materials are inhomogeneous since 
the lattice nodes are not equivalent to other points in the 
body. This situation is also true near the surface of a body. 
Nonlocal continuum theory can still provide the appropriate 
tool for the discussion of the atomic scale phenomena by 
taking nonlocal kernels as functions of two points x and x', 
e.g., 

(13.1) 

rather than a function of x - x'. Of course, similar func­
tional relations are assumed to be valid for the other moduli. 
The Fourier transforms are then taken with respect to x, x', 
and 1'/ leading to 

€kl = €kl(S, s', w). (13.2) 

For homogeneous medium e(x, x', t - 1") 
= e( x - x', t - 1'/) and the transform with respect to x and 
x/ give its, w)8(s - s') and we get back €kl(S ,w). 

In an infinite crystal E kl remains unchanged when x and 
x/ are given a translation by a lattice vector a, i.e., 

Ekl ( x', x, t - 1'/) = Ek1 ( x + a, x/ + a, t - 1"). (13.3) 

Such a periodic function can be expressed as 

Ekl( x, x', t - 1'/) = Db( x - x', t - 1") exp( - 2mb· x'), 
b 

(13.4) 

where b = ni bi • Here ni are integers and bi are three base 
vectors of the reciprocal lattice, exp(21Tia· b) = 1. Conse­
quently,3! 

€kl(S, s', w) = IEtI(s, w)8(s' - s - 21Tb), (13.5) 
b 

where Etl is given by 
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~/(~, UJ) = fgb(R, UJ)e~lb.X dv(R) 

andR= x -x'. 

(13.6) 

From (13.5), it is clear that €k/(~' UJ) can be used in the 
electrodynamics of crystals if only the first term in (13.5) is 
adequate. This situation prevails if 

(13.7) 

This problem is discussed further in Ref. 31. 
This result is valid for other piezoelectric and piezo­

magnetic moduli. 
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The I-plane analyticity ofSchrodinger energy levels En (I) for power law potentials Vir) = 1"', for 
a> 2 has been proved by using the Kato-Rellich perturbation theory for linear operators. 

PACS numbers: 03.65 - w, 02.30. + g 

I. INTRODUCTION 

Grosse and Martin (GM)1 recently initiated the study of 
the I-plane analyticity of Schrodinger energy levels En for 
pure-power potentials 

Vir) = 1"'. (Ll) 

They proved the analyticity of En in the physical half-plane 
Re I> -! only for potentials with a<2. The prooffor a > 2 
does not, however, follow from the argument. The reason 
may be summarized as follows. The GM technique rests on 
the characterization of the energy level En by the number of 
zeros of the corresponding square-integrable solution Un (r) 
and to show that this representation remains valid even for 
complex I with Re I> -! within a sector [e.g., ItP 1 < rrl 
(2 + a)] in the complexz(=r) plane, where tP is the argument 
of z. One can then easily eliminate the existence of a branch 
point of En (I) in the physical half-plane by showing that the 
same square-integrable solution Un may be retrieved by trav­
eling along any closed contour in the half-plane Re I> -!, 
starting from and returning back to the same point on the 1-
plane. It should be remarked at this point that the other 
singularities of En (I) may be discarded by the use of general 
theorems such as the Herglotz theorem. Now, the integral 
which plays an important role in discarding branch points is 

Imu~u~= fdl"IUnI2{1~: +1"a sin(2+a)tP 

-IEnlsin(2tP +argEn)}, 

z = leitf', A = I (I + 1), (1.2) 

where a prime denotes the derivative with respect to z and 
u~, the complex conjugate wave function. This integral is 
used to show the constancy of the number of zeros of Un in 
the sector ItP I < rr/(2 + a) (for a > 2). The square-integrabi­
lity of Un (z) in the sector ItP 1 < rrl(2 + a) follows from the 
asymptotic behavior 

U _z-a/4 exp -
{ 

~/2+1} 

n a12+1 ' 
(1.3) 

which guarantees as well the exponential vanishing of 
Im(u~u~) in ItP 1 <rrl(2 + a) as Izl-oo. Fora>2, it follows 
from Eq. (1.3) that Un is still square-integrable on the rays 
ItP 1 = rrl(2 + a). However, the square-integrability, in this 
case, is very delicate (I Un 12 - Z - a/2) and this does not ensure 
the vanishing oflm(u~u~) for Izl-oo. In fact, one can verify 
that Im(u~u~)-O(I). Now, in the GM technique one vital 
step is to show that Un has no zero on tP = rrl(2 + a) for 

a> 2, where 1m A > 0, which follows only if the left-hand 
side ofEq. (1.2) vanishes as 1- 00. It transpires that this is not 
the case. 

In Refs. 2 and 3, we have developed a method based on 
Kato-Rellich perturbation theory on a Hilbert space by 
which one can prove the analyticity of En (I) for the superpo­
sition of potentials of the form 

V(r)=r'+krP, a>O, O</3<a, kreal. (1.4) 

We have stated this result in the earlier paper. 3 Here we shall 
supply a prooffor the same. It will be shown that a prooffor 
the required analyticity [also for pure power potential (Ll) 
with a > 2] will follow naturally from the argument. 

II. THE PROOF 

First we note that by following the GM technique 
which has been outlined in the introduction one can easily 
prove the analyticity of En (/) in Re I> - ~ for the potential 
(1.4) withk > O. For clarity, we further remark that themeth­
od makes use of the asymptotic behavior of Un which, in the 
present case, assumes the form 

{ 

~/2+ 1 
U _Z-a/4 exp - ---

n al2 + 1 2 /3 - al2 + 1 
k z!3-a/2 + 1 

+ lower-order terms} . (2.1) 

This shows that Un is square-integrable in the sector ItP I <rrl 
(2 + a), when k > O. One can then use the integral (1.2) to 
show that Un has n zeros with ItP I <rrl(2 + a) for any I with 
Re I> -!. For details we refer to Ref. 2. 

Let us now consider the Hilbert space L 2(0, 00) of 
square-integrable functions. We choose the potential 

Vir) = 1'" + K/3rP, k real, a> 0, 0 </3 < a (2.2) 

for convenience. The corresponding well-defined Schro­
dinger operator is given by 

d 2 A 
H(f3,).) = - dr + r + 1'" + k/3rP, A = 1(1 + 1), 

(2.3) 

D (H) = {ulu,u' absolutely continuous lu,u'EL 2Iu(0) 

= OIHuEL 2} . (2.4) 

For I in the half-plane Re I> -!,). belongs to the complex 
plane cut along the real axis form -! to - 00. We shall now 
state several lemmas. 

Lemma 2.1: For each fixed A in the cut plane, the mini­
mal operator if (0,). ), defined on the space of infinitely differ-
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entiable functions with compact support CO' is a densely 
defined sectorial operator. 

Remark: H (O,A. ) defined on D (H) is then a closed (m­
sectorial) extension of H (O,A. ) for compacts of the A cut plane. 

Lemma 2.2: Let uED(H). Then for any compact set in 
the A cut plane we must have 

Ilxaull<IIH(O,A. )ull. (2.5) 

Lemma 2.3: The maximal multiplication operator 
,p (0</3 < a) in L 2 is H (O,A. )-bounded with relative bound 
zero. 

The proof of these lemmas can be obtained by exactly 
following the proofs of the corresponding lemmas of Ref. 3. 
Collecting the results stated in the lemmas we can now write 
down the following theorem. 

Theorem 2.1: For each fixed A in the cut plane, H (f3,A. ) is 
a holomorphic family of type A in/3 (0 </3 < a) for each fixed 
real k and in k for each fixed /3 in the given interval, with 
compact resolvents. 

We shall now consider the convergence of H (f3,A. ) to 
H (O,A. ), when k{3-o+. We denote the resolvent 
[H (f3,A. ) - z] -I of H (f3,A. ) by R (f3,z) and the corresponding 
resolvent set by p(H ( /3,A. )). 

Theorem 2.2: Let zEp(H (O,A. )). Then zEp(H (f3,A. )) for k/3 
sufficiently small and R (f3,z) converges to R (O,z) in norm as 
k/3-o+: 

lim IIR (f3,z) - R (O,zlll = O. 
kfJ--.O+ 

(2.6) 

The convergence is uniform on compacts in the A cut plane. 
Proof Since 

R (f3,z) = R (f3,zo) X [1 + (zo - z)R (f3,zo)] -I, 

it is sufficient to prove the result for one zoEp(H (O,A. )). For a 
compact subset r in the A cut plane, the union u of the nu­
merical ranges [i.e., the set of values of 
(u,H(f3,A. )u), Ilull = 1] for H(f3,A.) over all AEl' is not the 
whole complex plane. Hence, we can choose Zo so that 

dist(zo,u) = d> O. 

Then we have4 
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Next it follows that 

R (f3,zo) - R (O,zo) 

= - k/3 ['p/2R (f3,zo)] X ['p12R (O,zo)]. (2.7) 

By Lemma 2.3 we can find positive constants a, b such that 

11'p12ull<all [H(f3,A.) - zo]ull + (b + aizollilull (2.8) 

for all AEl' and 0</3 < a. Thus we have 

1I'p/2R (f3,zo) II <a + d -I(b + alzoll = m (2.9) 

and also 

1I'p12IIR (O,zo)<a + d -I(b + alzoll = m. (2.10) 

Hence, from Eq. (2.7) it follows that 

IIR (f3,zo) - R (O,zolll< Ik/3lm2-o as k/3-o+. 

According to Theorem 2.2, it follows that an eigenvalue 
En(f3,A.) of H(f3,A.) for each fixed A in the cut plane, tends to 
the eigenvalue En (O,A. ) of H (O,A. ) as k/3-o+ , at least asymp­
totically. 

We shall now prove the analyticity of En(/) in 
Re I> -! for the potential (1.1) when a> 2. Since En (f3,A. ) is 
asymptotic to En (O,A. ) on compacts of A, we must have 

(2.11) 

Now for k > 0, the potential (2.2) is exactly identical to the 
case discussed in the first paragraph of this section and hence 
En (f3,A. ) is analytic in theA cut plane. Since by Eq. (2.11), any 
singularity of En(O,A.) must be a singularity of En(f3,A.) the 
analyticity of En (O,A. ) in the A cut plane is established. 

The analyticity of En (f3,A. ) for real k now follows direct­
ly from the general arguments of Ref. 2. 
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A transform between the state space of one-dimensional quantum mechanical systems and a 
direct sum of two spaces of square integrable functions analytic on the open upper half-plane is 
constructed. It gives a representation of usual quantum mechanics on which the free evolution is 
trivial and the representation of canonical transformation very simple. Generalizations to higher 
dimensions are also discussed. 

PACS numbers: 03.65. - w, 02.20 + b 

I. INTRODUCTION 

Though all irreducible representations of the canonical 
commutation relations 

[Q,P] = i (Ll) 

are equivalent, other representations than the usual Schro­
dinger one have been helpful in quantum mechanics: Barg­
mann 1.2 used a space of entire functions, Itzykson used func­
tions analytic on the disk,3 and van Winter used functions 
analytic on sectors.4 

In this paper we formulate nonrelativistic quantum me­
chanics of one degree of freedom (generalizations to higher 
dimension are also described) in the direct sum 
.:W" = .:W" 1/2 Ell .:W" -1/2 of two spaces of analytic functions on 
the upper half-plane. The.:W" ± 112 are the spaces of functions 
fIb + ia) analytic on the upper half-plane a> 0 and square 
integrable with respect to the measure a ± 112 da db. 

Some operators used in quantum mechanics are very 
transparent in this representation. 

(i) The free Hamiltonian is just the operator of differen­
tiation (times - i): - ita laz); so the free evolution consists 
of a translation of the variable along the real axis. 

(ii) The usual dilation operator D (,[a), acting on 
L2(R,dp) by 

(D (,[a)tP)( p) = aI/4tP(,[ap), 

acts on .:W" ± 112 by 

(D(,[a)f)(z) = a"f(a-Iz) 

(with A = - i for .:W" + 112 and 

A = - ~ for.:W" -1/2)' 

(iii) The "time operator" (P -IQ + QP -1)/2 has also a 
simple expression. 

Furthermore, as in the Bargmann space, the variable 
has a "classical" meaning which is here 

q i 
z - - + -, for .:W" _ 1/2 

P 2p2 
and 

z- '1 +~, for.:W" +112' 
p 2p2 

So this representation consists of writing ordinary quantum 
mechanics in terms of the variable "qlp + iA Ip2" (A = ! 
or ~). 

These spaces allow us also to bring the representation of 

linear canonical transformations into a simple form. It 
should be noticed that the analytic functions used here do 
not reduce to the analytic functions in other formulations: 
they are analytic only on the half-plane (as contrasted to the 
entire functions in the Bargmann space) and they are square 
integrable with respect to a two-dimensional measure (in 
contrast to the Hardy functions studied by van Winter). 

The transform from L 2(R ,d p) on the two spaces.:W" + 1/2 
and .:W" _ I /2 is given by 

f. (z) = -- p2 eiz(P'12itP(p)dp, 1 J+ 00 

e jiffJ/4 _ 00 

1 J+ 00 fo(z) = 2ffJ /4 _ 00 peiz(P'/2itP(p)dp. 

Let us now quickly indicate how we are led to this trans­
form: from (Ll) it is easy to deduce that 

[PQ;QP,~2] =i~2. (1.2) 

We recognize the Lie algebra of the affine group,5 which can 
be identified with the upper half-plane. This group is nonuni­
modular but we know from the theory of square integrable 
representation of non unimodular groups (see Refs. 6-9) the 
following facts. 

(i) Let G be a locally compact nonunimodular group 
with left Haar measure df-l(g) and U (g) be a representation of 
G in a Hilbert space.:W" with scalar product (-,.) 

(ii) Let rp be an element of.:W"; if f 1 (U (g)rp,rp ) 12 df-l(g) < 00 

(admissibility condition) we write 

C = f 1 ( U (g)rp,rp W df-l(g) . 
'P (rp,rp ) 

Then, for each tP E .:W", the functionf(g) is defined by 

fIg) = C;; 1I2(U(g)rp,tP), 

and is square integrable with respect to df-l(g) and 

J f(g)f(g)df-l(g) = (tP,tP)· 

We will see that in the case of the affine group such a trans­
form, with a suitable choice of rp, gives us square integrable 
analytic functions on the half-plane. 

In Sec. II we given elementary properties of the affine 
group; in Sec. III we construct the transform and prove its 
unitarity. Section IV is devoted to the study of a generaliza-
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tion of the spaces Jf' ± 112' We give some application of this 
transform in quantum mechanics in Sec. IV. Different gen­
eralizations are described in Sec. VI. 

II. THE "ax + b" (AFFINE) GROUP7,1o 

The affine group G is the set of couples 

{a,b j, a>O, bE R, 

with the law 

{ a',b ' If a,b j = {a' a,a' b + b ' j . 

It is a locally compact nonunimodular group with right 
Haar measure dll R (a,b ) = da db / a and left Haar measure 
dilL (a,b) = da db /a 2

• 

The Lie algebra is given by 

[A,B] = iB, 

and it has been provedll
•
12 that G admits only two irreduci­

ble inequivalent representations, one with B > 0 and the oth­
erwithB<O. 

Here we consider the (reducible) representation on 
L 2(R,dp) with generators given by A = (PQ + QP /4) and 
B = P 2/2, where P and Q are the usual Heisenberg operators 
satisfying [Q,P] = i; the representation is given by 

( 
.bP2) (.LNa PQ+QP) U(a,b)=exp -1-

2
- exp 1-

2
-' 2 ' 

which acts on L 2(R,dp) by 

[U (a,b)¢] (p) = a1/ 4e - i1bP'/21¢([cip). 

This representation permits to identify G as the group of 
upper triangular real matrices of determinant 1 [quotient of 
SL(2,R ) by SO(2,R )] with the restriction of the metaplectic 
representation of SL(2,R ) to G. 

The identification is made by 

(
[ci 

{a,b I¢? 0 
b /fci\ 
lI[cit 

The representation U is a continuous, unitary representation 
of G, irreducible on even (L ; (R,dp)) and odd (L ~ (R,dp)) parts 
of L 2(R,dp): 

L ;(R,dp) = {¢, functions on R with ¢( - p) = ¢(P) 

and L+ooOO l¢(pWdp=2 i+OO 1¢(pWdp< + co}, 

L ~ (R,dp) = {¢, functions on R with ¢( - p) = - ¢( p) 

and L+ooOO l¢(pWdp=2 i+OO 1¢(pWdp< + co}. 

Now we compute the admissibility condition intro­
duced in the Introduction. That is, 

f 1 
2 dadb 

( U (a,b )97,97 ) 1 ----;;z- < + co, 
and 

C = SI(U(a,b )97,97 W(da/db /a2) 

'" 119711 2 
' 

for 97 E L 2(R,dp), 97 even or odd. 
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An easy computation gives 

(+OO 197(;'W dp< + co 
Jo p 

and 

(+ oo 

c", = 81T Jo 

III. THE TRANSFORM 
A. Definition 

According to the general theory described in the Intro­
duction, we take two elements of L 2(R,dp), one 97e in 
L ; (R,dp) and one 97° inL ~(R,dp), which satisfy the admissi­
bility condition. Two candidates which will give us analytic 
functions are 

970(P) =pe- p2
/2, 

(3.1) 
97 e(p) = p2e - p2/2. 

Let us write 

Co = 81T (+ oo 197 O(fW = 4~/2, 
Jo p 

(3.2) 
Ce = 81T (OO 197 e(fW dp = 2~/2. 

Jo p 

We will associate to every ¢ E L ~(R,dp) [resp. L ; (R,dp) ] an 
analytic function in the following way: we know that the 
transform 

¢ E L ~(R,dp) [resp. L ;(R,dp)]- _1_ (U(a,b)97 O,¢) 
Fa 

[resp. (lI..[c:) (U(a,b)97 e,¢)] is an isometry between 
L ~(R,dp) and L 2(G,dIlL (g)), which is 

L 2(ll,da dp/a2), 

where 

II = {ZE C/Im(z»Oj. 

Here and in what follows we shall write 

z=b + ia. 

But 

1 a3 /
4 f+ oo - (U(a,b )97°,¢) = - peizlp2/21¢(p)dp, 

Fa .JC: -oo 

( 
resp. _1_ (U (a,b 19? e,¢) 
~ 

= __ p2 eizlP2/21¢(p)dp . a5
/
4 f+ oo ) 

~ -oo 

This suggests we consider the two following transforms: 

1 f+OO 
(Ao¢)(z) = 2~/4 _ oo peizlp2/21¢(p)dp, 

for ¢ E L ~(R,dp), (3.3) 

(3.4) 
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B. Properties 

Before we give the main result of this section we intro­
duce the following spaces. 

Definition: Jf' ± 112 is the space of analytic functions de­
fined on II (Poincare half-plane), square integrable with re­
spect to the measure [Im(z)] ± 112 d Re z d 1m z. 

A deeper study of such spaces will be made in the fol­
lowing section; let us just mention that they are Hilbert 
spaces (see the Appendix), equipped with the scalar product 

(/,g) ± 112 = J f(z)g(z)dll ± 112 (z) 

where 

dll ± 112 (z) = a ± 112 da db. (3.5) 

Theorem: Ao (resp. Ae) is a unitary transform between 
L ~(R,dp) [resp. L ;(R,dp)] and Jf' -1/2 (resp. Jf'l/z) and the 
inverse transform is given by 

(A - I f)(p) = _1_ lim J pe - i(p'/2)z 
o 2ff3/4 a_oo I Re(z) I <a 

r-oo IIr<Im(z)<r 
xf(z)a- I/Z da db, forfEJf'_l/z (3.6) 

and 

(A -If)(P) = _I_lim J pZe-i(p'/ZfZ 
e ,fiff3/4 a_oo I Re(z) < a 

r-oo IIr<Im(z)<r 
Xf(z)a l/Z da db. (3.7) 

Proof of the Theorem: The functions (Ae t/J) [resp. 
(Aot/J)(z)] are clearly analytic in z. We just need to prove the 
isometry and surjectivity. 

Proofofisometry: We have 

1 J+ 00 (Ao t/J)(z) = 2ff3 /4 _ 00 peiz(P'/2)t/J( p)dp, 

so, with t/J,f{J E L ~(R,dp), 

(Ao t/J, Aof{J )-1/2 

Xf{J (p')~(p) 

=_I_J ' [D(P-P') + D(P+P')] 
2jii pp [PI [PI 

Xexp [ - a (p2 ~ p'2)] f{J (p') tfJ(p) da dp dp'. 

Now, since t/J and f{J are odd we obtain 

(Ao t/J, Ao f{J ) -I 12 

= _I_JLe-ap' f{J(p) t/J(p)a- 1/2 dadp 
2jii [PI 

= J t/J(p)f{J(p)dp = (t/J,f{J)L'(R,dp)' 

The calculation for Ae is exactly the same. 
Proof of surjectivity: First of all we prove the inversion 

formula. 
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Consider the map w~,r, given by fE Jf' -1/2' 

(w~,r f)(p) = _I_J pe- i(P'/2)'l(z) 
2ff3/4 I Re(z)I <a 

r>Im(z»lIr 
Xa- 1/2 da db. 

Now (w~,r f)( p) is clearly the scalar product in L Z(ll, 
a - I/Z da db ) off and the function h ~ defined by 

1 _ i(p'/2)z 
2ff3 /4 pe , 

h~,r(z) = if I Re(z)I <£T,lIy> Im(z) > y, 
0, if I Re(z) I >£Tor lIy < Im(z) 

or Im(z)<y, 

h~.r EL Z(ll,a- I/z da db) so (w~,r f)(p) is defined for every 
pER and £T> 0. 

One can see that w~,r f E L ~ (R,dp) and that, if 
f = Aot/J, lim'Hoo II wof - t/JII = 0, where II II is the norm 
in L Z(R,dp), so we can write 

(A -If)(p) = lim p J e- ii(P'/2!f(z)a- I/Z da db, 
o a-oo I Re(z) I <a 

r-oo IIr<Im(z)<r 

where the limit is understood in the L 2 sense. 
We prove now that, for every f E Jf' _ lIZ' 

IIA 0- I fllz = (/'/)-1/2' 

From (3.5) we have 

J_+ ",00 I(A 0- I f)(pW dp 

= _I_JJJ+ 00 dppZei(p'/2)[z-z'l 
4ff3 /2 _ 00 

X dll_l/z(z)dll_ 1/2(z') 

= J_I (Z-,"Z')-3/2 f (Z')f(Z) 
817' 21 

X dll_ 1/2(z')dll_1/2(z) 

= J P_1/2(Z - "Z'lf(z')f(z) 

X dll- I dz')dll_ I dz), 
where P-1/2 is the reproducing kernel of Jf' -112 (see the 
Appendix) so 

J_+oooo I(A 0-
1 f)(pW dp = J If(zW dll_ 1/2(z) < + 00 

and the surjectivity is proved. The same calculation is possi­
ble for A e- I and the result is the same. The theorem is 
proved. 

Remarks: (1) Every function in L Z(R,dp) can be decom­
posed in even and odd parts t/J = t/Je + t/Jo with t/Je 
E L ;(R,dp), t/Jo E L ~(R,dp). We have 

so 

and 
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1 J+ 00 (Ae tPe )(z) = ,fi:rr
I4 

_ 00 p2eiz(p2/2)tf;{ p)dp. 

So we can consider the map A: 

L 2(R,dp)--+dJr + 1/2 al dJr -1/2 

( 

1 J+oo ) __ p2eiz(P'-/2)tf;{p)dp 

tP (J.(Z)) ,f2ff314 - 00 (3.8) 
--+ lo(z) == _1_ Joo iz( p2/2).IJ)dp . 

2ff3/4 _oope '/'IP 

The inverse transform is given by 

(2) Because of the fast decrease of the kernels peiz( p2/2) 
and p2 eiz( p2 12), the transformA can be extended to the space of 
tempered distributions on R, as is the case for the Bargmann 
transform. The transform of a tempered distribution gives 
also an analytic function on n, but of course, in general, it is 
non-square-integrable. This study will be made in a forth­
coming paper. 

IV. THE FAMILY OF SPACES £'a 

With a view towards studying the spaces dJr ± 112 we 
define the more general family of spaces dJr a and present 
some of their properties. Technical points are given in the 
Appendix. 

A. Definition 

For a> - 1 we define dJra as the space of analytic 
functions defined on the open upper half-plane and square 
integrable with respect to the measure 

( 
z - z)a dz A eli =d (z). 

2i 2i f..ta 

It is a Hilbert space with scalar product 

(f,g) = f J(z)g(z) ( z ; z r dz ~ eli 

== f J(z)g(z)df..ta (z) 

= i: ~ 001: ~ J(z)g(z)aa da db, (4.1) 

with z = b + ia (see the Appendix). As other spaces of ana­
lytic functions, it possesses a reproducing kernel, i.e., an ele­
mentpa(z - Z)dJra such that 

"tIJE dJra, f Pa(z - Z}f(Z)df..ta(Z) =J(z); 

Pa is given by the formula (see the Appendix) 

( a ~i Z ) - (a + 2) = I z ~ Z I-Ia + 2) 

Xexp [ - ita + 2)arg (z ~iZ)] 
and 

1T [z - Z] 1T - 2 < arg --:u-- < 2' 
Directly from the definition, we see that 

Pa(z-Z) =Pa(Z-Z). 

From now we will note IZ,a> E dJr a' given by 

IZ,a) =Pa('-Z), 

and in general If) each element of £' a' 

With this notation, the reproducing property is written 

(Z,a If) = J(Z ). 

If there is no danger of confusion, we will abbreviate IZ,a) to 
IZ). 

For eachJin dJra the following estimate holds: 

If(z)I..;;llfll(~a + 1/41THIm(z))-a12-1, 

where Im(z) is the imaginary part of z and 

Ilfll2 = f J(z}f(z)df..ta (z). 

(4.3) 

B. Representation of SL(2,R); 12) as coherent states 

In this section we will see that the vectors IZ ) are just, 
up to a normalization constant, coherent states ofSL(2,R ) (in 
the Perelomov sense13

). 

In dJr a we have the following irreducible unitary repre­
sentation U of SL(2,R ): 

if g E SL(2,R ) with g-I = e !), 
(4.4) 

(U(g}f)(z) = (cz + d) - a - 2J[(az + b )/(cz + d)]. 

The unitarity is easily shown by direct computation and the 
irreducibility has been proved by Berezin 14 [for the represen­
tation of SUI 1,1) on analytic functions on the disk which is 
equivalent to this one (see Appendix)]. 

For a integer (> - 1) we have a true representation and 
for a half-integer we have a projective representation with 
mUltiplier ± 1. 

It is well known that each element 

of SL(2,R ) can be decomposed in the form 

(a b) = (-JY xl-JY'\ (C?s 8 - sin 8) (4.5) 
c d 0 l/-JY} sm 8 cos 8 

with 

x + iy = (ai + b )/(ci + d )==S.i 

and 
Pa(z - Z) = Ca [(z - Z)/2i] -(a+2), 

where Ca E R, Ca = (a + 1)/41r, and 

(4.2) 8 = arg(ci + d)( - 1T < 8..;; + 1T). 

Now, denoting 
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R (0) = ( c~s 0 sin 0 ) 
-smO cosO 

an element of SO(2,R ) we have 

(Z I U(R (0 ))Ii) 

= ca(sin OZ + cos 0 )-a-2 

[( 
cos OZ - sin 0) i ] - a - 2 

X 2i(sin OZ + COS 0) + 2i 

= c (cos OZ - sin 0 + i sin OZ + i cos 0) - a - 2 

a 2i 

so 

= (COS 0 + i sin 0) - a - 2Ca [(Z + i)/2i] - a - 2 

= e- i(a + 2)11 (Z Ii), 

(4.6) 

so the action of the subgroup SO(2,R ) on the state Ii) isjust a 
multiplication by a phase factor. Then following Perelo­
mov13 we call "coherent states" of SL(2,R ) associated with 
I i) the system of states Ixy) defined by 

Ix- ) = U( (.JY xl.JY'\ JIi) 
y 0 11.JY) 

which, since 

(~ 
is given by 

.JY)-I 
~~ 

-xl.JY'\ 
.JY ), 

(Z Ix- ) = (Z I U( (y X1.JY) JIi) 
Y 0 l/.JY 

= ca(.JY)-a-2 (;i [(~ 
-- -+1 X) 1 'J) -a-2 

.JY .JY 
= (.JYt+ 2(Z Ix + iy). 

So we have 

x- _ ( (iii) )112 Z 
I y)- (ZIZ) I), 

with Z = x + iy, so 

IZ) = C~i:~) y/2 I;;'). 

C. Principal operators on J¥' a 

(4.7) 

(4.8) 

A large class of operators H on tW" a can be expressed by 
kernels, i.e., functions of two complex variables, analytic in 
the first and antianalytic in the second: h (z,z') so that 

(Hj)(z) = f h (z,zif(z')dJla(z'), (4.9) 

where h (z,z') = (zIHz'), 

1Hz') H Iz'). 

The kernel of the adjoint operator H * of H is given by the 
following formula, denoting G = H *: 

g(z,z') = h (z' ,z). (4.10) 

We just will now briefly mention some elementary operators 
in J¥' a' see Ref. 15 for details of proof. 
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1. The operator Tf: - i(a/az) 

The operator 11 defined by 

(11f)(z) = - i ~ j(z) az (4.11) 

is self-adjoint because it is the strong derivative (multiplied 
by - I) of the strongly continuous group T(t) of unitary 
transformations given by 

[T(tif](z) =j(z - t). 

lts domain is the set of functions of J¥' a such that 

f IZ(Z)1 2 

dJla(z) < + 00. 

2. The operator S multiplication by z 

Here S is defined by 

(4.12) 

(y)(z) =zj(z). (4.13) 

The resolvent R (E) of S at point E is given by 

(R (Eif)(z) = ((s - E)-1)(z) = (z - E)-1(z), (4.14) 

so we see that the spectrum of S is the upper half-plane. The 
adjoint S * of s is given by 

(y)(z) = f Pa(z-z')z'j(z')dJla(z') (4.15) 

and its spectrum is the lower half-plane. 
Note: We have 

[$ + $ + 11] = i. 
2 ' 

(4.16) 

3. Dilations 

Ifwe restrict the representation (4.4) to the subgroup of 
SL(2,R ) of diagonal matrix (dilations) 

( Jaoa 0) 
l/Ja ' 

we obtain the following unitary dilation operator D (a): 

(D (a if)(z) = aa/2 + 1(az). (4.17) 

So we obtain the generator 13 of the dilations 

(13j)(z) = - iz ~ - i (.!!.... + 1). (4.18) az 2 

V. APPLICATION TO QUANTUM MECHANICS 

In this section we come back to the transform defined in 
Sec. III. We have constructed in Sec. III a unitary map 
between L 2(R,dp) and J¥'1/2 EB tW" _1/2=J¥', 

(5.1) 

(here if! = if!e + if!o andAeif!o = OandAoif!e = OsothatAeif!e 
=Aeif!andAoif!o =Aoif!)· 

Each operator in L 2(R dp) will be represented in 
J¥'1/2 EB tW" -1/2 by a "matrix-valued kernel," that is, four 
kernels 

(
hee heo) 
hoe hoo 

such that 
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Here, if H is the operator in L 2(R,dp), 

H=AHA -I 

and 

hij(z,z') = (<p ~ IH l<p j), with i,j E {e,o J, 
and 

wIth c· = 
. {i' forj = e, 

J i, forj = o. 

(5.3) 

(5.4) 

We will give the expression in K of simple operators in 
L 2(R,dp); one of them (multiplication by the variablez) sug­
gests a classical meaning of z, the free evolution and Schro­
dinger equation in the interaction picture are very simple in 
this representation. 

A. Some operators 

(i) - i(J/Jz) since 

_ i!... fJf3eiZIP2/21¢(P)dP = f Jf3eiz(
pl/21 p2 ¢(p)dp. 

& 2 

The operator - i(J/Jz) is equal toA (P2/2)A -I. 
(ii) The dilation generator (QP + PQ )/2 [where P and Q 

are the Heisenberg operators on L 2(R,dp)] is expressed in 

K -1/2 by 2
. J 3. 

- lZ---/ 
Jz 2 

and in 

K +1/2 by 2
. J 5. - /z- - -/ 

Jz 2 
so we get the matrix 

( 
- 2iZ(J/

O

JZ) - ~ i 0 ) 

- 2iz(J/Jz) - ~ i . 

The operators P and Q change the parity so their expressions 
are not very simple. We get for P, the matrix 

- i(J/JZ)) 

° ' 
and for Q, the matrix 

( 
_.j2z + i[(ZO_ Z')/2i] -3/2 

421T 

i2~[1 + Z(J/JZ)]) 

° . 
B. The operator s and the classical meaning of z 

From (4.13) we see that, forJE K -1/2' 
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I 
(5f)(z) = zJ(z) 

= 2~/4 f zpe
iztp1

/21¢(p)dp 

with 

<p~(P) = (l/2r/4)pe-lz(pl/2 l• 

So we see that if ¢ is in the natural domain of 

P-IQ+QP-I .P-2 
---=--=--- -/---

2 2 ' 

we have 

(5.2) 

(5f)(z) =Ao [(P-IQ; QP-
I 

+ ~ p-2)¢]' (5.5) 

ForJin KI/2 we have the same computation 

(5f)(z) =A. [(P -IQ; QP-
I 

+ ~ iP -2)¢]' (5.6) 

This suggests, in analogy with the Schrodinger and Barg­
mann representations, to identify the variable z with the clas­
sical quantity q/p + i/2p2 in the odd case and q/p + ~(i/2p2) 
in the even case. Two other arguments suggest the same in­
terpretation: it is easy to see that, if we call 

<p~ =A o-llz) (resp. <p~ =A .-llz»), 

that is (5.7) 

<pZ(p) = __ 1 __ pe -;zpl (resp. ~ = _1_ p2e -;zpl) 
o 2r/4 • ~r/4 ' 

then 

(<p ~,[(P -IQ + QP -1)/2]<p ~)L~ 
--------------------~ =Rez 

(<p ~,<p ~)L~ 

(and the same for <p ~), and 

(<p ~,(P -2 /2)<p ~)L2 
___________ ...:...0 = 1m z 

(<p ~,<p ~ )L~ 

(
resp. (<p~,~P -2<p ~)L~ = 1m z). 

(<p ~,<p ~)L~ 

(5.8) 

(5.9) 

(5.10) 

So by analogy with the usual (Weyl) coherent states lP,q), for 
which we have 

(P,ql(Q + iP lP,q») = q + ip, (5.11) 

where Q and P are the Heisenberg operators, we can identify 
z with q/p + i/2p2 (resp. q/p + 3i/2p2). 

Another argument for this "classical meaning" is the 
following: in the Weyl case we construct coherent states by 
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acting on an element II/! 0 ) of L 2(R ) with a (projective) repre­
sentation of the group of translations on phase space R 2, 

namely a Weyl coherent state is lP,q) = W(p,q) I I/!o ) with 
I/!o(p) = e- P'12, and W(p,q) is the usual Weyl operator, in 
this representation we have identified a translation in phase 
space with the point translated from this origin. The origin 
can be defined as the point (qo'Po) such that 

Po = (l/!oIPll/!o) =0, 
and 

qo = (I/!o IQ II/!o) = o. 
We want to show that we have here the same construction: 
this time the group acting is the subgroup ofSp(2,R ) consist­
ing of the triangular matrices 

(
.Ja 

(a,b 1= 0 b /.Ja). 
1I.Ja 

This group acts on phase space as a subgroup of the symplec­
tic group 

b /.Ja) X (q). 
1I.Ja \p 

The representation ofthis group in L 2(R,dp) is of the form 

U(a,b)=exp ( -ibP;)exp ( +i lo~a PQ;QP). 

so band - log a/2 must be "identified" as conjugate varia­
bles ofp2/2 and qp. We obtain 

b~q/p 

which gives by symmetrization the operator 

~(P-IQ + QP- I) 

and 

( -log a)/2~ logp:=Xl~P-2 

which gives the operator P -2. 

Consider now the even case. 
As "origin" of our phase space we take the point 

c:) 
defined by 

and 

(lPe'[(P -IQ + QP -1)/2]lPe) 
.:.:....:~~---=~~---'--- = 0, 

(lPe,lPe) 
so 

~~) = C:v2). 
Now, identifying (a,b I with the point image of the origin by 
{a,b I we have 

(.p
q) = (.Jaoa b /.Ja) (0) 1I.Ja X 1Iv2 ' 

which gives 

a = 1I2p2 and b = q/p. 
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The same computation is valid also for the odd case and gives 

a = 3/2p2 and b = q/p. 

Remarks: (1) Arguments given here are essentially heu­
ristic, 

(2) The operator (P -IQ + QP -1)/2 is not self-adjoint. 

c. Free evolution 

Ifwe consider the free movement of a particle with mass 
1 its Hamiltonian is 

H p2 d' ~ .. H . a 
o = - an In en It IS 0 = - I -. 

2 - az 
Then the free evolution e - iHol is just a translation by - t in 
the argument of the function 

e - i~.(f.) (z) = (f.(z - t )). 

Vo Vo(z - t) 
(5.12) 

Remark: Since the variable z has the classical meaning 
of q/p + Ai/p2 with A =! or ~, one could expect the free 
evolution to be a classical change corresponding to 

so 

pIt) =p and q(t) = tp 

q(t) + ~ = (9.. + t) + Ai. 
p(t) pIt )2.p p2 

The reason for the presence of the minus sign will be ex­
plained in the next section (VI). 

D. SchrOdlnger equation 

Consider a particle of mass m = 1 with Hamiltonian 

H=p 2/2 + V, 

where Vis an operator in L 2(R,dp) (potential part). Suppose 
for simplicity that the operator V conserves parity [the gen­
eral case can be treated with a matrix valued kernel as in 
(5.2)]. Then the Schr6dinger equation is written on each 
7t'1/2 or 7t' -1/2: 

i ~f.(z,t) at 
= - i ~ f.(z,t) + J Ve (z,z'}f. (z',t )dJlI/2(Z'), az 

i~fa(z,t) at 
= - i ~ fa (z,t ) + J Vo (z,z'}fo (z' ,t )dJl- 1 d z'), az 

where 

Ve (z,z') = (lP ~, V lP ;), 

Vo(z,z') = (lP~,vlP~)' 

with ~ and lP~ given by (5.7). 

(5.13) 

(5.14) 

If now we define Ig(t) = ei1!o'lf(t) that is explicitly 
here 

g(z,t) =f(z+ t,t), (5.15) 

we obtain easily the Schr6dinger equation in interaction pic­
ture 
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i ~ge(z,t) = f Ve(Z + t;i' + t)ge(z',t)d,u1/2(Z'), at 

i ~ go(z,t) = f Vo(z + t;i' + t )go(z',t )d,u_1/2(Z'). at 

(5.16) 

Application: Quantum mechanics of a system of two fer­
mions interacting with a local potential: a system of two par­
ticles in one dimension can be described, after removing the 
center of mass, by a wavefunctioninL 2(R). If these particles 
are fermions, the wave function is odd (because of the Fermi 
statistics). The kernel of the potential is then 

Vo (z;i') = (cp ~, V cp ~.) = (93 ~, jiq1~), 
which, if the potential is local, is equal to 

Vo(z;i') = f-+",'" ~~(q)r(q)~~(q)dq, 
where 

- 1 J+ "'. 1 -cp~(q) = -- e'Qp--1-4 pe-iZl..r12)dp 
/iii - 00 2~ 
'-1/2 

= _, __ (Z)-3/2qe(ilZ)(if/2 ) 
2~/4 

so we obtain 

Vo(z;i') = ~/2 (ZZ')-3/2 

(5.17) 

J+OO [(Z_Z')q2] X _ 00 q2r(q)exp i ZZ' 2" dq.(5.18) 

Also, Vo (z;i') can be written 

Vo(z;i') = 4~12 (ZZ')-3/2 

X i+ 00 ?r(A )exp [i (z ~z~') A ]dA, (5.19) 

with ?r(A.) = A I12r(A. 112). So Vo(z;i')iscloselyrelatedtothe 
Laplace transform of ?r(A. ). 

E. Orthogonal basis for JY' 

In this section we study in greater detail the complete 
orthogonal systems V" defined in the Appendix. We shall see 
that the V ,,-112 in JY' -1/2 (odd case) are eigenvectors of the 
harmonic oscillator (odd Hermite functions) and we shall 
compute the elements of KI/2 corresponding to the even 
Hermite functions. We shall also see that V,,+ 112 in KI/2 

(even case) are eigenvectors of the harmonic oscillator with a 
centrifugal force. 

1. The Vn inJY'_1/2 

Let us compute first of all the operator in K -1/2 corre­
sponding to the harmonic oscillator Hamiltonian H: 

H = Q 2 + p 2 = J-.- [p2 _ ~]. 
2 2 ap2 

Then we have 

Umo-Z-_ ['(2+ 1)a 3.] z u.,.. - I Z az - 2" IZ cp 0- , (5.20) 

so that the operator H in JY' _ 1/2 is 
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H: - i(r + 1) ~ - ~ iz. 
- az 2 

The eigenvalue equation for If is then If! = (2n + ~)f which 
is exactly Eq. (AI4) for a = -~. Then the!,. are the images 
of the odd Hermite functions: 

V n- 112 = A 0(h2n + I ), 

2r(n + 3/2) (z - i)" 
~/2(n)! (z + i)n + 3/2 

Now, to compute the images of the even Hermite functions h 
we make the following remark: It is easy to verify that 

phh _ I = ~ nh + ~ n ~ 1 hh _ 2 • 

Then, for n - 1 even, we have 

f p2 e'lZP2/2)hh_I dp 

= f pei
(Z

P212) {~ hh + ~ n ~ 1 hh-2 } (p)dp, 

so that we have 

(Un == A e(h2,,) 

~ .f: 1~2n: 1 A 1h'H.I + ~A.(h,"-.I1 
= ~2n + 1 V n- 112 + ..[2iiv ;-~~2. 

Explicitly we have 

(U,,_I =2 2r(n+!) {n+l (Z-i) 
~12(n - I)! {Ii z + 1 

c} (z- i),,-I 
+v n . 

(z + i)" + 112 

2. The Wn in JY',/2 

The V n+ 112 in KI/2 verify the following equation: 

[ - i(r + 1) ! -i ~ z] V,,+ 1I2(Z) 

= (2n + ~) V,,+ 1/2(Z). 

An easy computation shows that 

( - i(r + 1) ~ - i ~z)p2eiz(rl2) 
az 2 

= (_ J-.-~ + J-.- + p2)p2eiz( p2
/2). 

2 ap2 p2 2 

So the harmonic oscillator with a centrifugal force is in K 1/2 
the following: 

-i(r+ 1)~ -i~z. 
az 2 

The 

r(n +~) G - i)n . -5/2 
~/2 , -+. (Z+l) n. I 

are eigenvectors, with eigenvalues (2n + ~) of this operator, 
which is a special case of operators studied by Calogero. 16 
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VI. REPRESENTATION OF THE CANONICAL 
TRANSFORMATIONS 
A. Odd case 

Remember that every element C ofSL(2,R ) can be writ­
ten as 

with 

C = (JY XIJY) (C~s e - sin e) 
a 1/JY sm 0 cos 0 ' 

. ai + b S. 
X+IY= --= '1, 

ei +d 
o = arg [ci + d ] . 

if (~ ~) E SL(2,R ) we have also 

(6.1) 

( a
e 

db)c= (NaY' X'/N) (COSO' 
1/N sin 0' 

- sin 0') 
cos 0' , 

with (6.2) 
, ., C az+b 

x +IY= ·z=---, 
ez+d 

e' = 0 + arg [ez + d ]. 

Now, consider the metaplectic representation of 
SL(2,R ),17 U (S), and consider the transform of U (S )¢, with 
¢ E L 2(R,dp), ¢ odd. We have 

~(AoU(S)¢)(x + iy) =y-3/4(U({XJI})~o> U(S)¢), 

where 

\x,yJ = (JY XIJY) 
a 1/JY 

= y-3/4(U(S -1)U(!X,yJ)~o'¢) 

=y-3/4 (U(S-I)(JY XIJY) ,¢). 
a 1/JY ~o 

Now we have, if S -1 = (~ ~), 

S -I (JY XIJY) 
a 1/JY 

= (N X'IN) x (c~se' 
a 1/N sme' 

-SinO') 
cos e' , 

with x' + iy' = (az + b )/(ez + d), where z = x + iz and 
e' = arg[ez + d] so 

~(Ao U(S)t/Jj(z) 

=y-3/4(U(!X' + y'}) u(c~s e,' 
sme 

- sin e') 
cos e' ~o,t/J), 

(6.3) 

but, because ~o is the first excited state of the harmonic oscil­
lator and the generator of the subgroup SO(2,R ) ofSL(2,R ) is 
the harmonic oscillator Hamiltonian, we have 

U(COS 0' 
sin 0' 

- sin e') _ _ i(3/2)0' 
0 ' ~o-e ~o' cos 

y-3/4e - i(3/2)0' = y-3/4(eiO')-3/2 

=(Cz+d)-3/2 y 
[ ] 

- 3/4 

(cz + d)(cz + d) 

= (cz + d )-3/2 ( (z - Z)/2i ] - 3/4 

(cz + d)(cz + d) 

= (cz + d)-3/2 (1m (::: !)] -3/4. 

So we have 
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(6.4) 

~(Ao U (S )t/J)(z) 

= 1m (az + b) (cz + d)-3/2(U(!X',y'J)~o'¢) 
cz+d 

= (cz + d)-3/2~(Aot/J) (az + b). 
cz+d 

Then we have the following result: 

(Ao(U(S)t/J)(z) = (cz + d)-3/Z(Ao¢) (az + b). 
ez+d 

We have then the following representation ofSL(2,R): 

(V(Slf)(z) = (cz + d)-3/y(aZ + b), (6.5) 
cz+d 

with S -I = (~ ~). 

Remarks: (1) The space Jf' -1/2 has been used by Itzyk­
son, but considered as the space of analytic functions on the 
disk, see Ref. 3. 

(2) This representation is a projective representation of 
SL(2,R ) with multiplier ± 1 given by the factor (cz + d )-3/Z. 

(3) The representation of the subgroup of free evolution 
on phase space, that is (6 ~ ), is then 

[v(~ ~)I lIZ) = I(z - t). 

This explains the minus sign in the free evolution (see 5.12) 
because SL(2,R ) acts on the argument by inverse transform. 

B. Even case 

The calculation for the even case begins in the same 
manner and we obtain a formula identical to (6.3): 

fC:(Ae U(S)t/J)(z) 

=y-5/4(U(!X' + y'J)U( (c~S 0' 
smO' 

- sin 0 ') 
cose' )~e,t/J)· 

(6.6) 

Now of course ~ e is not an eigenvector of the harmonic oscil­
lator but we remark that 

(6.7) 

where ho and h2 are the normalized Hermite functions of 
order a and 2. So we obtain 

U(COSO' 
sin 0' 

- sin 0') 
cos e' ~e 

1/4 
= e-i(5/2)0'~e + ~ [e- iO '/2 _ e- i(S/2)0']ho' 

2 

The first term (e - i(5/2) O~ e) gives in (5.6) the contribution 

fC:(ez + d )-5/2/((az + b )/ez + d)). 

For the second term we remark that 

(U({x' + y'j )ho)(p) = y' 1/4e -lz'(P'/2)1T- 1I4, (6.8a) 

with z' = x' + iy' and [recall that z' = (az + b I(cz + d)] 

(1T1/4/2Jy-S/4 [e - iO'/2 _ e - i(S/2W']y'1/4 

= (2i)(1T1/4/2)(cz + d )-3/2C, 

so the second term in the left-hand side of (6.6) is 
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(1)(CZ + d )-3/2C f-+ 0000 eiz'p2/2 t/J( p)dp 

= - ~ ~ (CZ + d )-3I2c 1+ 00 f(z' + iA. )dA. (6.9) 

(because of estimates onf this integral always exists); so we 
obtain the final expression 

(V(S }f)(z) = (cz + d )-5/2 f(az + d) 
cz+d 

+~c(CZ+d)-3/2 f+oo f(az+b +iA.)dA.. 
2 Jo cz +d 

(6.10) 

Remarks: (1) For the even case, Itzykson used another 
space of analytic functions constructed on the same manner 
but with tp.(p) = e-P"12 which does not satisfy the admissi­
bility condition (see Ref. 3). 

(2) If we restrict the representation to the "ax + b" 
group then c = 0 and we have the following representation: 

(V(,Ja b/.JO\f)(z) = = a514j(az + b). 
o l/,Ja) 

(3) The same argument for the free evolution as in the 
odd case holds. 

VII. GENERALIZATION TO HIGHER DIMENSIONS 

In this section we describe briefly the possible general­
izations to a higher dimension. 

The generalization of the Lobatschevski space in the 
Siegel half-plane, i.e., the set of symmetric complex matrices 
Z with an imaginary part positive definite. 

A good candidate for the transform is in the even case, 

/.,(Z): f eiPZpt/J(p)dNp 

(up to a constant), and in the odd case the N transforms 

fo,(Z) = f p;eiPZPt/J( p)d Np 

(up to a constant). We can transport the even and odd Her­
mite functions and define on this space of analytic functions 
~n Z a Hilbert space structure by defining the system of the 
lInage of Hn as orthonormal (this space is the space used by 
Itzykson, but on the disk).3 

In this space the metaplectic representation is the fol­
lowing: let S in SL(2N,R ) with 

S-I=(A B) 
CD' 

we have for the even case 

(U(S}fe)(z) = {det[CZ + D]J -1/2 

x/.,((AZ + D )(CZ + D)-I), 

and for the odd case, 
N 

(U(S)fo );(z)=det[CZ+D]-1/2 L (CZ+D)ijl 
J= I 

X foj((AZ + B )(CZ + D)-I). 
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VIII. OTHER TRANSFORMS 

(i) Instead of using the generators P 2/2 and (PQ + QP)/ 
4 of the "ax + b" group, we can use the generator Q and 
(PQ + QP)/20nL 2(R +,dq). This gives the family of unitary 
transforms between L 2(R + ,dq) and JY 2a _ I : 

2" i+ oo 

fa(z) = qaeizqt/J(q)dq, 
~21Tr(U) 0 

with a>O. 
This map is a unitary map between L 2(R + ,dq) and the 

space JY2a _ I of analytic functions used by Berezin to quan­
tize the Lobatchevski space. 14 

In this space, the variable z can be considered as the 
classical quantity p + ia/q, q > O. 

(ii) We can also consider the mapAa on the radial part 
of the wave function in L 2(RN), that is 

by 

L2(R N) =L 2(R +,pN-Idp)®L 2(SN-I,dIJ) 

Aa • 

JYa+NI2-2 $L 2(SN-I,dIJ), 

(up to a constant). This map is unitary and in this space the 
operator 

_1_ p.x + X.P _1_ 
4Ho 4Ho 

(time operator), where Ho = p2/2 is expressed by the kernel 
Pa+N12-2(Z - z')[(z + z')/2]. 

APPENDIX: PROOFS OF STATEMENTS OF SEC. IV 

In this Appendix we compute the reproducing kernel 
and a~ orthogonal basis of JYa , a> - 1 (see Refs. 13-15). 

FIrst of all we remark that JY a = {J, analytic function 
on II such that S I f(zW dJ.La (z) < + 00 }, where (z = b + ia) 
dJ.La (z) = aa da db is unitary equivalent to the space ~ of 
analytic functions on the disk D = { f3,If3 I < I} square i~te­
grable wi!!t respect to the measure (f3 = x + iy)dv (f3) 
= ((1 - f3f3)12t dx dy. a 

The unitary transform between JYa and ~ a is B: 
B 

JYa-+~a' 

f-+g=BJ, 

with 

g( f3) = 2al2 + I (1 ~ f3) - a - 2 f(i ~ ~ ;). 

f(z) = 2al2 + I(z + i) - a - 2g ~ : :). 

(AI) 

(A2) 

It is easy to show that in ~ a the system of functions Un' 

defined by 

r(n +a + 2) n 

r(n + l)r(a + 1) f3 , 
(A3) 
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forms an orthogonal system. 
Furthermore, this system is completel8

: since g is ana­
lytic in D we can write 

00 00 

g(f3) = L gn f3n = L cnu,,(f3). 
n=O n=O 

So we just need to show that the series converges in L Z norm. 
Let 0 < r< I, then we have 

From (A5) and (AS) we deduce, by the Cauchy-Schwartz 
inequality, that 

Ig(f3)I« IIgllla ~ a 4: I e -~f3IZ) -aIZ-I, (A9) 

If(z) I <Ilflla ~a+ 1 (Im(z))-a-IIZ, (AlO) 
41T 

where 

LI<' Ig(f3Wdva(f3) (1Iglll~ = f g(O)g(O)dva(O), 

= ,,~om~o CJ:m LI<, u,,(f3) um(f3)dva(f3)· and 

The integration over angles gives a l>"m and taking the limit IIPII~ = ff(z) f(z)dpa (z). 
r---+-I we obtain 

f Ig(f3Wdva(f3) = ,,~o ICni z 

so the series is L z-convergent. 
According to Bergmann, 19 the function defined by 

00 

ra (f3/J') = L un (f3) un(f3') (A4) 
n=O 

is a reproducing kernel for the space, i.e., we have for g E g; a 

f ra (f3/J')g(f3')dva(f3') =g(f3). (A5) 

Since 

I 2
a 

F(n + a + 2) (f313,)n 
,,~o 1T F(n + I)F(a + I) 

= (a 4: I)C -:13') -(a+zl
, 

we have 

-, (a+ 1)(I-fJ13,)-(a+z) 
r (fJ,/3 ) = -- . 

a 41T 2 
(A6) 

By the unitary transform B we obtain from (A2) the kernel 
for JYa : 

(A7) 

VfE JYa , f f(z')Pa(z - z')dPa(z') =f(z). (AS) 

In (A6) and (A7) the power is taken as analytic continuation 
from the real axis for Pa and from the circle for ra, i.e., 

( z ;i Z') - a - 2 = 1 Z ;i z' 1- (a + 2) 

[ (Z-Z')] X exp - ita + 2)arg -:u- ' 
with 

1T (z - Z') 1T - - < arg -- < + -, 
2 2i 2 

and 

C _:13,)-(a+z) = Il-:13 'I-(a+21 

xexp [ - ita + 2)arg C -:13')]. 
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From (A9) it is easy to see that g; a is a Hilbert space: 
g; a CL 2(D,dva (0)) which is a Hilbert space; so every 
Cauchy sequence in g; a converges in L 2(D,dva (8)). Now 
because of (A9) the restriction of a Cauchy sequence (g" I to 
a compact subset E of D verifies V 0 E E, 

Ign(O) - gm(O)1 

~( 1-1(
1

2)-a12-1 
<{llg" -gmilla \j 4;- 2 

«llg" -gmilla ~a 4: I C, 

for some C so the restriction of [gn I to E is uniformly 
Cauchy convergent and [gn I is uniformly convergent on 
each compact. It is well known that every sequence of ana­
lytic functions uniformly convergent on each compact con­
verges to an analytic function so g; a is complete. The same 
argument holds for JYa . 

With B we can also obtain an orthogonal complete basis 
for JY a ; the result is 

F(a+2+n) (z_i)n 

F(n + l)F(a + 1) (z + i),,+a+2 
(All) 

Remark: It is easy to verify that the functions V" verify 
the equation 

[ - i(~ + 1) :z - ita + 2)z] Vn(z) = (2n + a + 2)Vn(z). 

(AI2) 

Special cases: For JY _ 1/2 we obtain 

which verify 

( - i(zZ + I) ! - ~ iZ) V n- 112 = (2n + ~) V n- 112. 
(A14) 

For JYI/2 we have 

F(n + 512) (~ -+ II:)" (z + i)-5/2, 
n 3 / 2n! ~ 

(AI5) 

which verify 
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[ 
'(--2 1) a 5.] V+I12 

-IZ-+ az-2 'Z n = ( 2n + ~) V n+ 112. 

(A16) 
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A simple relation between two quantum systems with a time-dependent, respectively, time­
independent, harmonic part is established. Using this we give a computation, valid for all times, of 
the Green's functions of the time-dependent harmonic oscillator with and without a perturbation 
of the typeg/x2

• The asymptotic expansion of the wave function in powers of Planck's constant is 
discussed using a new representation of the Morse index. 

PACS numbers: 03.65.Ge, 03.65.Sq 

I. INTRODUCTION 
A canonical change of variables has been used by sever­

al authors, see, e.g., Refs. 1-10, both in classical and quan­
tum mechanics, in order to reduce a dynamical system con­
taining a time-dependent harmonic potential to a simpler 
one. 

To set up the framework developed in the present paper 
we give first a simple example of such a tranformation. Con­
sider the Schrodinger equation 

[ a h 2 d 2 ,.1,2] ih- + - - - _x2 ,I',(xt) =0 at 2 dx2 2 Of' A' , 
(1.1) 

where h is Planck's constant divided by 2'TT and ,.1,>0. We 
distinguish two cases: the free case (A = 0) and the time-inde­
pendent harmonic oscillator case (TIHO: A > 0). Let tPo(x,t ) 
be a solution of (1.1) for A = O. Then it is easy to see that 
tP A (x,t ) is given by 

tPA(X,t) = (cosAt)-1/2 exp[ - iA tan Atx2/2h ] 

X tPo(x/cos At,tan At /,.1, ). (1.2) 
But it must be emphasized that the solution (1.2) of (1.1) is 
valid only for It I < 'TT/U. In other words, the change of varia­
bles under discussion does not give the time evolution of the 
wave function tPA for all times if A> O. A similar difficulty 
arises in the corresponding classical situation. 

A general expression, valid for each t such that 
cos At #0, is obtained by taking into account the Maslov 
correction ll

-
23 and is given by 

tPA (x,t) = Icos At 1- 112 exp[ - i'TTm/2 - iA tan Atx2/2h ] 

X tPo(X/ cos At, tan At /,.1, ), (1.3) 
where m is the Morse (Maslov) index, m = intI 1/2 + At / 'TT); 
int e is the integer number such that e - 1 < int e<;e. 

We learn from this example that the TIHO system can 
be essentially reduced to a countable number of free systems 
using a couniable number of canonical transformations cho­
sen in order to have continuity for the time evolution of the 
wave function. This rule introduces the Maslov correction 
consisting in a jump of the phase at every half-period. 

This phenomenon has been observed long ago as point­
ed out in Ref. 14 (see also the references therein and Ref. 17): 
"In 1890 Gouy observed and explained the phase gained by a 
wave as it goes through a focus. Similar phase shifts occur in 
the wave function of quantum systems; they have been de­
rived by Keller from the single valuedness of the wave func­
tion and by Gutzwiller who established their relationship 
with the Morse index of the corresponding classical trajec­
tory. " 

If we replace A 2 in Eq. (1.1) by a real continuous func­
tion pIt ) we obtain the Schrodinger equation corresponding 
to the quantum mechanical system describing the time-de­
pendent harmonic oscillator (TDHO). We shall prove in this 
paper that one can reduce every TDHO system to every 
TIHO one by a simple canonical transformation without 
worrying anymore with the Maslov correction. We shall also 
apply these ideas to more general systems containing a time­
dependent harmonic potential. 

Let us now describe shortly the structure of the paper. 
In Sec. II we discuss the TDHO differential equation 

ii(t) + pIt )u(t) = 0, (1.4) 

which has been already studied by several authors in relation 
with the theory of exact invariants for the TDHO.2-8,24-58 

Here we use the results stated in Refs. 59 and 60. For a class 
of solutions of(l.4) we introduce the notion of an index func­
tion. 

Section III is devoted to a detailed analysis of the ca­
nonical transformation which reduces a quantum system 
containing a time-dependent harmonic potential to a simpler 
one. We obtain in this way the quantum analog of the trans­
formation established by Perelomov9 in the classical case. 

In Sec. III we apply the results of the previous sections 
to calculate some Green's functions with Maslov correc­
tions. Let us now mention some previous related work and 
the connections with ours. The Green's function of the 
TDHO, for small times, was first calculated in Ref. 61 using 
the Magnus formula. 62 The Maslov correction was given in 
Ref. 63. (See also Refs. 21 and 29.) Our glObal (i.e., valid for 
all times) and canonical calculation is based upon well-estab­
lished mathematical results. 13,22 The Green's function of the 
TDHO with a perturbation of the type g/X2 for small times, 
was given in Ref. 29 using the Feynman path integral formu­
lation. 64 Our result includes the Maslov correction. 

In Sec. V we wish to comment upon the connection 
between Maslov's results and the TDHO. We point out that 
the problem of defining, in the semiclassical approximation, 
the Morse index, arises in all its complexity already in the 
TDHO case. Finally, we investigate the asymptotic behav­
ior, at time t and as h-D, of the wave function using the fact 
that, in this case, the Schrodinger equation is explicitly solu­
ble. Let us add the following remark to emphasize the advan­
tage of studying the TDHO; in fact, this approach allows us 
to use the method of stationary phase in finite dimen­
sion,65,66 avoiding, therefore, the complexity of this method 
in Hilbert space.67

-69 
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II. THE DIFFERENTIAL EQUATION OF THE TIME­
DEPENDENT HARMONIC OSCILLATOR 

We consider the differential equation in R 

u(t) + pit )u(t ) = 0, (2.1) 

wherep(t) is a real-valued continuous function. The solutions 
of this equation have beautiful properties. For example, the 
zeros of any nontrivial solution are isolated and simple. For 
more details see, e.g., Refs. 59 and 60. 

In what follows u I and U2 denote two independent solu­
tions of (2.1) with Wronskian W(U I,U2) = W = UIU2 - UIU2· 
As W =f. 0, we have that if one of these two solutions vanishes 
for some tER the other is automatically different from zero in 
this point. 

Let sand c be the two independent solutions of (2.1) 
such that s(O) = c(O) = 0 and c(O) = s(O) = 1, which implies 
that w(c,s) = 1. We define now 

5 = Pc2 + 2Qcs + RS2 = }lui + 2QU IU2 + RuL (2.2) 

forP,Q,R,P,Q,RERwhere(P,Q,R )and(P,Q,R)arerelatedby 
some one-to-one correspondence. 

Lemma 1: (i) w3(PR - Q 2) = PR _ Q 2, where 
W = w(u l'U2). (ii) We assume that P,R;;;.O and P + R > O. 
Then P R - Q 2;;;.0 implies 5 (t );;;'0; the same result holds if;;;. 
is replaced by >. 

Proof Lemma 1 follows immediately from the fact that 
c and s do not vanish simultaneously. 

From now on we assume that PR - Q 2 = A, 2 with ,1;;;.0 
and that P, R;;;.O, P + R > O. 

For every such A, we have the following important rela­
tion involving 5 (see Ref. 59): 

25t - t2 + 4P5 2 - 4,1 2 = O. (2.3) 

We denote by ]m2' M 2[ a maximal interval where 5 does not 
vanish. For () E ]m2' M 2[ we define the function 1]: 
]m2, M 2[-]m l ,MI [ by 

1](t) = J:5(r)-1 dr, (2.4) 

with MI = lim 1](t), m I = lim 1](t), where MIE]O, + 00] 
/ ....... M 2 l-m2 

and mlE[ - 00,0[. We emphasize that 1] is well defined be-
cause 5 (t) > 0 for every tE]m2' M 2[ and that 1] is strictly in­
creasing in ]m2 M2[' Finally 1] is a smooth bijection between 
]m2, M 2[ and ]ml' MI[' 

We distinguish now two cases: A, > 0 and A, = O. 
(a) A, > 0: From Lemma 1 we get that m 2 = - 00 and 

M2 = + 00. The general theory discussed in Ref. 59 estab­
lishes that 

u(t) = 5 (t )1/2(A cos(,11](t)) + B sin(,11](t))) (2.5) 

is the general solution of (2.1), where A and B are arbitrary 
constants. We remark that (see, e.g., Refs. 8 and 35) 
v = ± 5 112 is the general solution of the equation 

ii + pv - A, 2V -3 = O. (2.6) 

Equations (2.1) and (2.6) appear in the theory of exact invar­
iants for the time-dependent harmonic oscillator2-8.24-58 but 
we do not go into this subject here. 

(b) A, = 0: In this case we have that 

(2.7) 
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where u I is some solution of (2.1). It is now easy to see that 
there exists a unique u2, with w(u l , u2) = 1, such that 

1] = u2luI' (2.8) 

Now we recall that for ZEC, with - 1T < arg Z < 1T, log Z 
is defined such that 1m log Z = arg z. For €ER, we define as 
usual ZE = exp [€ log Z]. Let u be a solution of the equation 
(2.1). We denote by m(u,t): R_Z the index junction of u; 
m(u,t) is such that for t2 > t l , m(u,t2) - m(u,tl ) is the number 
of zeros of u in the interval ]t I' t2] and m(u,O) = O. 

If there exists some t> 0 such that rE ]O,t [ implies 
u(r) > 0, we define for €, tER 

uE(t) = I u(t W exp [i€1Tm(u,t)]. (2.9) 

Example: Ifwe put in (2.2)P = 1, Q = 0, R = A, 2 and in 
(2.4) () = 0 we have 5 = c2 + A, 2S2 and 

s(t) = A, -15 (t )1/2 sin(,11](t)), (2.10) 

c(t) = 5 (t )1/2 cOS(,11](t )). (2.11) 

Let firstp(t) =,u2 with,u > O. Then we haves(t) =,u -I sin,ut 
and c(t) = cos ,ut. In this situation m(s,t) = int(,ut 11T) [and 
m(c,t) = int(,ut 11T + 112).] Here one has 5 (t) = cos2,ut 
+ A, 2,u-2 sin2 ,utand5 (t );;;.min{ 1",J, 21,u2J . For,u = 10necan 

easily check that (cf. Ref. 20) 

sin 1/2 t = exp[i(t 12 - 1T14)](1 - i cot t )-1/2, (2.12) 

COSl/2 t = exp[i(t 12)](1 + i tan t )-1/2. (2.13) 

Now in the general case, where p is not constant, using for­
mulas(2. 10) and (2. 1l)wehavecI/2(t ) = 5 (t )1/4 cosI/2(,11](t)), 
m(c,t) = int(,11](t)l1T + 112), and so on. 
III. A SIMPLE RELATION BETWEEN TWO QUANTUM 
SYSTEMS 

In this section the notations are the same as in Sec. II. 
Let D2 be a domain (open and connected set) such that 
D2 C R X ]m2' M2[' For (x,t )ED2 we introduce the following 
change of variables: 

(x,t )-(0'5 (t)-1/2X,1](t )), (3.1) 

where 0' = ± 1. It is obvious that this transformation de­
fines a smooth bijection between D2 and its image 
D ICRX]ml>Ml 

Consider now the two quantum systems associated with 
the following Schrodinger equations defined, respectively, in 
DI andD2: 

[
a h 2 ,12 ] 

ih at + """2.J - """2 x2 - V (x,t) <p (x,t ) = 0, (3.2) 

[
ih i. + ~.J _ pit) x2 

at 2 2 

- 5(t)- IV(0'5(t)-1/2X,1](t))]"'(X,t) = 0, (3.3) 

where V (x,t ) is a real-valued continuous function in DI and 
<p (x,t ) and ",(x,t ) are continuously differentiable with respect 
to t and twice continuously differentiable with respect to x. 

Using (2.3) one can now prove the following theorem. 
Theorem 1: Let <p (x,t ) be a solution in DI of Eq. (3.2). 

Then 

",(x,t) = 5 (t )-1/4 exp[it (t )x2/4h5 (t)] 

(3.4) 
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is a solution in D2 ofEq. (3.3). 
For A = 0, using (2.7) and (2.8), we have that 

sIt) = UI (t)2,S(t)-1/2 = lu l (t)I-I,1J(t) = u2(t)lu ,(t),in(3.1) 
and (3.3), and formula (3.4) becomes 

¢(x,t) = IUItt) 1-
112 exp[iu l (t)x2 /2hu Itt)] 

X l,6 (O'lu,(t )1-lx ,u2(t )luItt)). (3.5) 

This is the quantum change of variables corresponding to the 
one used in Ref. 9 in the classical case. See also formulas (5) in 
Ref. 10 and (3.7) in Ref. 7. 

Remark: In Ref. 70 Husimi describes a canonical trans­
formation which reduces a quantum system with a time­
dependent linear part to a simpler one (Taniuti's transforma­
tion). This transformation together with the one just stated 
can be used to generalize some results of Sec. IV. For exam­
ple, formula (3.66) in Ref. 64 and partial results of Refs. 30 
and 71 can be obtained in this way. 

IV. APPLICATIONS: THE CALCULATION OF GREEN'S 
FUNCTIONS AND THE MORSE INDEX 

A. Harmonic oscillators 

Let us begin by introducing the following notations: 

Ho = - (h 2/2j.J, HI = ( - h 2/2j.J + (A 2/2)x2, 

H2 = - (h 2/2)..1 + (P(t )l2)x2 

are the Hamiltonians on L 2(R) in the free, TIHO, and TDHO 
cases, respectively (here we let A #0); and Uo(t), UI(t), and 
U2(t) are the corresponding time evolution operators on 
L 2(R). This means that one has ¢(x,t) = ~(t )¢(x,O), i.e., 
ih (d~ (t)/dt) =Hj~(t) and ~(O) = 1 forj= 0,1,2. 

Moreoverforj = 0, 1, ~(t) = exp[ - (ilh )tHj] and the 
Green's function in the free case is given by 

Ko(x,t; y,O) = (21Tiht )-1/2 exp[(i/2ht)(x - yn 

for t #0 

Ko(x,O; y,O) = 15(y - x), 

(4.1) 

(4.2) 

where 15 is the Dirac measure. In order to calculate the 
Green's function for the TIHO K, from Ko we put A = 0, 
V = ° in (3.2), p = A 2 in (3.3), and u I = cos At, 
U2 = A -I sin At in (3.5). Let Am = ] - 1T/2 + m1T, 1T/ 
2 + m1T[, mEl; here every Am plays the role of]m2' M 2[ of 
Sec. II and III. For such an Am we choose 0' = ( - l)m. By 
Theorem 1 if l,6 (x,t), (x,t )ER2, is a solution of the Schrodinger 
equation in the free case we have that 

¢(x,t) = Cm I cos At 1- 1/2 exp[ - iA tan Atx2/2h j 

xl,6(X/CosAt,tanAt/A) (4.3) 

is a solution of the Schrodinger equation in the TIHO case 
for (x,t )ERxAm , where cmEc' We let Co = 1 which implies 
¢(x,O) = l,6 (x,O). From (4.3) we have 

¢(x,m1T/A) = cml,6 (( - l)mx,O). (4.4) 

Now we can choose the Cm such that ¢(x,t) is continuous at 
the points 1T/2 + m1T, mEl; (4.1) and (4.3) imply that 

¢(x,t) = Cm Icos At 1-112(A /21Tih tan At )1/2 

X i exp [ ... j ¢( y,O)dy, (4.5) 

where 
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[ ... ] = (iA. /2h sin At )[(x2 + y2)COS At - 2xy]. (4.6) 

A simple calculation shows that Cm = exp[ - i1Tm/2] and 
finally we have 

K,(x,t; y,O) = (A /21Tih )1/2 sin -1/2 At exp[ ... j, 

t #m1T/A, (4.7) 

K I(x,m1T/A;y,O) = exp[ - im1T/2]I5(y - (- Itx), 
(4.8) 

where sin -1/2 is defined as in Sec. II, [ ... ] is defined by (4.6), 
and 15 is the Dirac measure; (4.7) is the well-known Feyn­
man's formula with the so-called Maslov correc­
tion. 13.17,20,22,64 We have deduced once more this known for-
mula because this new method can be used in different 
situations as we shall see in Sec. IV B. 

We can obtain now the Green's function for the TDHO 
K2 from K I. As in the example of the Sec. II we put in (2.2) 
P = 1, Q = 0, R = A 2 and in (2.4) (J = 0. From Theorem 1 we 
get that 

U2(t) = U(t)UI(1J(t)), (4.9) 

where U (t ) is the unitary operator on L 2(R) defined by 

U(t): ¢(x)-s (t )-1/4 exp[ig (t )x2/4hs (t)] 

X¢(S(t)-1/2X). (4.10) 

Using (2.10), (2.11), (4.7), (4.8), and (4.10) we can now prove 
the following theorem. 

Theorem 2: The Green's function K 2(x,t;y,0) for the 
Schrodinger equation of the TDHO is given by 
K 2(x,t;y,0) 

= (21Tih )-1/2S -1/2(t) 

X exp[(i/2hs(t ))(8(t )x2 + crt )y2 - 2xy)], 

t #tm, 

K 2(x,tm ;y,0) 

= C- 1/2(tm )exp [ii:(tm)x2 /2hc(tm)] ' 

XI5(y - X/C(tm)) 

(4.11) 

(4.12) 

where S-I12, C- 1/2 are defined as in Sec. 11,15 is the Dirac 
measure, and tm is the zero ofs such that mIs, tm) = m. 

Remark: For related results see Refs. 10, 13, 15, 17, 20, 
29,30,61,63,64, and 70-78. 

B. Harmonic oscillators with an inverse quadratic 
potential 

Putting V(x,t) = g/X2, gER, in (3.2) we have 
S (t)-I V(O's (t )-1/2X,1J(t)) = g/X2 in (3.3). So, starting from 
g/X2 and doing the change of variables of Sec. III, we arrive 
at the same time-independent singular perturbation. As we 
can see the results of Sec. III are well adapted to the study of 
the quantum systems associated with the Hamiltonians H f 
= H j + g/X2, x> O,j = 0,1,2. For more details about such 

quantum systems see Refs. 29 and 79-84. 
In the following we denote by Kf,j = 0,1,2, the corre­

sponding Green's functions and we are going to deduce K 1 
and K~ from Kg. 

According to Ref. 29 we have 
Kg (x,t;y,O) = ((xy)1/2/iht)Ia(xy/iht) 

Xexp[(i/2ht)(x2 + y2)], (4.13) 
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where x,y > 0, t #0, g> - h 2/S, and a = (1 + Sg/h 2)112/2. 

Here fa is the modified Bessel function (see Ref. S5), 

00 (z/2)2m + a 
fa(z) = L, " -1T<ArgZ<1T. (4.14) 

m=om.(m +a). 

In order to calculate K 1 and K ~ we use the method of Sec. 
IV A with the exception that we let u = 1 in every Am' This 
prescription is motivated by the fact that X> 0, the math­
ematical structure of (4.13), and is in agreement with Ref. 79. 
For example, the formula corresponding to (4.5) is, in this 
case, 

~x,t) = ( - l)mcm 'h ~ At 1+ 00 (xy)1/2 
I sm 0 

Xfa exp[ ... ]t/'(y,O)dy, ( 
XYA cot At ) 
ih I cos At I 

(4.15) 

where 

[ ... ] = (U /2h )cot At (X2 + y2). (4.16) 

Using the fact that fa ( - i; ) = exp[ - i1Ta] fa (i; ), for; > 0, 
and the same argument of continuity at the points 1T /2 + m1T 
as in Sec. IV A, we conclude that em = exp[ - i1Tm(a + 1 I]· 
Moreover a careful calculation gives the following theorem 
(cf. Ref. 29). 

Theorem 3: The Green's function K~(x,t;y,O) for the 
Schrodinger equation of the TDHO with perturbation of the 
type g/X2 is given by 

K ~ (x,t;y,O) 

= (xy)I/2 fa (~)exp[ - 2i1Ta int('::' + ~) 
ihs(t) ihs(t) 2 2 

+ i(S(t)x2 + cIt lY2
)] t -J. t (4.17) 

2hs(t) ,r- m' 

K~(x,tm;Y'O) 

= lc(tm)I- 1
/

2 exp [ -i1Tm(a+ 1)+ 

X{jy- -- , ( X) 
lc(tm)1 

ii:(tm )x2 ] 

2hc(tm) 

(4.1S) 

where{jis the Dirac measure, n = m(s,t), andtm is the zero of 
s such that m(s,tm) = m. 

Remark: Formula (4.17) differs from the one of Ref. 29 
in as much as it takes into account the Maslov correction. 

V. THE SEMICLASSICAL APPROXIMATION 

We consider the Schrodinger equation 

a h 2 

ih at 1I(x,t) = - T A1I(X,t) + V(x)1I(x,t), (5.1) 

where A is the Laplacian on lRn and h is Planck's constant 
divided by 21T; the wave function 1I(x,t ) describes the state at 
time t of a quantum mechanical particle with mass one, in 
lRn, under the influence of a potential V(x); for each fixed t, 
1I(x,t) belongs to L 2(lRn). 

Following Ref. 19, we set up the Cauchy data at time 
t=O, 
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1I(x,0) = 1Io(x)exp[(i/h lSo(x)]. (5.2) 

Functions 1Io(x), So(x), and V(x) are real valued and 

1Io(X)EC O'(lRn), So(X)EC 00 (lR"), (5.3) 

V(X)EY(lR"), inf[ V(x): xERnj > - 00. (5.4) 

For more details see Ref. 19, Sec. 12. For YER", consider the 
path y( y,t ) which satisfies the differential equation 

y(y,t) + V/(y(y,t)) = 0, (5.5) 

and the Cauchy initial conditons 

y(y,O) =y and nY,O) =Sb(y)· (5.6) 

In this section the prime denotes the derivative in R", e.g., 
V / = D V, and, as before, the dot denotes differentiation with 
respect to t. 

Wedefinenowu(y,tj = y/(y,t jandJ(y,t) = det u(y,t). 
For YElR", the matrix valued function u( y,t) is the solution of 
the Jacobi equation 

u(y,t) + V"(r(y,t))u(y,t) =0, (5.7) 

such that u( y,O) = 1 and u( y,O) = S ({( y). 

In Ref. 19 asymptotic formulas are given for the solu­
tions of the Schrodinger equation at nonfocal points. For 
yER", a point t is called a/oeus of the trajectory r(y,rj if 
J(y,t) = O. The multiplicity of the focal point tis the co-rank 
of the matrix u( y,t ). 

For YElR" and t> 0, the Morse index m of the trajectory 
r( y, r), with rE[O,t], is the number offocal points on [O,t] 
counted with their multiplicity. 

We fixxElRn and t> 0, and we suppose that Yj ElRn are all 
points for which y(Yj ,t) = X; (x,t ) is called focal if t is focal for 
at least one of the trajectories r(Yj,r). As we assume condi­
tions (5.3) and (5.4) one can prove (see Ref. 19) that the num­
ber of points Yj is finite, provided that (x,t ) is not a focal point. 

We have now the following theorem (for the proof see 
Ref. 19, Sec. 12). 

Theorem 4: We assume that (x,t) is not a focal point. 
Then 

1I(x,t) = ,f(1Io(Yj)IJ(Yj,t)I- 1I2 
exp [ - i ; mj ] 

+ O(h ))exp [ ~ Sj(X,tJ], (5.S) 

as h--+O, where Sj(x,t) is the action along the classical trajec­
tory joining the points Yj and x, i.e., 

Sj(x,t) = SO(yj) + f [ + y(Yj,r)2 - V(r(Yj,r)) 1 dr, (5.9) 

and mj is the Morse index of the trajectory. 
Remark: Expression (5.S) is called the semiclassical 

asymptotic of the wave function. 14,18,19,68,86 The same kind 

of asymptotic expansions arise in the WKB approxima­
tion. 14.2 1.64 

In order to simplify notations we let n = 1 from now on. 
Ifwereplace V(x) in Eq. (5.1) by the time-dependent harmon­
ic potential !p(t )x2, where p(t) is a real continuous function, 
we obtain the Schrodinger equation corresponding to the 
quantum mechanical system describing the time-dependent 
harmonic oscillator. 
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In this case Eq. (5.5) becomes 

Y(y,t) + pit )r(y,t) = 0, 

with r( y,t) satisfying conditions (5.6). 

(5.10) 

Ifp(t) = V"(r(Yj,t)), where r(Yj,t) is one of the above 
classical paths related with the potential V(x), then we have 
that r( Yj,t) satisfies also (5.10). We shall see that the contri­
bution of this trajectory to the asymptotic expansion of the 
wave function of the TDHO is given by 

("'o( Yj)IJ(Yj,t )1- 1/2 

Xexp[ -i(1T/2)mj] +O(h))exp[i/h)~(x,t)], (5.11) 

where 

- i'l. 2 2 Sj(x,t) =So(Yj) + - [r(Yj,r) -p(r)r(Yj,r) ] dr. (5.12) 
° 2 

As we see, the difference between (5.11) and each summand 
in (5.8) consists only of the part that contains the classical 
action of the two different potentials. So, the problem of 
defining the Morse index arises in all its complexity already 
in the case of the TDHO. This is the reason why we are now 
going to investigate the asymptotic behavior, at time t and as 
h---+O, of the wave function", for the Cauchy problem (5.2) in 
the TDHO case. We begin by recalling the following 
lemma.65,66 

Lemma 2: Let fEC ""(R) and gEC orR) be real-valued 
functions such that!'(xj ) = ° for a finite number of Xj in the 
support of g. Suppose thatf"(xj)::;i:O for every xj • We have 
then 

h - 1/2.lexp[ ~ f(x)]g(X)dX 

= ~exp[ ~ f(Xj)]{(f:~) )1I2g(Xj) + O(h )}, 

as h---+O. 

We use now this lemma to prove the following and final 
theorem. 

Theorem 4/: We assume that conditions (5.3) hold for 
"'o(x) and So(x). Let the point (x,t ) be such that (i) the equation 
x = c(t}y + S b(y)s(t) has only a finite number of solutions Yj 
in the support of "'0; and (ii) for every Yj let c(t) + S ~ 
(Yj)s(t)::;i:O. Then 

",(x,t ) = ~) "'o( Yj)J - I 12( Yj,t ) + 0 (h )) 
j 

X exp [ ~ S; (x,t ) ], as h---+O, 

whereJ( y,r) is the solution of the Jacobi equation such that 
J(y,O) = 1 andj(y,O) =S~(y);J-1/2isdefinedby(2.9)and 
~(x,t) is as in (5.12). 

Proof In order to obtain the asymptotic expansion of 
the wave function we use Theorem 2. The case t = tm is ob­
vious. For t ::;i:tm we use Lemma 2. Then we have 

3268 

g(y) = (21Ti)-1/2S-1/2(t)",0(Y)' 

f( y) = (2s(t ))-I(S(t)x2 + C(t}y2 - 2xy) + Sot y), 

r(y,r) = c(r}y + S b(y)s(r), 

u( y,r) = J (y,r) = c(r) + S ~(y)s(r), 

J. Math. Phys., Vol. 25, No. 11, November 1984 

f'(y) = s(t )-I(r(y,t) - x), 

f"(y) =S(t)-IU(y,t). 

From assumptions (i) and (ii) we get that in support of "'0 
there exist a finite number of stationary points Yj [i.e., 
!'(Yj) = 0] which are nondegenerate [i.e.,j"(Yj)::;i:O]. From 
the above formulas we conclude that r(Yj,r) is the classical 
pathjoiningYj and x and wit~ initial momentumS b(Yj)' We 
can easily see that f( Yj) = Sj (x,t), i.e., f( Yj) is the action 
along the calssical path r(Yj,r). Finally, a trivial but cautious 
computation using (2.10)-(2.13) shows that (f"(yj}/21Ti)1/2 
(21Ti) 1/2sI/2(t) = J 1/2(Yj,t), whereJ 1/2( Yj,r) is defined by(2.9). 

Remark: This result can be generalized to the case of 
the n-dimensional TDHO in agreement with Maslov's re­
sultS. 19 
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Nonexistence of asymptotically free solutions for a nonlinear SchrOdinger 
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Let u be a nontrivial, smooth solution to iU t = Ll u - I u I P - IU. If n = 1 and 2 <p< 3, then there 
does not exist any finite energy free solution v such that Ilu(t) - v(t )112-oas t---+ + (Xl. This extends 
a theorem of Strauss in which the same result was proved for 1 <p<2. 

PACS numbers: 03.65.Nk, 42.65. - k 

I. INTRODUCTION 

Consider the perturbed (nonlinear) Schrodinger equa­
tion 

iu, = Llu - glul p-IU 

and the corresponding free (linear) equation 

iv, = Llv. 

(1) 

(2) 

Here xERn
, tER, p > 1, and the constant g is positive unless 

stated otherwise. For each qE[ 1, (Xl ), the norm 11·11 q is the usu­
al spatial L q(Rn)-norm and the dual variable is denoted by q' 
(so l/q + l/q' = 1). The suppressed notation 

L q = L q(Rn
), J = in d nx , W = w(t) = w(x,t ) 

will be used. 
Definition: A solution u to (1) is asymptotically free if 

there exist L 2-s01utions v ± to (2), decaying sufficiently ra­
pidly, such that Ilu(t) - v ± (t JlI 2-o as t---+ ± (Xl. (The neces­
sary decay is made precise in Remark 2 following Lemma 2.) 

It has been shown (Strauss l
) that if p is large enough, 

then a substantial class of solutions to (1) are asymptotically 
free. Strauss then proved the following partial converse. 

Theorem 1 (Strauss1
): If either 

(i) n>2 and 1 <p< 1 + 2/n, or 
(ii) n = 1 and 1 <p<2, 

then the only asymptotically free solution to (1) is identically 
zero. 

The main result in this paper, Theorem 2, is that the 
condition for nonexistence of asymptotically free solutions 
to (1) includes the case n> 1 and 1 <p< 1 + Un; i.e., the one­
dimensional case is not really exceptional. The general idea 
in the proofs of both this result and Theorem 1 was originally 
used by Glassey2 to prove the analogous theorem for the 
nonlinear Klein-Gordon equation. The proof is by contra­
diction. A bilinearformHis defined so that t ~IH [u(t ),v(t)] I 
is uniformly bounded for t sufficiently large. All the lemmas 
are preliminaries to the establishment of the key estimate 
which is essentially dH / dt>c/t> 0; integration leads imme­
diately to the contradiction. 

The new ingredient which makes this extension to 
Strauss' theorem possible is an estimate (Lemma 3) derived 
from the pseudoconformal identity of Ginibre and V elo. 3 

Kadekawa4 first used this estimate to obtain positive scatter­
ing results in higher dimensions. 

-I This work constitutes part of the author's Ph.D. thesis in the Department 
of Mathematics at Indiana University, August 1982. 

II. PRELIMINARIES 

The lemmas consist of identities and estimates satisfied 
by solutions to (1) and/or (2). Since it is expected that such 
statements will continue to be basic tools in future work, 
they are proved for n> 1 even though Theorem 2 is a one­
dimensional result. For simplicity, solutions to (1) and (2) are 
assumed to be smooth; however, much less stringent as­
sumptions would suffice (see, e.g., Ginibre and Vel03 for de­
tails). Therefore, the hypotheses stated here are intentionally 
redundant to emphasize those features of the smoothness 
assumptions that are crucial. 

The following well-known conservation laws obtain for 
both free and perturbed solutions. 

Lemma 1 (Conservation Laws): Ifw is a smooth solution 
to (1) with gER and w(O)EH InL p + I, then for all t 

:t (1Iw(t )112) = 0, (3) 

~ (1Ivw(t)ll~ + .-l:L Ilw(t)II::/) = O. 
dt p + 1 

(4) 

Proof Replace u by w in (1), multiply by 2w, and take 
the imaginary part to obtain 

d 
- (Iw(t W) = V·Im(2WVw). 
dt 

(5) 

Integration over all space implies (3). To establish (4), multi­
ply (1) by 2w" integrate over Rn

, and take the real part of the 
result. • 

Part (i) of Lemma 2 is well known. The statement and 
idea for the proof of part (ii) appeared in Strauss. I 

Lemma 2 (Estimatesfor Free Solutions): Ifv is a smooth 
solution to (2) with O:j:.¢ = v(O)a InL 2 and 2<q< (Xl, then (i) 
there exists a constant c = c!ll¢ Il q,) such that 

(6) 

and (ii) there exist positive constants B = B (n,q,¢) and 
To = To(¢ ) such that 

Ilv(tJllq>Bt -n1q -2J/2
q, 't;jr~To. (7) 

When q = (Xl, the power of t is - n12. 
Proof The classical representation of v, 

v(x,t) = (41Tit) - n12 f e - ilx - YI'/4'V( y,O)ttny (8) 
JRn 

(obtained via Fourier transform), implies 

Ilv(t)ll", <J -n/211¢ III' 
This estimate and an application of (3) to v together satisfy 
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the hypothesis of the Riesz-Thorin theorem (Reed and Si­
mon, 5 p. 27) whose conclusion is (6) with c = I/¢ I/q" 

If q = 2, then (3) implies (7) withB = II¢ 112' If q > 2, then 
for any k> 0 (yet to be chosen), HOlder's inequality implies 

( ( Iv(x,IWdx)qI2 
J1xl<kl 

(1 )(q - 2)12 1 
.;;; dx I v(x, I W dx 

Ixl<kl Ixl<kt 

= C (k,n,q)t n(q - 2)/2 II v(t )II~, 

Therefore, to prove (7) it suffices to show that there exist 
k> 0, To < 00 , and C1 > 0 such that 

C1 .;;; ( Iv(x,t W dx=/(t), Vr;.To· 
J1xl<kt 

(9) 

Replace v by representation (8), change variables (s = xI21), 
and use leial = 1 with a = - /x/ 2/4t to see that 

I(t)= ( /(21T)-n/2 ( eiS'Y[e-iIYI2/4t¢(Y)]dy/2 dS' 
J 1s1 <k12 JR" 

Then 

1(1)= ( IY-1(s,tWds, J1s1 <k12 

wheref(y,t)=e- iIY1'/4t¢(y) and y-I denotes the inverse 
Fourier transform in the space variable. It follows from the 
dominated convergence theorem thatf(·,t )-¢ (.)inL 2(Rn)as 
1--+00. Since Y is an isomorphism onL 2, Y-1--+y- t¢ in 
L 2(Rn) and hence also inL 2( { Is I.;;;k 12l ), Therefore, for each 
k>O, 

I(t)--+ ( ly-t¢12dS=/(00) as t--+oo. 
J1s1 <k/2 

Now 0# II¢ II~ = IIy-t¢ II~, so there exists k large enough 
for 1(00»!11¢ II~ >0. Fix such a k and define C1==¥(00). 
Since 1 (t )--+2C1 > 0 as t--+ 00, there exists To < 00 such that 
1 (t »Ct for all I> To. This establishes (9) which implies (7) 
with B = IE; I[ C (k,n,q)] I/q. • 

Remark 1: Note that k and hence also B and To depend 
on the function ¢ (the support of y-t¢ ) not only on II¢ 112' 

Remark 2: The decay in the definition of asymptotically 
free is that stated in (6). If vEL 2, then the additional weak 
hypothesis that v(x,O)EL 1 is sufficient to guarantee this de­
cay. 

Ifperturbed solutions enjoyed the same decay (6) as free 
solutions, in particular in the L 00 -norm, the proof of the 
main theorem would be straightforward. Though such a 
strong estimate is not expected, the following key lemma 
establishes some decay which will suffice. 

Lemma 3 (Decay of Perturbed Solutions): If u is a 
smooth solution to (1) with 1 <p< 1 + 41n, 
¢ (x) = u(x,O)eH tnL p+ I, and IIx¢ (X)II2 < 00, then there ex­
ists c> 0 such that 

/lU(t)IIP+I.;;;ct- n(P-W2(P+IJ, Vt>O. 

Proof The first main step is to derive the pseudoconfor­
mal identity 
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!!..-I (Ixu - 2ilVul 2 + ~ t 2lu lP+ t)dX 
dt p+ 1 

= 4g[4-n(p-l)] tI luIP+ldx. (to) 
p+l 

Here,x = (Xt, ... ,xn)' r = lxi, and Uk = aku = aUlaXk' Mul­
tiply (1) by 2rii, and integrate the real part over Rn. The 
result can be expressed as 

I = II + III, 
where 

1= 2 Rei f (~XkUkUt) dx, 

II = 2 Re f rii,Llu dx, 

111= - ~frar(lu/p+I)dx. 
p+l 

Integrate by parts to find that 

11= (n - 2) I IVul2 dx, 

III = 2gn I lui p+ I dx. 
p+I 

Term I can be rewritten as 

I=Re[i I ~Xk(UkU/ -uku/)dx] 

= ~ Re[i J ~Xdat(UkU) -ak(UUt))dX] 

= ~ Re[i I riiru dx J + Re[in I uUt dx J. 
Substitute for iUt from (I) to get 

1= ~ Im[ I ruru dX] + n I (lVu1 2 + glul P+ I)dx. 

Hence, the equation I = II + III becomes 

:1 (1m I ruru) = - 2 I I Vu 12 - n
g
;: ~ I) flu I P + I. 

(ll) 

In light of the lhs, multiply (5) by /x1 2 and integrate over W 
to obtain 

~ I IxuI
2 

= - 4 1m I rurU. 

Now multiply (11) by 4t and rewrite as 

:t (4t 1m f ruru) - 4 1m I ruru 

_ 4ng(p - 1) II lul P+ I. 
p+I 

(12) 

Use (12) in the second term and (4) in the fourth term; then 
rewrite to obtain 
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! J (lX 1
2

1u1
2 + 4t

2
1Vul

2 
- Re 4tirur u)dx 

= ~(~t2J lu IP +
I
) 

dt p+ 1 

+ ~tJ lulP+ 1_ 4ng(p - 1) tJ lulP+ I. 
p+1 p+1 

Simplification yields (10). 
The remainder of the proof is the following Gronwall 

argument. Integrate (10) over [O,t] and use the positivity of 
the first term: 

pS:21 lIu(tlil/:/ 

<lIxu(O)II~ + 4g[ 4 - nip - 1)] (' rllu(r)II/:/dr. 
p + 1 Jo 

Thus, 

t21Iu(tlil/:/<a' + 4 - n~ - 1) f rllu(r)II~! : dr, 

where 

a'=: p + 1 (1Ixu(O)II~ 
Sg 

+ 4g[4~~~-1)] f rllu(r)II~!:dr). 
Since integration of (4) over [O,t] implies 

IIVu(t)lI~ + ~ Ilu(tlil/:/ 
p+1 

= IIV¢ II~ + ~1 II¢ 11/:/, 
p+ 

it is easy to see that 

a'<a=c(g,p)(llx¢ II~ + IIV¢ II~ + II¢ 11/:/), 

(13) 

which is finite by hypothesis. Then (13) can be written as 

F (t )<a + f {J (r)F (r)dr, 

where 

F(t )=t 21Iu(t lIl/:/ 
and 

{J(t)=[4-n(p-1)]/2t, for t;;d. 

Here, F, a;;;.O by definition and {J;;;.O by hypothesis. Since F 
and (J are continuous on [1,00), Gronwall's lemma implies 
that 

F(t)<aexp(f{J(r)dr), Vt> 1; 

i.e., 

t2I1U(tlil/:/<aexp(f [4-n~~-1)] dr)' 

Simplify to get 

Ilu(t)II/:/<at -nIP -IJ/2, Vt> 1. 

The hypothesis on u(O) and integration of (4) together imply 
that Ilu(t )11/:/ is bounded uniformly for all t, in particular 
for O<t< 1. Hence, there exists a constant 
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c = c(g, p, Ilx¢ 112' II V ¢ liz, II¢ lip + I ) such that 

Ilu(tlllp + I <ct -nlp-1)I2Ip+ I), Vt>O. 

III. THE MAIN RESULT 

• 
Theorem 2 (Nonexistence of Asymptotically Free Solu­

tions): If n;;;.l and 1 <p< 1 + 2/n, then the only smooth, as­
ymptotically free solution to (1) is identically zero. 

Proof In light of Strauss' result (Theorem 1), it suffices 
to consider the case n = 1 and 2 <p<3. Assume u is a 
smooth, asymptotically free solution to (1). Then there exists 
a smooth L 2-solution v of (2) such that 

Ilu(t) - v(t )112-0 } 
Ilv(t )11 '" = 0 (t -1/2) as t_ + 00. 

(14) 

(15) 

Since the conservation oftheL 2-norm (3) and statement (14) 
together imply 

lIu(t )112 = Ilv(t III 2==.4 , Vt, (16) 

it suffices to show that v(O) = O. The proof is by contradic­
tion, so suppose v(O) =I O. Let B and To be as in Lemma 2 (ii), 
which will be applied to v. Note that (15) implies 

Ilv(t )11 '" <ct -112, Vt> T I;;;. To. (17) 

Now for t> T I , define 

H (t ) L"'", u(x,t )v(x,t )dx. 

Differentiate H with respect to t, substitute from the differ­
ential equations (1) and (2) for u, and v" respectively, and 
integrate by parts to get 

H(t)- dH = igJ luIP-Iuvdx. 
dt 

Add and subtract ig S I v I P + I dx; then take the imaginary 
part 

ImH(t)=g f IvlP+ldx 

+ Reg f (lui p-IUV - Ivl P+ I)dx. 

Lemma 2 (ii), applied to v, implies 

ImH(t);;;.gBt -IP-1)I2_ gI, Vt>TI' (IS) 

where 

I=IRe J(IUIP-IUV-lvIP+I)dxl· 

The following estimate shows that 1= ott -I P - 1)12) as t- 00, 
so that 1m H (t );;;.ct -I P - 1)12> 0 for all large t. The contra­
diction arises by showing, after integration, that the lhs of 
(IS) is bounded above while the rhs has an arbitrarily large 
lower bound. 

Use the Minkowski inequality and the mean value 
theorem (since 0 <p - 2) to estimate 

1< I J (lui p-I - Ivl p-I)UVI + I J Ivl P-I(U - V)VI 

<c f (lui P- 2 + Ivl P- 2)lu - vllullvl 

So 
+ f IvIP-Ilu - vllvl· 
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I<JI + J2 + J3, 

where 

JI=c J lu-vllulp-Ilvldx, 

J2=c J Ivl P-Ilu - vlluldx, 

J 3= J IvIP-Ilu-vllvldx. 

First consider Jk for k = 2,3 each of which has the form 
cslvl P- Ilu - vllwl, where w = u,vfor k = 2,3, respectively. 
From Schwarz's inequality, the decay of the free solution 
(17), and the L 2 -bound (16) it follows that 

J k <cllv(t )11 ~ - Illu(t) - v(t lIl2W(t )112 

<cIt -1/2)p-Illu(t) - v(t)112' 

The asymptotic assumption (14) implies 

get 

J k = ott -(P-I)/2) as t-+oo, for k = 2,3. (19) 

To estimate J I use the generalized HOlder inequality to 

J I <cllu(t) - v(t )1121Iu(t )11:;/lIv(t lI12(P + 1)/(3 -p). 

(The positive numbers ~, (p - 1)/(P + 1), and (3 - p)/ 
2( P + 1) sum to 1.) Apply the decay estimates Lemmas 3 and 
2 (ii) to u and v, respectively, to see that 

JI<cllu(t) - v(t)112t -(p-I)'12(p+ I)t -(q-2)/2q, 

with q = 2( P + 1 )/(3 - pl. (The assumption 2 <p< 3 implies 
that 2<q< 00.) Simplification yields 

J I <cllu(t) - v(t )112t - (p - 1)/2, 

so 

J
I 

= ott - (p- 1)12). 

Recall (19) to conclude that 

I<JI +J2+J3 =0(t-(P-I)/2) as t-+oo. 

This estimate together with (18) implies that there exists 
T> max { I,Td and a positive constant C(C <gB) such that 

ImH(t»Ct -(p-1)I2, 'tIt>T. 

Keeping C and T fixed, let Kbe a positive integer (yet to 
be chosen) and integrate this inequality over T<t<KT to get 

l
KT d lKT lKT 

- [ImH(t)]dt> Ct -(p-I)12 dt>C t-Idt. T ~ T T 
Note the use of the hypothesis p< 3, crucial for the validity of 
the second inequality. Therefore, 

ImH(KT) - ImH(T»ClnK. 
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The bound (uniform for K> 1) for the Ihs follows from the 
definition of H, Schwarz's inequality, and (16): 

So 

IImH(t)I<IH(t)I~! J: 00 U(X,t)V(X,t)dx! 

< Ilu(t lIl21lv(t )112~ 2, 'tit> T. 

ClnK<IImH(KT)1 + IImH(T)I<2A 2. 

Choose K> exp(2A 2/C) to reach the desired contradiction. 
Hence, vIOl = a which implies via (16) that u(t ) = a in L 2 for 
all t. The smoothness of u implies u(x,t )=0, and the theorem 
is proved. • 

Though Lemma 3 is sufficient for the proof of Theorem 
2, the following corollary says that perturbed solutions de­
cay in the L q-norm at the same rate as free solutions pro­
vided q is not too large. 

Corollary: Under the hypothesis of Lemma 3, 

Ilu(t)llq<ct -n(q-2)/2q, for 2<q<p + 1, 

where c depends on the same parameters as in Lemma 3. 
Proof Interpolate to get 

Ilu(t)llq<llu(t)II~-Ollu(tlll;+l> for OE(O,I), 

satisfying 1/ q = (1 - 0)/2 + 0 I( p + 1). An elementary 
computation shows 0 = (q - 2)(p + 1)lq(p - 1). Use of the 
decay in the L p + I-norm and the conservation of the L 2_ 

norm [Lemmas 3 and 2 (i)] establishes the corollary. • 

IV. CONCLUSION 

The nonexistence theorem precludes the development 
of a scattering theory in the case 1 <p< 1 + 2/n and n> 1. 
Current scattering theories demand that p be sufficiently 
large. It has just been proved (Tsutsumi and Yajima6

) that 
for a large class of data and 1 + 2/n <p there exist asymp­
totically free solutions. (If n>3, there is an additional upper 
bound restriction onp.) Hence, the nonexistence theorem is 
sharp. 

tW. A. Strauss "Nonlinear Scattering Theory", in Scattering Theory in 
Mathematical Physics, edited by J. A. Lavita and J-P. Marchand (Reidel, 
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3J. Ginibre and G. Velo, "Existence of Solutions and Scattering for the Non­
linear Schriidinger Equation," in Proceedings of the International Confer­
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Physics, edited by J. BaumgiirteI et al. (Teubner, Leipzig, 1978), pp. 320-
334. 
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We study the consequences of the existence of a one-parameter group of conformal motions for 
anisotropic matter, in the context of general relativity. It is shown that for a class of conformal 
motions (special conformal motions), the equation of state is uniquely determined by the Einstein 
equations. For spherically symmetric and static distributions of matter we found two analytical 
solutions of the Einstein equations which correspond to isotropic and anisotropic matter, 
respectively. Both solutions can be matched to the Schwarzschild exterior metric and possesses 
positive energy density larger than the stresses, everywhere within the sphere. 

PACS numbers: 04.20. - q 

I. INTRODUCTION 

In this paper we attempt to study space-times which 
admit a one-parameter group of conformal motions generat­
ed by a vector field 5 a, such that 

Lgap = t/!gaP, (1) 
5 

where the left-hand side is the Lie derivative of the metric 
tensor with respect to the vector field 5, and t/! is an arbitrary 
function of the coordinates. For t/! = 2 and perfect fluids we 
recover the self-similar solutions which have been extensive­
ly studied in the past. 1-5 

In the present work we generalize the discussion on self­
similar space-times; specifically: (1) we consider conformal 
motions with an arbitrary choice of the function t/! in Eq. (1); 
(2) instead of perfect fluids we shall consider anisotropic 
matter (principal stresses unequal). 

The use of general conformal motions, instead of ho­
mothetic motions (t/! = constant), allow us to find static and 
spherically symmetric distributions of matter which may be 
fitted to the exterior Schwarzschild metric.6 We shall see 
that for the case of homo the tic motions this fitting cannot be 
accomplished. 

The introduction of anisotropic matter is suggested by 
recent theoretical works on more realistic equations of state 
and stellar models,7.8 which indicate that some of these ob­
jects could have anisotropic pressures. Beside, it has been 
shown that some properties of anisotropic spheres may differ 
drastically from the properties of isotropic ones.9

-
14 Anisot­

ropy could be introduced by the existence of a solid core, by 
the presence of type P superftuid, or by the existence of an 
external field. Also, if the fluid is composed of two perfect 
fluids with different four-velocities, then the energy-momen­
tum tensor can be cast into the standard form for anisotropic 
fluids. 15 

In this paper we do not discuss the mechanisms for in­
ducing anisotropy. Rather we concentrate on the following 
two questions: (a) what kind of constraints on the hydrody-

')Postal address: Apartado 80793. Caracas 1080A. Venezuela. 
b) Centro de Fisica. I. V.1. c., Apdo. 1827. Caracas 1030-A. Venezuela. 

namical variables does the existence of the conformal motion 
impose? (b) How to generate exact solutions for anisotropic 
matter? 

Discussion on the first question, as well as the conven­
tions used, are given in Sec. II. In Sec. III we exhibit two 
solutions for both perfect fluid and anisotropic matter. Fin­
ally the results are discussed in the last section. 

II. CONFORMAL MOTIONS AND THE 
HYDRODYNAMICALVARIABLES 

Let us consider a space-time whose metric tensor g/lV is 
a solution of the Einstein equations for a distribution of mat­
ter represented by an anisotropic fluid. Further we shall as­
sume that the space-time under consideration admits a one­
parameter group of conformal motions [i.e., the metric 
satisfies Eq. (1)]. 

To find out the constraints that our assumptions impose 
on the hydrodynamical variables, let us start by taking the 
Lie derivative of Einstein equations 

L (R/lv - !g/lVR ) = - 81TL T/lv' (2) 
5 5 

where the energy-momentum tensor can be given as 

T/lv = (p + P1)U/l Uv - P1g/lv + (P - P1 )X/lX v' 
where U/l is the four-velocity, ~ is a unit spacelike vector 
orthogonal to U/l,p is the energy density, Pis the pressure in 
the direction of X /l' and P 1 is the pressure on the two-space 
orthogonal to X /l . 

The Lie derivative of the energy momentum tensor T/lv 
can be written as 

L T/lv = [L P + L P1 + t/!( p + P1)] 
5 5 5 

X U/l Uv - g/lv(LP1 + t/!P1) 
5 

+ [~P-~Pl +t/!(P-P1)]X/lXV, 

where we have used the expressions 

L U/l = (t/!/2)U/l' 
5 

L X/l = (t/!/2)X/l' 
5 

(3) 
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which follow from the symmetry of the problem. In fact, 

L ds 
LUI-'=L dxfL = _UI-'_S_, (4) 
S sds ds 

where we have used 

L dxl-' = 0 (5) 
s 

(see Ref. 16, p. 89). On the other hand, 

L ds2 = 2 ds L ds = Lgl-'v dxl-' dxv = t/J ds2
• (6) 

s s s 
Feeding (6) back into (4) we get 

L UI-' = - (t/J/2)U1-' (7) 
s 

or, for the covariant components, 

L UI-' = (t/J/2)Uw 
s 

(8) 

In a similar way, the expression for LX' can be obtained. 
s 

Next, let us calculate the left-hand side of Eq. (2). For 
the Lie derivative of the Ricci tensor we have 

(9) 

(see Ref. 16, p. 52), where V denotes covariant differenti­
ation. Using (1) in (9) we get 

L RI-'v = V v VI-' t/J + ~I-'v[lp, 
s 

where 

~g"PV CT Vp t/J. 

(10) 

Next, for the Lie derivative of the Ricci scalar R we obtain, 
using the expression 

L g"fl = - g"PgflCT L g CT 
ssP 

and (10) 

L R = L (gI'vRl-'v) = 30t/J - t/JR. 
s s 

Thus Eq. (2) reads 

VI' V v t/J - ~I'v[lp 

= -81T{[~P+~Pl + t/J(p +Pl )] 

X UI'UV - gl'v(L Pl + t/JPl ) 
s 

+ [~p - ~ Pl + t/J(P - Pl ) ]XI'X v} 

or, taking projections, 

3275 

UI' UV VI' V vt/J - A = - 81T(Lp + t/Jp), 
s 

X'XVVI' Vvt/J + A= - 81T(LP+ t/JP), 
5 
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(11) 

(12) 

(13) 

(14) 

SI' SV VI' V vt/J +!Dt/J = - 81T(L Pl + t/JPl ), (15) 
s 

- [lp = - 81T(L T + t/JT), (16) 
s 

where T=T~ = P - 2Pl - P, and SI-'is a unit spaceIike vec­
tor orthogonal to X' and UI'. 

Thus the transformation properties (the Lie derivatives) 
of the hydrodynamical variables are determined by the ex­
pressions (13)-(16). Moreover, there is one case, for which a 
specific equation of state for the stresses and the energy den­
sity appears as a consequence of the conformal motion. We 
have in mind the so-called special conformal motions. 17 For 
this subgroup of the conformal motions, which includes the 
homothetic motions as a special subcase, the function t/J sati­
fies the condition 

Vv VI't/J = O. 

In this case, it follows at once from (13)-(16), that 

Lp+t/Jp=O, 
s 

LP+t/JP=O, 
s 

LT+ t/JT=O, 
s 

(17) 

(18) 

(19) 

(20) 

(21) 

Also it is easy to prove that the following law of conser­
vation holds 

(22) 

In fact, developing the left-hand side of (22) and using the 
Bianchi identities, we get 

V (RI'f:V) = 1 aR~v+Rl'vV f: I' v~ l ax I'~V· (23) 

Then using (20), the Einstein equations, and 

V v51' + V 1-'5v = t/Jgl'v 

we obtain (22). 
We shall further restrict our special conformal motions 

to two specific subcases, namely (a) the vector field 51' is 
collinear with X I' (i.e., 5 I-' = AXI', A being an arbitrary func­
tion of the coordinates); (b) the vector field 5 I-' is spaceIike 
and orthogonal to U I' and Xl'. 

Let us consider the first case. Using the Einstein equa­
tions and the fact that 51-' = AX', we get 

R ~5 v = 81T51'( - Pl + pl2 + P 12). (24) 

Taking divergence of (24), using the expressions (18H21), 
the definition of the Lie derivative of a scalar, and 

VI-'sl' = 2t/J, 

we finally obtain 

VI' (R ~5 '1 = 81T1/J(p/2 + P 12 - Pl ). (25) 

Now, since the left-hand side of (25) vanishes, according to 
(22), then 

p= 2Pl -Po (26) 

Thus the relationship between the stresses and the density is 
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given in a unique way by Eq. (26), provided the space-time 
admits a one-parameter group of special conformal motions, 
with the vector field S!-' parallel to X!-'. Observe that for per­
fect fluids (P 1 = P), the equation of state becomes 

P=p. (27) 

This equation of state has been widely used in general 
relativity to obtain stellar and cosmological models for ultra­
dense matter.3 ,18-2l 

Let us now consider the case when 

saUa = saXa = O. 

Then from the Einstein equations we get 

R ~sy = (81T/2)s!-'(P - Pl· 

(28) 

(29) 

Taking divergence of (29), and using the conservation law 
(22) and the expressions (18), (19), we obtain 

P=p. (30) 

No constraint involving the tangential pressure Pl was 
found in this case. 

Thus for perfect fluids we get again the stiff equation of 
state, pressure equal to the energy density. 

Let us now see what kind of constraints are derived 
from the transformation law of the four-velocity [Eq.(8)]. 

Using the definition of the Lie derivative of a covariant 
vector, we have 

(31) 

or, from the fact that sa and U a are orthogonal to each 
other, 

L Uy =sa(VaUy - VyUa ). 
5 

Let us now introduce the tensor y!-'y, as 

(32) 

Y!-'y =g!-'y - U!-' Uy, (33) 

which defines the projection operator onto the three-space 
quotient to the streamlines. 

We can now define the kinematic quantities which 
characterize the streamlines, they are the acceleration 

a!-'= uaVaU!-', 

the expansion 

e=v!-'u!-', 

the shear 

u!-'y =r;: ~{V(aUPI -!eYaP}' 

and the vorticity bivector 

w!-'y = r;: ~V[a Up ]. 

(34) 

(35) 

(36) 

(37) 

(Round brackets and square brackets between the indices 
denote symmetrization and antisymmetrization, respective­
ly.) It follows from these definitions that 

V y U!-' = a!-, Uy + w!-'y + u!-'y + !ey!-'y. (38) 

Feeding (38) back into (32) and comparing the result with (8), 
we get 

L Uv = - saaa Uy + 2s awva = (tf;/2)Uv' (39) 
5 

Contracting this last equation with U v, it follows that 
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tf;= - 2avSv 

which implies, using (39) again, that 

S aWay = O. (40) 

This relation is valid for all kind of conformal motions 
provided sa is orthogonal to ua. 

III. SOME EXACT SOLUTIONS FOR STATIC AND 
SPHERICALLY SYMMETRIC DISTRIBUTIONS OF 
MATTER 

In this section we shall assume that the metric tensor 
not only admits the one-parameter group of conformal mo­
tions but also is static and spherically symmetric. In the usu­
al Schwarzschild coordinates the line element may be writ­
ten as 

ds2 = A 2(r)dt 2 _ B 2(r)dr _ ride 2 + sin2e d¢ 2) (41) 

and in comoving coordinates we may choose 

U!-'( UO,O,O,O), ~(O,XI ,0,0). 

Since U!-'U!-, = - ~X!-' = 1, then 

UO = 1!A (r), Xl = 1!B(r), 

and the components of the energy-momentum tensor are 

Tg=p, T:=-P, n=Tj=-Pl . 

It is easy to prove that by virtue of the spherical symme­
try and the independence of the metric tensor on the timelike 
coordinate the most general form of S a is 

(42) 

where A is an arbitrary function of r. 
Now, the corresponding field equations are given as 

81TP=_1_(2A' +~)-~ (43) 
B2 Ar r r' 

81TPl = ;2 {AA" _A~!' ++(~/ - ~/)}, (44) 

81Tp = _1_( 2B / _~) + ~ (45) 
B2 Br r r 

(primes denote differentiation with respect to r). 
The functions A and B are further restricted by the con­

dition (1), which implies, in our case 

A (r) = Clr, 

B (r) = 2Cz/tf;, 

A = Czr, 

(46) 

(47) 

(48) 

where Cl and C2 are two constants, and we have used (41) 
and (42). Feeding (46)-(48) back into the field equations (43)­
(45) we get 

81TP = 3tf;2 1 _~, 
4C~ r r 

tf;2 {2tf;' 1 } 81TPl = -- -- + -.-:2 ' 
4C~ rtf; r 

81TP=~_L{2tf;' +~}. 
r 4C~ rtf; r 

(49) 

(50) 

(51) 

Thus, different choices of the function tf; will lead to 
different classes of solutions with the symmetry properties 
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specified above. If one desires to match any of those solu­
tions to the exterior Schwarzschild metric on the boundary 
of the source. then the radial pressure should vanish for some 
finite value of the radial coordinate (say r = ro). and the func­
tionsA (r) andB (r) should be continuously joined to the corre­
sponding values of the vacuum Schwarzschild metric.6 

Thus, 

A 2(ro) = C~ ~ = 1 - 2M Iro, (52) 

2 4C~ 
B (ro)=--=----

t/l(ro) 1 - 2M Iro 
(53) 

(whereM is the total mass), whereas from the vanishing pres­
sure condition we get 

t/l(ro) = 4C~/3. (54) 

Combining (53) and (54) we get 

M Iro = j. (55) 

Furthermore. this value for the ratio M Iro may be obtained 
just by integration of the energy density, given by (51), over 
the sphere of radius r o. in fact 

M = 41rrp dr = r - - (21/1t// r + t/l) dr i
To iTO { II} 

o 0 2r 8C~r 

or 

M = ro - -- (t/lr), dr. 1 iTO 
2 8C~ 0 

Assuming tP(0) < 00, we get 

M = rol2 - (l/8C~)t/l(ro)ro, 

and using (54) in (58) we finally obtain 

Mlro=!' 

(56) 

(57) 

(58) 

Two main conclusions follow from the results above. 
(a) All solutions, for any choice of the function 1/1 

(bounded in the interval 0:::;; r:::;; ro) will have the same gravi­
tational potential on the boundary, provided the boundary is 
a vanishing pressure (radial) surface. 

(b) The existence of the vanishing pressure (radial) sur­
face ensures the fulfillment of the condition (53). Further­
more. since the condition (52) may always be satisfied by an 
appropriated choice of the constant CI • we can conclude that 
the existence of the vanishing pressure surface ensures the 
matching of any of the solutions to the vacuum Schwarzs­
child solution on the boundary of the sphere. 

Let us now specialize the choice of 1/1. 

A. 1/1=2 

In this case we get 

p=_1 {~_I}~. 
817" C~ r 

Pi = l/817"C~r. 

p=_l {1 __ 1 }~. 
817" Ci r 

and for the metric functions 

A = Clr. B = Cz. 

Next. from (59)-(61) it follows that 
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(59) 

(60) 

(61) 

(62) 

p = 2Pi -P, (63) 

which was to be expected according to the precedent section 
(1/1 = 2, defines a special conformal motion and t P = AX'). 
The solution given by (59)-(62) is the generalization to aniso­
tropic matter of previously known solutions, I,Z and is a spe­
cial case of one of the Bayin solutions. 13 When the constant 

Cz is chosen to be C2 = ..fi, matter becomes a perfect fluid 
and 

P=Pi =p. 

Finally, observe that the solution above cannot be matched 
to the exterior Schwarzschild metric, as it can be seen from 
the fact, that the pressure (radial) does not vanish for any 
finite value of the radial coordinate. 

B. The perfect fluid solution 

One important point emerging from Eqs. (49)-(51) is 
that there exists only one choice of the function 1/1 (which 
includes 1/1 = 2, as a special subcase) for which there exists a 
perfect fluid solution. In fact, from the condition 

P=Pi 

and using (49) and (50) we get the equation 

rt/J1/I' + 2C~ - t/l = 0, 

whose general solution is 

t/l = C~(Cr + 2), 

(64) 

(65) 

where C is a constant. For C = 0; C ~ = 2, we recover the 
1/1 = 2 subcase mentioned above. 

If we now demand the radial pressure to vanish for 
some finite value of the radial coordinate (say r = ro), then 
we get from (49) and (65) 

~ = - 2/3C. C <0. (66) 

We can now write the expressions for the pressure, the den­
sity, and the line element 

(67) 

I {I I } 
P=g; 2r+2~' (68) 

dsz = C Z r dt Z _ 4 dr 
1 (Cr+2) 

- r(d8 Z + sinz 8 d¢J Z) (0:::;; r:::;; ro) (69) 

from which it can be seen at once that 

(70) 

As it was shown above the total mass of the sphere will 
be 

M=rol3. 

Thus it will be less compact than the interior Schwarzschild 
sphere for which 

M Iro = 0.44. (71) 

Finally observe that the singular surface r = - 2/C in 
the line element (69) is outside the sphere, whose radius is 
given by Eq. (66). 
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C. An anisotropic solution 

As we have just seen the perfect fluid case occurs when­
ever the function t/J is chosen according to the expression 
(65). Thus, in principle, there exists an anisotropic solution 
for any other choice of the function t/J. 

Here, we shall give one example, whose physical prop­
erties are reasonable and which possesses vanishing pressure 
surface. 

Let us take 

til = C~(Cr + 2) + C~H, (72) 

where H is a constant which measures the anisotropy. Feed­
ing (72) back into (49H51) we get 

81rP=-C+ -+- -3 (3H I) I 
4 4 2 r' 

(73) 

3 (H I) I 
81rP1 =4 C + 4+2 r' (74) 

81rp = _ 2. C + (~ _ H)~ 
4 2 4 r' (75) 

and for the radius of the sphere 

";'0 = - ~(l + 3H) C < 0 
3C 2' 

(76) 

In order to ensure the positiveness of the energy density 
and the stresses, we have to restrict H to the interval 

(77) 

Also, in that interval the energy density will be larger than 
the stresses. As in the perfect fluid case the function t/J van­
ishes for a value of the radial coordinate which is bigger than 
70, 

IV. CONCLUSIONS 

We have seen so far that, under the assumptions of Sec. 
II, the existence of a one-parameter group of conformal mo­
tions introduces specific restrictions on the hydrodynamical 
variables. Furthermore, for the case of special conformal 
motions, the stiff equation of state (pressure equal to the 
energy density) is singled out in a unique way, provided the 
vector field sa is orthogonal to the four-velocity. So far we 
do not know whether this link between the stiff equation of 
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state and the group of special conformal motions is "casual" 
or if there is any "deeper" physical meaning behind it. 

Concerning the solutions presented in Sec. III, they 
could serve as initial (or final) configurations in a self-similar 
evolution scenario. They share reasonable physical proper­
ties (positiveness of the energy density and stresses, energy 
density larger than stresses) and possess vanishing pressure 
surfaces. We would like to stress the fact that the gravita­
tional potential at the surface will be the same for all solu­
tions, provided the boundary is a vanishing pressure surface. 
We recall that for others' previously known anisotropic solu-
t · II 13 14 h . M/ d d h . Ions, . . t e ratIO 70 epen son t e degree of amsot-
ropy, and it can approach the limit value 1/2 as close as one 
desires, provided large amounts of anisotropy are allowed. 

Finally we would like to stress the point, that for any 
choice of t/J different from (65) and (72), different anisotropic 
solutions could be obtained. 
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In this article we analyze a particular class of anisotropic cosmological models, the Kantowski­
Sachs models, in the presence of a nonzero cosmological constant A. We study them qualitatively 
by means of autonomous systems with two and three dimensions. The plane autonomous system 
gives a new class of empty Kantowski-Sachs cosmologies, with A > 0 and A < O. We find two new 
types of singularity points. The autonomous system with three dimensions yields a set of solutions 
of nonzero measure becoming isotropic in an infinite cosmological time. 

PACS numbers: 04.20. - q, 98.80.Dr 

I. INTRODUCTION 

During the last fifteen years, spatially homogeneous 
cosmological models belonging to the Bianchi class have 
been studied in the framework of general relativity.I-3 An 
exceptional case to these cosmologies was discovered by 
Kantowski and Sachs.4 The isometry group for these models 
contains a three-parameter Lie group G3 whose orbits are 
two-dimensional. The curvature of such an orbit is constant 
and positive. An improved version of the proofs of these 
statements has been given by Collins.5 He analyzes the Kan­
towski-Sachs cosmologies containing a perfect fluid with a 
zero cosmological constant. The field equations can be trans­
formed in this case into a plane autonomous system. This 
permits an easy qualitative study of the evolution of the Kan­
towski-Sachs cosmological models. This method has been 
applied to more types of Bianchi models.6--8 

In this article we introduce a further parameter, the 
cosmological constantA, which gives rise to a three-dimen­
sional autonomous system when we consider nonempty 
Kantowski-Sachs models containing a perfect fluid with an 
equation of state of the form p = (r - 1) p, where p is the 
density of matter, p the pressure, and r a constant whose 
values lie in the range 1<r<2. We will derive this three­
dimensional system in Sec. II below, and discuss the singular 
points at finite distance that it exhibits. A more general re­
sult of the geodesic incompleteness of the Kantowski-Sachs 
models than that presented by Collins5 can be given. In fact, 
for a null or negative cosmological constant, these models 
have a past or future singularity of the cigar, pancake, barrel, 
or point-type. 

When we consider only empty Kantowski-Sachs mod­
els in the presence of a cosmological constant, our three­
dimensional autonomous system reduces to a plane one. We 
will study extensively this case in Sec. III. 

It is the simultaneous presence of matter and of a cos­
mological constant which leads to a three-dimensional au­
tonomous system. The latter will be studied in Sec. IV. An 
interesting result emerges (Sec. V), namely the existence of a 
set of nonzero measure of Kantowski-Sachs solutions to the 
field equations which approach isotropy in an infinite cos-

a) Present address. 

mological time, contrary to a claim made by Collins and 
Hawking,9 who did not consider the influence of a cosmolo­
gical constant. 

Finally, the theorems necessary for the study of our 
three-dimensional autonomous system are mentioned in the 
Appendix. 10--12 

II. QUALITATIVE ANALYSIS 

The Kantowski-Sachs metric4 takes the form 

ds2 = dt 2 _ X2(t) dr _ y2(t )(dO 2 + sin2 0 dtfJ 2), (2.1) 

in the coordinates (t, r, 0, tfJ ), where t is the cosmic time coor­
dinate, r a radial coordinate, and 0, tfJ the usual spherical 
coordinates. HereX (t ) and Y (t ) are two unknown functions of 
t. Einstein's field equations with a cosmological constant A 
can be written as follows ( p and p being the fluid parameters 
described above): 

2 XY + (1 + Y2) _ A = 
XY y2 p, (2.2) 

2 Y + (1 + Y2) -A = _p 
y y2 ' 

(2.3) 

Y X XY -+-+--A=-p. 
y X XY 

(2.4) 

A dot in these equations denotes differentiation with respect 
to t. 

By using the volume expansion 0 = XX -I + 2IT- 1 

and the shear (7 = 3 - 1 12(XX - 1 - yy - I), we can express the 
field equations as follows: 

0+ 3- 10 2 + 2~ + 2- I(p + 3p) - A = 0, 

II + (70 - 3-1/2y-2 = 0, 

3- 10 2 - ~ + y-2 -A =p. 

(2.5) 

(2.6) 

(2.7) 

Equation (2.5) is the well-known Raychaudhuri's equa­
tion in the case of a perfect fluid and a nonzero cosmological 
constant. We shall analyze Kantowski-Sachs models for 
which the pressure p and the matter density J.t of the perfect 
fluid are related by the barotropic equation of state 
p = (r - 1) p. The values of the constant r lie in the range 
1 <r<2. We shall use the variables IJ (t) and .8 (t) instead 
of X(t) and Y(t), defined by X=exp( -IJ +.8) and 
Y = exp( - IJ - .8 12). The time variable will be IJ and a 
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prime will denote differentiation with respect to n. We then 
introduce quantities measuring respectively the dynamical 
importanceoftheshear,i.e.,p' = - (2VJ u)/O,andthedyn­
amical importance of the fluid, i.e., x = 3/-1,/0 2 = /-l13iJ 2, as 
well as a third quantity z = 3xl/-l. 

These definitions allow us to reexpress the field equa­
tions (2.2H2.4) together with the conservation equation 

it + ( /-l + p) 0 = 0 (2.8) 

in the form of a three-dimensional autonomous system and a 
constraint equation, with three dependent variables p " x, z, 
and with n as the independent variable. 

Equation (2.2) becomes 

p ,2 + 4x - 4 + ~ Az 

= (~ iJ 2) exp(2.fJ + {3 ). (2.9) 

By eliminating iJ from (2.3) and (2.4) and substituting the 
expression of the exp(2.fJ + {3) term obtained from (2.9) we 
have 

pIt = !{3'[ 4 - p,2 - (3y- 2)x + j Az] 

- ! [ 4 - 4x - {3 '2 - ~ Az] . 

The elimination of /3 in (2.3) and (2.4) yields 

(2.10) 

- 6iJ + 9iJ 2 + a iJ 2 - 3A + exp(2.fJ + P ) = - 3p. (2.11) 

By using (2.8) and (2.9) we get 

x' = x[(3y - 2)( I - x) - p,2 + 2AzI3]. (2.12) 

Differentiation of z with respect to n gives 

z' = - 2z[1 + !(3y- 2)x + !P,2 - AzI3]. (2.13) 

Equations (2.10), (2.12), and (2.13) form a three-dimensional 
autonomous system of ordinary differential equations. The 
qualitative behavior of the solutions will be drawn in the 
(x, {3 ',z) phase space. The region of interest is given by (x > 0, 
z> 0, and {3 ,2 + 4x - 4 + ~ A z> 0). 

The singular points at finite distance, also called critical 
points, i.e., the points (x, {3 " z) where the right-hand sides of 
the system vanish simultaneously, are different according to 
the constant y, or do not exist (as real numbers) according to 
the value of the cosmological parameter A. By taking ac­
count of the physical region we have the situation represent­
ed in Table I. The study of the three-dimensional autono-

TABLE I. This table summarizes all critical points in the two cases: I, r < 2 
and r = 2. In the first case we have divided the points according to their 
appurtenance to the x- or f3 '-axis, or ( f3', z) plane when A > O. In the second 
case there is a continuous line of critical points in the (x, f3 ') plane. There are 
no (real) critical points in the (f3 " z) plane when A,O. 

r=2 
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(1,0,0) 

(0,2,0) 
(0, -2,0) 

(0,0,3/A) 
(0, - 2,9IA) 

{I,O,O) 

(0,2,0) 
(0, -2,0) 

(z = 0, 4 - 4x - f3 ,2 = 0) (z = 0, 4 - 4x - f3 '2 = 0) 

(0,0,3IA) 
(0, - 2,91A) 
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(0,-2,.9) 

" 

r=2: A>O 

(0.-2. ~) 

(0.2,0) 

r= 2; A <0 

FIG. 1. We have indicated the region of physical interest for the three-di­
mensional autonomous system, as well as the singular points at finite dis­
tance according to the value of r and of the cosmological constant A. 
Striped parts are outside the region of physical interest. 

FIG. 2. Qualitative description of the evolution of the empty Kantowski­
Sachs models when A > O. Each curve represents the evolution of a model 
for a fixed set of initial conditions. The variable f3' = - 2v'3(u 18 ) measures 
the relative dynamical importance of the fluid shear. The associate types of 
arrows indicate the entire course of evolution. The time reverse is also possi­
ble. 
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FIG. 3. Qualitative description of the evolution of the empty Kantowski­
Sachs models when A < O. 

mous system can then be subdivided into four different 
cases: (1<r<2, A >0); (1<r<2, A <0); (r = 2, A >0); and 
(r = 2, A < 0). We have represented the singular points in 
Fig. 1. 

When the cosmological constant vanishes, we have a 
plane autonomous system in the variables x, f3 I. It has been 
studied in detail by Collins.4 By setting x = 0 in (2.10), (2.12), 
and (2.13) we obtain a new autonomous system 

and 

Z' = - 2z[1 + ! f3' 2 
- Az/3]. (2.15) 

It describes empty Kantowski-Sachs models in the presence 
of a cosmological constant. The region of physical interest is 
given by (z > 0, f3 12 + ~ Az - 4> 0) and the singular points at 
finite distance according to the value of A are 
( f3 I = ± 2, z = 0), (f3 I = 0, Z = 3/ A), and (f3 I = - 2, 
z = 9/A) when A >0, and (f3' = ± 2, z = 0) when A <0. 

In his article,5 Collins has shown that all perfect-ftuid­
filled Kantowski-Sachs models are geodesically incomplete 
both to the future and the past. This theorem can be general­
ized to negative values of A. 

III. PLANE AUTONOMOUS SYSTEM FOR EMPTY 
KANTOWSKI-SACHS MODELS WITH A 
COSMOLOGICAL CONSTANT 

In order to study qualitatively the plane autonomous 
system (2.14) and (2.15) we examine the behavior of integral 
curves in the neighborhood of the critical points at finite 
distance as well as at infinity and we join the two regions. 

The critical points at finite distance are simple. 13,14 Two 
of them, (2,0) and (0,3/ A ), are improper nodes; the point 
( - 2,0) is a proper node, and the point ( - 2,9/ A ) is a saddle 
point. 
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FIG. 4. We indicate the region of physical interest which is outside the 
striped part in the neighborhood of the critical point (0,2,0) for A > 0 and 
A < O. Here el ,e2,e3 are the three characteristic vectors. 

The two Poincare transformations ( f3' = s- I, Z = US-I) 

and ( f3 ' = vs- I , Z = S-I) enable us to study the critical points 
at infinity. In the variables (u, s) we have the simple singular 
point (0,0) whose topological structure is a saddle point. On 
the z-axis at infinity, we find (v = 0, s = 0), which is a double 
singular point. The theory is well established for such multi­
ple equilibrium states.13 We find three directions of ap­
proach (in polar coordinates) "" = 0, arctan ( - !), and 1T 

when A > 0, and two directions"" = a and 1T when A < O. 
The global picture is given by the integral curves of the 

system (2.14) and (2.15) drawn in Figs. 2 and 3. In each dia­
gram there are integral curves starting at a finitely distant 
singular point (in the variables f3' and z), extending to infi­
nitely large values of z and coming back to another singular 
point at finite distance. When A > a we have such behaviors 
as well as other ones like curves which are time symmetric 
and curves for which we do not have z ---+ 00. The arrows 
depict the entire course of evolution, but the time reverses 
are also possible. 

The critical point ( f3' = 2, z = 0) is a "cigar" singularity 
type, whereas (f3' = - 2, z = 0) is a "pancake" singularity. 
The Raychaudhuri equation (2.5) tells us that at these points 
the shear u and the expansion () are dominant and A is negli­
gible. The point (0,3 A -I) is an "infinite" singularity, so 
called because X ---+ 00 and Y ---+ 00 from the metric point of 
view, and as autonomous system it is a singular point. The 
quantities A and () are dominant and u is negligible. The 
saddle point ( - 2,9 A -I) is a "pancake" singularity in one 
direction, and an "infinite barrel" (X ---+ 00, Y ---+ const) in 
the other direction, which is a new type of singularity; u, (), 
and A are equally important. The asymptotic behavior of all 
these quantities as a function of t is given in Table II. 

IV. NONEMPTY KANTOWSKI-SACHS MODELS WITH A 
COSMOLOGICAL CONSTANT 

We will follow for the study of the three-dimensional 
system the same pattern as in two dimensions. All the critical 
points at finite distance are simple. The point (x = 0, f3' = 2, 
z = 0) is a node; the characteristic roots A = 3y - 6, 
J-l = - 2, v = - 6 are negative when I <.y < 2. The orbits 
starting at a sphere (see the Appendix) centered at (0,2,0) 
tend to this point for {} ---+ 00. We distinguish three cases: 
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3 
2A 

B 
/ (O,O,3/A) 

v (0,-2,0) I 

~---_u 

-3 

2A 

v (0,-2,0) 

FIG. 5. We indicate the singular points at infinity: (s = 0, U = 0, v;;,O) when 
~ > 0, and (~= 0, U =?, O,;;v,;; - 3/ A ) when A < O. Striped parts are out­
Side the regton of phYSIcal interest. 

l<.y<~: 1J-l1 < IA I < lvi, (4.1) 

y-4. -1' 1J-l1 = IA I < lvi, (4.2) 

~<y<2: IA 1< 1J-l1 < Ivl· (4.3) 

When y#~ we have the three characteristic vectors 
el = (1, - 1,0) e2 = (0,1,0), and e3 = (0, - 1,3/A) corre­
sponding to A, J-l, and v, respectively. When y = ~ we have an 
infinity of characteristic vectors in the plane (x, f3 '). The co­
ordinate system (X, Y,Z) with origin at the point (0,2,0) is 
associated with these vectors (see Fig. 4). 

In the case (4.1) there is a double infinity of orbits start­
ing at the sphere and tending to (0,2,0) alongside the vectors 
e2; in the case (4.2) we find a double infinity of orbits tending 
to (0,2,0) along the plane (X, Y); and in the case (4.3) we have a 
double infinity of orbits tending to (0,2,0) along the vector e I' 
These are all the orbits within the physical region tending to 
the critical point (0,2,0). 

The point (0, - 2,0) is also a node with characteristic 
roots A = 3y - 6 and J-l = v = - 6, all negative for 1 <. y < 2. 
The vector el = (1,1,0) corresponds tOA, and there is an in­
finity of vectors for J-l = vin the plane (f3', z). A double infin­
ity of orbits tends to (0, - 2,0) alongside the vector e I' 

The singular point (1,0,0) is a saddle point with 
A = - 3y + 2, J-l = 3 - ~y, v = - 3yand with correspond­
ing vectors e l = (1, - 2/(1 + ~ y),O), e2 = (0,1,0), 
e3 = (1,0, - 3/A). We find a simple infinity of orbits tending 
to (1,0,0) along the vector e l • All these results are valid for 
A > a and A < O. When y = 2 there is a continuous line of 
singular points in the plane (x, f3 '): (4 - 4x - f3,2 = O,Z = 0). 
In this case we have a simple infinity of orbits tending to each 
singular point along a characteristic vector in this plane. 

In the plane (f3', z) we have the singular point (0,0,3/A ) 
which is a node. The characteristic roots A = 3y, J-l = 3, and 
v = 2 have the corresponding vectors el = (1,0, - 3/ A), 
e2 = (0,1,0), and e3 = (0, - 1,3/2A) with A > a and I <.y<.2. 
There is a double infinity of orbits tending to (0,0,3/ A ) along 
the vector e3• 

Finally we have the singular point (0, - 2,9/A ) which is 
a saddle point with A = 3y, J-l = - 3, and v = 6. The corre­
sponding vectors are 
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_ ( (1 + y)(2 - y) 2 - Y ) 
e

l
- y[I2IA-(3/A)(3y-2)(I+y)/yl' 12/A-(3/A)(3y-2)(I+y)ly' -1 , 

e2 = (0, - A /4,1) and e3 = (0,0,1) with A > ° and 1 <y<2. There is a simple infinity of orbits tending to (0, - 2,9/ A) along the 
vector el for 1 <y < 2. When y = 2, thereis only one orbit tending to (0, - 2,9/ A) in every direction of the plane (e

l
, e

3
). 

We generalize to three dimensions the Poincare transformations used in Sec. III for the study of the critical points at 
infinity. Setting x = S-I, {3' = US-I, Z = vs- I we find the double singular points at infinity (s = 0, u = 0, v;;;.o) which are not in 
the plane ({3', z) (see Fig. 5). The general expression of the directions of approach (see the Appendix), not in the plane (s = 0) of 
the singular points (s = 0, U = 0, v = vol is given by 

{J = { 1 2(2 + (2A /3) vol - 3yvo } 
0), 3y _ 2 - (2A /3) Vo ' (3y - 2 - (2A /3) vof' (3y - 2 - (2A /3) vof . 

Notice that tan 4> = 0)1/0)2 is (3y - 2)/4 when Vo = ° and -! when Vo - 00, which corresponds to the two plane autonomous 
systems. We have tan 4> = 0, when Vo = ~ A with A > ° and tan 4> - 00 when Vo = - 3/ A with A < 0. The regions of physical 
interest for positive and negative values of the cosmological constant are indicated in Fig. 5. 

By analyzing the three surfaces {dx/ dfl = ° J, [d{3' / dfl = ° J, [dz/ dfl = ° J ' we obtain a global picture of the orbits. We 
distinguish four different cases, as we have seen in Sec. II. The first case divides into three subcases according to the value of y. 

WhenA > ° and 1 < y < 2 we have a double infinity of orbits starting at (0,2,0) and tending to (0, - 2,0), becoming tangent 
to the singular line at infinity with tan 4> = 0. There is a simple infinity which tends to the saddle point (1,0,0). Likewise we had 
a time symmetric orbit in the plane (x, {3) we have now a time symmetric surface of orbits, approaching the singular points at 
infinity with 4> = arctan 0)1/0)2' as long as vo<~ A. There is further a double infinity of orbits starting at (0,2,0) extending to 
infinity with ¢> = 1r and coming back to the same critical point. From the points (0, ± 2, 0) and (1,0,0) orbits start and tend to 
(0,0,3/ A ) as a double infinity with x, {3 " z being finite for the whole evolution. There is finally a simple infinity tending to 
(0, - 2,9/ A ). When y = 2 we have a simple infinity of orbits coming from each singular point in the plane (x, {3 ') and tending 
either to the singular line at infinity or to (0,0,3/ A ). From (0, - 2,9/ A ) comes a simple infinity for every characteristic 
direction which tends to the singular line at infinity. For A < ° and 1 <y<2, we have a global picture similar to the plane case 
when A = 0. The asymptotic behavior of the models around the singular points at finite distance is indicated in Table III. 

v. CONCLUSION 

We have carried out a detailed analysis of Kantowski­
Sachs models in the presence of a cosmological constant. 
Two new types of singularity points have been found, name­
ly, an infinite singularity (from the metric point of view and 
as an autonomous system) and an infinite barrel. 

One should notice, in particular, the models tending to 
(0,0,3/ A ) when A > 0. Their asymptotic behavior (see Table 

III) gives the same length scales X = Y = exp( + ~A /3 t) 
tending to infinity when t - + 00, whence these models 
become isotropic in an infinite cosmological time. There is a 
set of nonzero measure of such models when they come from 
(0,2,0) or (0, - 2,0), and a set of zero measure for those mod­
els coming from (1,0,0). The point (0,0,3/A ) is an infinite 
singularity (as defined above) and the Raychaudhuri equa­
tion (2.5) tells us that at this point the cosmological constant 
A and the expansion e are dominant whereas the shear a and 
the density of matter Il are negligible. The time variable n 
goes to - 00 (see Appendix) and Eq. (2.9) can be trans­
formed in order to give the cosmic time dependence of n, i.e., 

n = ± >iA /3. The average length scale 1= (Xy2)1/3 

= exp( - fl ) = exp( += ~A /3 t) shows then that for 
fl _ - 00 we have 1- 00 and t - + 00: the point (0,0,3/ 
A) is not a cosmological singularity, because it takes an infi­
nite cosmic time to get there. 

This class of Kantowski-Sachs models becoming iso­
tropic in the presence of a cosmological constant motivates a 
further study of three-dimensional systems in order to obtain 
more general results, in particular for the Bianchi cosmolo­
gical models. 
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APPENDIX: THEOREMS FOR THREE-DIMENSIONAL 
AUTONOMOUS SYSTEMS1O-12 

Consider a three-dimensional autonomous system. The 
definitions for the simple and multiple singular points are 
the same as for a plane one. When two of the three real 
characteristic roots A, Il, v in the case of a simple singular 
point have the same sign and the other one the opposite sign, 
we have a saddle point. If the three real characteristic roots 
have the same sign, we have a node. 

We analyze first a saddle point with the autonomous 
system in the form 

X'=,1X+f, Y'=IlY+g, Z'=vZ+h, (AI) 

wheref, g, h are the nonlinear terms of the system and where 
the singular point is at the origin of the coordinates (X, Y,Z ). 
The sign of v is denoted by a(v). We indicate only those 
theorems which are needed in this article. e, 4> intervening in 
these theorems corresponds to the angles in spherical coordi­
nates (X = r sin {} cos 4>, Y = r sin e sin 4>, Z = r cos {} ). 

Theorem 1: The autonomous system (AI) with A> 0, 
Il > 0, v < ° has (a) only one orbit tending to the origin with 

a(v) fl _ - 00 and {} 00 - lim {} = ° and only one orbit 
ufJ---+- 00 

with {} 00 = 1T", and (b) an orbit y satisfying the following prop-
erties: yand its projection on the plane (X, Y) are homeomor-
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phic to a circle, and every orbit starting at one point of y is 

tending to the origin with a( v) fl ~ + 00 and lim e 
un~+ 00 

= 1T'/2. 
Theorem 2: The autonomous system (AI) with A. i=J.L 

and IJ.L I < IA. I has an infinity of orbits starting from r with tP 00 

= - 1T'/2. There is only one with tP 00 = 0 and only one with 
tP 00 = 1T'. 

Theorem 3: The autonomous system (AI) with A. = J.L 
and with f,g = 0 (rl +£) has for every tPo E[0,21T'] only one 
orbit with tP 00 = tPo· 

We consider now a node for the same autonomous sys­
tem. 

Theorem 4: If the characteristic roots are all of the same 
sign, there is a sphere centered at the origin such that every 
orbit starting at its surface tends to the singular point with 
(Tfl~ - 00. 

Theorem 5: If the characteristic roots are such that 
I vi < IJ.L I.;;; IA. I, then every orbit which tends to the origin does 
go alongside the positive Z-axis or the negative one, except 
those orbits which start at an orbit y which is homeomorphic 
to a circle, as well as its projection on the plane (X, Y); in this 
case e 00 = 1T'/2. 

Theorem 6: If the characteristic roots are such that 
Ivl < IJ.LI < IA. I, then every orbit starting at ytends to the ori­
gin with tP 00 = ± 1T'/2, except only one with tP <Xl = 0, and 
only one with tP '" = 1T'. 

Theorem 7: If the characteristic roots are such that 
Ivl < IA. 1 = IJ.LI, then for every tPo E ]O,21T'], there exists only 
one orbit starting at y, tending to the origin with tP 00 = tPo, 
whenf,g = 0 (rl + E) when r~ O. 

When we have a multiple singular point for the autono-
mous system 

dx· 
_I = /;(Xl' X2' x 3), i = 1,2,3, (A2) 
dfl 
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we define the direction of approach to the singular point (at 
the origin) as follows. 

Definition: Let !xi(fl); 1.;;;i.;;;3j bean orbit of(A2) and 1 
defined by /2 = ZMx/dfl f When !xi(fl)j tendstotheori­
gin for fl ~ 00 and when limn~oo Xi (11 )11 = Wi with! Wi I a 
nonzero vector, then we say that {Wi j is a direction of ap­
proach of the orbit to the origin. 

If I = 0 (r") when r~, we say that the multiple singu­
lar point of order n has a regular principal part, and in this 
case, the Wi are the roots of the equation 

1 an/; 
--Wi = ---' - (0) liI; ... wJ. 
n-l aXf· .. axJ 
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This paper formulates a statistical description of a collection of N identical classical particles that 
interact relativistically via linear fields in a fixed background space-time that admits a conformal 
timelike Killing field. Attention focuses upon the special cases of a simple scalar interaction and a 
linearized gravitation interaction which should suffice to model many systems of astrophysical 
interest. The fundamental object of the theory is a complicated distribution function that depends 
upon appropriate variables for both the particles and the fields. By assuming that, in a first 
approximation, this distribution factorizes into an infinite product of reduced distribution 
functions, one recovers the type of mean-field theory developed by such authors as Ipser and 
Thome. Alternatively, one may derive various exact and approximate relations which contain 
information about the interparticle correlations. 

PACS numbers: 04.20.Cv, 05.20.Gg, 98.80.0r 

I. INTRODUCTION 

Recently, Israel and Kandrup have developed a new, 
manifestly covariant approach to nonequilibrium statistical 
mechanics in classical general relativity which could be ap­
plied to the study of such problems as galaxy clustering or 
the dynamics of a collection of stars. 1--4 Although the for­
malism which they constructed is rather complicated in its 
details, the basic physical ingredients may be stated very 
simply. 

(i) Following the viewpoint developed by Hakim,5.6 it is 
argued that a collection of N gravitationally interacting par­
ticles may be characterized by an N-particle distribution 
function, defined in an 8N-dimensional phase space, which 
satisfies a collection of N conservation equations. 

(ii) By mapping the "true" physics-particles following 
geodesics in the "true" space-time manifold-onto a ficti­
tious "background" space-time, which may be chosen to sa­
tisfy some "average" field equations, one then obtains a use­
ful covariant notion of "evolution" in response to a 
"fluctuating gravitational force." 

(iii) It is assumed that the deviations between the true 
and background space-times are in some sense small, so that 
they may be described by linear field equations. 

(iv) It is assumed further that these gravitational forces, 
which derive from linear field equations, may be modeled by 
a direct interaction that involves only the coordinates and 
momenta of the various particles (one assumes, therefore, 
that incoherent radiative effects may be neglected). 

Given these four premises, it is straightforward to de­
fine a statistical mechanics for the system, and, in particular, 
to formulate various exact equations for appropriately de­
fined reduced distribution functions. Thus, for example, by 
introducing a preferred time coordinate, one can derive an 
exact closed equation for the evolution of the one-particle 
distribution function very much analogous to the sort of re­
lation that arises in a Newtonian theory.7 By implementing, 
in a suitable fashion, a relativistic analog of an "impulse" or 
"dilute gas" approximation, one is then led to a covariant 
analog of the standard Landau (or Fokker-Planck) equa­
tion. 1•4 

This approach, albeit a legitimate one, has the obvious 
disadvantage of failing to include from the outset explicit 
reference to the degrees offreedom of the gravitational field. 
The objective of ongoing research is, therefore, the develop­
ment of a more general, "field theoretic" approach which 
will embrace, in a natural way, these gravitational degrees of 
freedom. This can, for example, be done by introducing gen­
eralized coordinates and momenta for the fields, and by de­
fining as the basic object of the theory a more complicated 
distribution function involving both particle and field varia­
bles. 

Given the obvious desire for the formulation of a covar­
iant statistical description, it is of course natural to approach 
this general problem in terms of the theory of constrained 
Hamiltonian dynamics,8 as applied to general relativity by 
such authors as Kuchaf9 or Amowitt, Oeser, and Misner. 10 

This can (at least in principle) and should be done in a com­
pletely general context. It should, however, be clear that the 
problem simplifies enormously if the underlying space-time 
admits a preferred time coordinate, e.g., if one is concerned 
with astrophysical processes in the context of a Friedmann 
cosmology or if one is concerned with a cluster of stars that is 
nearly static. In this case, it would not seem all that unrea­
sonable to break manifest covariance by implementing the 
obvious 3 + I decomposition, and, indeed, one obtains 
thereby, equations of motion that are more easily tractable. 

For this reason, this paper is devoted to the general 
problem of formulating a statistical description of a many­
particle system interacting via linear fields in a conformally 
static background space-time, i.e., for a space-time that ad­
mits a conformal timelike Killing field. Attention will focus 
upon (il the linearized gravitational theory introduced by 
Israel and Kandrup l.4 and (ii) the simpler example of a scalar 
field which has been studied in a special relativistic context 
by such authors as Hakim5.6 and Kandrup.2 The case of the 
scalar field can, and will, be described without great difficul­
ties for an arbitrary conformally static space-time. The gra­
vitational interaction is made more complicated by the ten­
sorial character of the field and, therefore, for simplicity, 
attention will be restricted to the special case of a k = 0 spa­
tially flat Friedmann cosmology. A number of useful results 
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appropriate for gravitational interactions in a static, spheri­
cally symmetric space-time are implicit in the work of Ipser 
and Thornell and Kandrup.3 

At this stage, it is convenient to record the appropriate 
equations of motion for the gravitationally interacting sys­
tem in a form that is manifestly covariant. Let g~p denote the 
metric appropriate for the "true" space-time, in which the 
particles follow geodesics, and let gap denote the metric for 
the "background" space-time to which these trajectories are 
to be referred. The particle equations then take the forms I 

dxa pa 
-=-, 
dr m 

and 

(a,/3, ... = 0,1,2,3), (1.1) 

where r denotes the proper time of the particle (for the metric 
gaP)' r!1" and r ~~ denote, respectively, the Christoffel sym­
bols for the background and true space-times, 

(1.2) 

and the quantities pa , m, and ..:1 aP are to be viewed as func­
tions of the covariant momentum P a and the inverse metric 
gaP: 

pa gaPPfJ, m=( -It'YPI"Py)112, 

and ..:1afJ =gafJ + m-2papfJ · (1.3) 

These equations are derived from the equations of motion for 
a free particle in the true space-time by identifying space­
time points but rescaling momenta so as to preserve the mass 
shell constraints and cross sections of the tangent bundle. 
The quantity t>r;v will of course transform as a tensor and, 
therefore, it is clear that the "gravitational force" possesses 
an invariant geometric meaning. 

Granted that the difference betweeng~p andgaP may be 
treated as small, all the fields of interest will depend linearly 
upon the quantity 

haP (xl") g~p(xJL) - gaP (xl"). 

Thus, in the context of the linearized theory, 

t>r;v = V(p.hv)J. - !VJ.hI"Y' 

(1.4) 

(1.5) 

hl"Y being derived as a solution to the linearized field equa­
tion 

(1.6) 

Here t>GaP[h], the perturbed Einstein tensor constructed 
from hl"Y' takes the form l2 

t>G P = IV vPh I" + IV V hfJl" - IVI"V h P 
a 21-' a 2J.ta 2, p.a 

- IVPv h I" - h!tPR - It> fJ(VI"V h Y 2. aJl p.a 2a VJl. 

-VI"Vl"hyY-hJLYRJLv)' (1.7) 

where RI"Y and VI" denote, respectively, the Ricci curvature 
and the covariant derivative operator associated with gaP' 
and the quantity 

t>TafJ==.TafJ - [TaP 10 (1.8) 
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denotes the difference between the stress-energy sources for 
the true and background space-times. 

The equations of motion for the scalar interaction to be 
considered are very similar. In this case, the particle equa­
tions take the form2 

dr m 

and 

dPa I J. J. 
--=-raI"PJ.PI"-A..:1aJ.F, (1.9) 
dr m 

where A is a coupling constant, and the "force" P is con­
structed as the gradient of the scalar field (/> (xl" ): 

(1.10) 

This (/> is in tum assumed to satisfy an inhomogeneous wave 
equation of the form 

(UI) 

where P = Jim is the mass density, R is the scalar curvature, 
and n is an arbitrary numerical constant. The case n = ° 
corresponds to the minimally coupled field. The case 
n = - i is conformally invariant. 

The program of this paper is as follows. Section II for­
mulates the basic equations for the scalar interaction in an 
arbitrary conformally static background space-time in a 
fashion that exploits the natural 3 + 1 decomposition. Sec­
tion III then constructs a statistical mechanics appropriate 
for the interacting system. A particle-field distribution func­
tion is defined as a probability density in a suitably con­
structed infinite-dimensional phase space, an infinite-di­
mensional Liouville equation is formulated, and it is seen 
that, in the most naive possible approximation, one recovers 
a relativistic analog of the ordinary self-consistent field ap­
proximation. Section IV examines various properties of in­
terest for the one-particle mean-field description. Section V 
then considers an analogous description for a gravitationally 
interacting system in a k = ° Friedmann cosmology. 

A final summary of notation is in order. Unless noted 
otherwise, all conventions follow Misner et aJ. 12 This implies 
a metric with signature ( - , + , + , + ). Greek letters a,/3, ... 
label space-time indices 0,1,2,3, whereas lower case Latin 
letters a, b, ... label spatial indices 1,2,3. CapitallettersA,B, ... 
label the field oscillators introduced in Sec. II. Lower case 
letters iJ, ... label individual particles. The quantities t and YJ 
denote, respectively, the "true" and "conformal" times, 
n (YJ) is the conformal factor, so that dt = n dYJ, and 
Yl"y(xQ

) = n -2(YJ)gl"y(xa ) denotes the conformally static 
metric. 

II. A SIMPLE SCALAR FIELD 

Granted that the space-time is conformally static, the 
line element can of course be taken to be of the form 

ds2 = gl"Y dxl" dxv = n 2(YJ)YJLv(xC )dxl" dxV 

= n 2(YJ)(YT/T/dYJ2 + Yab dxa dxb), (2.1) 

where Yab (XC) denotes the time-independent spatial metric. 
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The starting point for the analysis is the total action S, 
for the system of particles and fields, which is assumed to be 
of the form 

S= - i~Jd1"i[m + ..1,<1> (x)] 

- Jd 4X( - g) 1 12_1_(v <1>VI'<1> + nR<1> 2) 
817" I' 

- ~m Jd1"i - Jd 4x( _g)1/2 

X [~<1> + ~VI'<1>VI'<1> + nR<1>2)). (2.2) 
m 817" 

Here m denotes the mass of the N identical particles, A is a 
coupling constant associated with the scalar field <1>, 1"i de­
notes the proper time of the ith particle, and, in analogy with 
the electromagnetic interaction, the scalar density p may be 
written as 13 

(2.3) 

where {) (3) denotes a three-dimensional Dirac delta distribu­
tion. 

Given this action and the space-time metric gl'v of Eq. 
(2.1), the Lagrangian for any given particle is of course 

Lp = - (m + ..1,<1»( - gT/T/ - gabvavb)1/2 

- (m + A<1»fl ( - YT/T/ - YabVavb)1/2, (2.4) 

where va =dxa Id'l] denotes the ordinary three-velocity. As­
sociated with this Lagrangian is the canonical three-momen­
tum 

(2.5) 

(2.6) 

where yab is defined so that yab Y be = {)a e' It will be observed 
that, in Eqs. (2.5) and (2.6), spatial indices are raised and 
lowered with the conformal metric Yab' 

Given these relations, one can immediately identify the 
particle Hamiltonian 

H = ( - YT/T/)1/2[(m + ..1,<1> ffl 2 + yab17"a17"b] 1/2 

- (m +A<1»flYT/T/ 
(2.7) -17"71' 

( - YT/T/ - Yab Vavb )1/2 

Here the introduction of the notation H = - 17"" is to be 
viewed simply as a convenient definition, to assist with the 
summation convention. As, e.g., in the paper of Balescu and 
Kotera,14 it is not to be assumed that 17"" transforms as the 
component of a four-vector. One may also observe for future 
reference that 

d1" -fl2y",,(m+A<1»_n( ab)1/2 
- = - u - YT/" - YabV V . 
d'l] 17"" 

(2.8) 
It follows at once from the Hamiltonian (2.7) that the particle 
equations of motion take the forms 
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and 

d17"a = d1" [ 1 17" 17" J ,p _ A J <1>] 
d'l] d'l] 2!J2(m+A<1» I' v ar a' 

(2.9) 

where Ja =JIJxa denotes an ordinary partial derivative. 
Related to 17"1' is the "physical" momentum PI' defined 

by the relation 

PI' -(1 +A<1>lm)-I17"I" (2.10) 

This PI' coincides with the PI' entering into the covariant 
equation (1.9). If, however, one adheres to the convention of 
raising and lowering indices with the conformal metric, it 
follows thatpll-=yI'vpv = fl 2pl'. In any case, by re-express­
ing the particle equations of motion in terms of PI" one finds 
that 

dPa _ d1" [ - 1 J "j.lV ~ (1 ..1,<1» - 1 A I' J m] - - - ---2PI'PV ar -/I, + - .Lla I'''P, 
dTJ d'l] 2mfl m 

(2.11) 

where, now, 

(2.12) 

is the spatial projection tensor viewed as a function of PI" 
Because of the factor (1 + ..1,<1> Im)-I, Eq. (2.11) is nonlinear 
and, therefore, will be difficult to analyze. However, in the 
limit that 1..1,<1> 1m I is small, that factor may of course be ne­
glected, and, in that case, the equations of motion for the ith 
particle assume the form 

dXi a d1"i 1 b . i 
-=---ya (l)Pb 
d'l] d'l] fl 2m 

and 

d:~ = :~ [ 2':-~ 2i l'iv Jia yl'V(i) - ALi a l'(i)J
i
l' <1> (i)]. 

(2.13) 

Equations (2.13) will be taken as the starting point for all 
subsequent discussion. 

By varying the action (2.2) with respect to the field con­
figuration, one obtains the field equation 

VI'VI'<1> + nR [g]<1> = 417"(..1, Im)p(xa,'I]), (2.14) 

where VI' and R [g] denote, respectively, the covariant deri­
vative operator and scalar curvature associated with gl'v' 
For the gl'v of Eq. (2.1), one finds explicitly that 

y"" a" 2<1> + yT/"(2!J'lfl )a,,<1> + (_ y)-1/2 aa( _ y)1/2 

X yabab <1> + nR [g]fl 2<1> = 417"(..1, Im)pfl 2, (2.15) 

where now a prime' denotes differentiation with respect to 
'1]. The scalar curvatureR [g] is related to theR [y] appropri­
ate for YI'V by the simple formula 15 

R [g] = fl -2R [y] - 6fl-3DI'Dl'fl 

=fl-2R [y]-6fl- 2y""(fl"lfl), (2.16) 

where DI' is the covariant derivative operator associated 
with YI'V' and thus, one sees immediately that 
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Y7171 a z(/J +.:::::::-a (/J - 6n-(/J - Ll (/J = 411'-pl1 z, [ 
211' 11" ] A 

71 11 71 11 m 
(2.17) 

where 

Ll =( - y7171)-I!( - y)-I/Z aa( - y)I/Z~b ab + nR [y] l 
(2.18) 

denotes a convenient generalization of the fiat space Lapla­
cian. In terms of the rescaled field 

x = 11(/J 

Eq. (2.17) takes the form 

a71 Zx - (1 + 6n)(I1" II1)X - LlX 

= - 41T{A Im)p11 3( - y7171)-I. 

For the special case when n = - i, one finds that 

(2.19) 

(2.20) 

DI'-DflX + nR [Y]X = 411'(A Im)p11 3. (2.21) 

At this stage, it is convenient to re-express the rescaled 
X as a superposition of appropriately defined field oscilla­
tors. 16 The first step in the procedure is to view Eq. (2.20) as 
an operator equation on a Hilbert space with an inner pro­
duct 

(5,;)= fd3X( - y)I/Z( - y7171)5 (xa); (xa) (2.22) 

(the form of the inner product is all that is relevant here; 
domain issues, completeness, etc., will be neglected in what 
follows). The important point, then, is that if one can inte­
grate by parts and neglect all surface terms, the operator Ll 
will be symmetric: 

(2.23) 

If, for example, y 1'-1' is fiat, it is customary to ensure this by 
imposing periodic boundary conditions. 

Granted that Ll is symmetric, it follows at once that its 
eigenvectors are orthogonal, and that its eigenvalues are 
real. And thus, if one assumes, in the usual way,16 that the 
eigenvectors tPA (xa) form a complete set,X (xa ,1J) may be ex­
pressed as a linear combination of the tPA'S: 

00 

X(xa,1J) = I qA (1J)tPA (xa), (2.24) 
A~I 

where 

LltPA + lilA ZtPA = O. (2.25) 

Here the notation is predicated upon the assumption that the 
modes are in fact discrete. If this is not true, the summation 
in Eq. (2.24) must of course be replaced by a Stieltjes integral. 
Without loss of generality, one is free to impose the normali­
zation 

(2.26) 

and, given this normalization, the assumption of complete­
ness implies that 

LtPA (xa)tPBLYa) = 411'( - y7171)-I( _ y)- IIZ8(3)(xa _ ya). 
A 

(2.27) 
It is now trivial to obtain equations of motion for the 

individual oscillators. All that one need do is substitute the 
expansion (2.24) into Eq. (2.20), take the inner product with 
tPB' and divide by 411'. In this fashion, one finds that 
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11" 
qA" - (1 + 6n)----:::-<lA + lilA ZqA 

11 

- ~fd3x( - y)I/Z( - y7171)p11 3tPA(xa)/( - y7171) 

- ~ Ifd 3X dr; 8(3) [xa - X; a(1J)] tP A (xa) 
11 ; d1J 

A dr· - - I-' tP A (X; a). (2.28) 
11 ; d1J 

Alternatively, the second-order Eq. (2.28) may be viewed as a 
coupled first-order system: 

dqA 
--= -PA 

d1J 
and (2.29) 

dp A [z 11 " ] A "dr; --= lilA -(1 +6n)- qA +-£.,.-tPA(i). 
d1J 11 11 ; d1J 

In the limit that 11 is a constant, Eqs. (2.29) are completely 
analogous to the equations for an electromagnetic field in 
fiat space. 

III. A STATISTICAL DESCRIPTION 

The first step in the formulation of a statistical descrip­
tion is of course the construction of an appropriate phase 
space. 

If one starts from the particle equations of motion in a 
form that is manifestly covariant, the "natural" configura­
tion space for any given particle is the four-dimensional 
space-time manifold itself: this comes equipped with a vol­
umeelement( - g)l/Z d 4x. Similarly, themomentalivenatu­
rally in the cotangent space, which comes equipped with the 
volume element ( - g)-liZ d 4p. The natural eight-dimen­
sional one-particle solution space, the cotangent bundle as­
sociated with the space-time manifold, thus comes equipped 
with the volume elemene 

d 8 V = (_ g)l/Z d 4x( _ g)-I/zd 4p = d 4x d~ 

(3.1) 

The mass shell constraint will of course restrict the 
physics to a particular seven-dimensional hypersurface in 
the cotangent bundle (so that P71 may be thought of as a 
function of the spatial Pa 's) and, by focusing upon a given 
instant of time, i.e., by setting 1J = constant, one selects out a 
six-dimensional analog of the ordinary Newtonian phase 
space. This space comes equipped with the natural volume 
element 

d 6 V = d 3x d 3p = ( _g)l/Z d3x( _g)-liZ d3p 

= ( _ y)I/Z d 3X( _ y)-I/Z d 3p, (3.2) 

which can of course be written in a form that is manifestly 
covariane7

: 

(3.3) 

It should be clear that this d 6Vis the natural element asso­
ciated with the noncovariant equations (2.13). 

The full 6N-dimensional, N-particle phase space is con­
structed as the direct product of N identical copies of the 
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one-particle phase space, and comes equipped with the vol­
ume element 

N N 

d'Yp = II d 6 Vi = II d3Xi d 3i· (3.4) 
;= 1 ;= 1 

The embedding of this space in the "natural" 8N-dimension­
al covariant solution space has been considered by such 
authors as Israel and Kandrupl or Hakim.5 

It is perhaps most natural to think of the oscillator 
phase space as being the cotangent bundle associated with an 
infinite-dimensional flat manifold for which the qA 's are the 
generalized coordinates (the structure of curved, infinite-di­
mensional manifolds is of course a very subtle affair). The 
volume element then takes the form 

00 

d'Yf = II dqA dpA' (3.5) 
A~I 

The total particle-field phase space is constructed as a 
direct product of particle and field phase spaces, equipped 
with the volume element 

de=d'Yp d'Yf = CDld3Xi d3/)(J~ldqA dPA). 

(3.6) 
Given the introduction of the element de, one may de­

fine the distribution function 1", the basic object of the the­
ory, by the statement that 

d&' = l"(x l
a,p\, ... ,ql,PI, ... ;7])de (3.7) 

represents the probability that, at some time 7], each given 
particle i has coordinates and momenta centered about the 
values Xi a and pi a' and that each oscillator A has coordi­
nates and momenta centered about qA and PA . Conservation 
of probability in the infinite-dimensional phase space, i.e., 
the invariance of d &' under Lie transport along the trajec­
tories defined by the equations of motion, then implies that 

(3.8) 

It follows at once from Eq. (3.8) that one can impose the 
normalization 

(3.9) 

for all values of 7]. 

Given the fundamental distribution function 1", one can 
of course define appropriate reduced distributions. Thus, for 
example, one may define the N-particle distribution 

F(x l
a,pla,···;7])= fl" d'Yf (3.10) 

and the field distribution 

(3.11) 

Of particular interest are the irreducible one-particle and 
field distributions,J(i) and g(A ), obtained by integrating out 
all the degrees of freedom except for one of the particles or 
oscillators: 
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(3.12) 

and 

g(qA ,PA ;7]) g(A) = fG II dqB dpB' 
B",A 

(3.13) 

These will of course satisfy the normalization 

fl(i)d6V; = 1 = fg(A )dqA dpA' (3.14) 

At this stage, it should be straightforward to proceed in 
analogy with the standard Newtonian analyses to obtain var­
ious exact equations for the evolution of the reduced distri­
bution functions. Thus, for example, by integrating over the 
degrees of freedom of some subset of the particles and the 
oscillators, one can obtain various relations among the re­
duced distributions, and, therefore, one might hope to obtain 
some useful analog of the standard BBGKY hierarchy of 
coupled equations. 18 Similarly, one might try to construct 
some analog of the projection operator techniques developed 
by Balescu, Prigogine, and their co-workers I8

•
19 (this will, 

however, be complicated by the facts that the "forces" will in 
general be explicitly time dependent, and that even a "free" 
particle will experience time-dependent effects). These sorts 
of issues will be considered in a later paper. 

The object here is to demonstrate simply that, in the 
most naive possible limit, one can in fact recover a relativistic 
analog of the ordinary self-consistent field (or Vlasov) ap­
proximation.7

,18 This approximation amounts simply to the 
assumption that, to lowest order, the full distribution I" may 
be taken as an infinite product of irreducible /'s and g's: 

N 00 

I"':::::!. II/(i) II g(A). (3.15) 
i~ I A~ I 

If one inserts this Ansatz into Eq. (3.8) and integrates over 
the degrees offreedom for all of the oscillators and for N - 1 
of the particles, one obtains an equation of the form 

(3.16) 

where, now, 

(3.17) 

and 

denotes an "average" value for the scalar field CP, defined 
with respect to the one-particle g(A )'s. In a similar fashion, 
one may obtain an equation for the evolution of each g(A ). 
Thus, if one supposes that I" is symmetric under particle 
interchange, one finds that 
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(3.19) 

By constructing an appropriate moment ofEq. (3.19), it 
will become apparent that the coupled system of Eqs. (3.16) 
and (3.19) really do imply a simple mean-field description. 
The proof is straightforward if one observes that 

: fdqA dPA g(A )qAtPA(k) = - f dqA dPA g(A lPAtPA(k). 

'l/ (3.20) 

Equation (3.20) is easy enough to verify. Thus, if one views 
Eq. (3.19) as an operator equation 

ag 
-=Ag, 
~ 

(3.21) 

it follows immediately by an integration by parts that 

What one must do now is mUltiply Eq. (3.19) by the 
quantity tP A (i)P A , integrate over the variables q A and P A , and 
then sum over alI the A's. By virtue of Eq. (3.20), it follows 
that 

~ f dqA dpA tPA (i)PA [a~) - (1 + 6n)':; qA a!~~)] 

= [ - aT/ 2 + (1 + 6n)~"]<X(i) 

= [-a/+(1 +6n)~']il(4)(i)). (3.23) 

Similarly, it is easy to see that 

2:fdqA dPA tPA(i)PAWA
2qA ag(A) 

A JpA 

= - ~ J dqA dPA g(A )qAWA 2tPA (i) 

= ~fdqA dPA g(A )qAAtPA(i) 

=.d (X(i) =.dil (4) (i). (3.24) 

And finally, a somewhat more complicated calculation 
shows that 
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~~JdqA dPA tPA(ilPAfd3XI d3plf(I)::;tPA(I)J!~~) 

= - ~~[fdqA dpA g(A)] 

XJd 3XI d3plf(l)d'TltPA(I)tPA(i) 
d'l/ 

= _ 41TNAJd 3XI d
3p lf(l)d'T l 

fl d'l/ 
X( - yT/T/)-I( - y)-1/28(3)(Xla - x/I 

41TAfl 3 < p(i) 
m _yT/T/' 

where 

(3.25) 

(P(i)=Nfd3i~:( _g)-1/2mf(i) =Nm fduif(i), 

(3.26) 

and dwi denotes the invariant three-dimensional momen­
tum space volume element associated with particle i.17 The 
quantity (p(i) may of course be interpreted as an "average" 
density defined with respect to the one-particle distribution. 

By combining Eqs. (3.22)-(3.26), one concludes that 

JT/ 2<X) - (I + 6n)(fl "Ifl )(X) -.d (X) 

= 41T(A Im)fl 3( p)/( - yT/T/) (3.27) 

or, equivalently, that 

VpVp(<fJ) +nR [g](4)) =4rr(Alm)(p). (3.28) 

The coupled system of Eqs. (3.16) and (3.28) constitute a 
simple relativistic analog of the ordinary self-consistent field 
approximation. A gravitational analog of these equations is 
in fact the starting point for the stability theory of "coIIision­
less stellar dynamics" developed by such authors as Ipser 
and Thome, II in which one is concerned with the behavior of 
linearized perturbations of a static background space-time. 3 

There is also an obvious connection with the sort of formal­
ism developed by such authors as Ehlers, Ellis, Israel, and 
Stewart. 17,2{}--22 It should, however, be observed that these 
authors were concerned with the full nonlinear Einstein 
equations and, as such, they could not have expressed their 
fields as a linear superposition of oscillators. 

At this stage, it is also straightforward to derive hydro­
dynamic moment equations involving the particle distribu­
tions. Thus, for example, a trivial integration of Eq. (3.16) 
shows that the "average" current 

(Jp)=Nfd 3p( _g)-1I2m
dxPf 
d'l/ 

= Nfd 3p( _g)_1/2 d'T _1_Y'''pJ' 
d'l/ fl2 

= N f dw pPf (3.29) 

will satisfy the relation 

VI' (Jp) = o. (3.30) 

This is nothing more than an expression of probability con­
servation. Similarly, if one multiplies Eq. (3.16) by dxv Id'T 
before integrating, one finds that 
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(3.31) 

where 

(3.32) 

Equation (3.31) is the energy-momentum balance equation. 

IV. TWO LIMITING CASES 

A. A static background space-time 

Equation (3.16) assumes a particularly simple form for 
the special case of a space-time that is actually static. In this 
case, one may of course arrange that {1 = 1, so that 1] = t, 
and, therefore, the mean-field or Vlasov equation takes the 
form 

al + ~( dr y"bPb f) _ ~( dr _1 a ,pv I) 
at axa dt m aPa dt 2mP/l-PV a' 

- ~( dr A.J /l-V «(]> )/) = o. 
aPa dt a /l-

(4.1) 

It is useful to rewrite this expression in a form that is 
manifestly covariant. In the limit that n = 1, one knows that 

- p, = ( - Ytt)1/2(m2 + y"bpaPb )1/2 (4.2) 

and 

dt y'pt 
-=--, 
dr m 

(4.3) 

and, therefore, one finds that 

and 

~(~) = __ 1_ a ,pv 
axa dr 2mpt P/l-PV a' . 

(4.4) 

Equation (4.1) thus takes the form 

a (yt ) a (y"b ) a ( 1 ) - -pJ + - -pJ - - -P/l-Pv aa Y"v 1 
at m axa m apa 2m 

-li.Ja/l-V/l-«(]» al _ 3lipll-V/l-«(]»/=0. 
aPa m 

(4.5) 

It is, however, easy to see that 

(4.6) 

and 

(4.7) 

where r!/l- is the Christoffel symbol associated with g/l-V, and 
one therefore concludes that 

~(pa I) + ~(J..r! P).pI'l) 
axa maPa m /l-

- ~(Ii.Ja/l-V/l- «(]> )/) = 0, 
aPa 

or, equivalently, that 
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(4.8) 

pa al +J..r ! p).pI' al _ ~(Ii.Ja/l-V «(]»/) =0. 
m axa m /l- aPa aPa /l-

(4.9) 

In obtaining these relations, one has of course exploited the 
fact thatl depends upon only three independent components 
of momentum. Equations (3.28) and (4.9) define a mean-field 
theory that is manifestly covariant. The relativistic theory of 
"collisionless stellar dynamics" admits to an analogous for­
mulation. 

One of the crucial bits offolklore underlying one's intu­
ition in kinetic theory is the idea that the mean-field equa­
tions should admit the isothermal distribution as an exact, 
stationary solution. In other words, one anticipates that Eq. 
(4.9) should admit a solution of the form 

log/= a(x) + B/l-(x)(1T/l-) = a(x) + (1 + Ii «(]> )lm)B/l-(x)pl', 
(4.10) 

where (1T /l-) denotes the canonical momentum associated 
with the "average" «(]> ). 

That this is in fact the case is not difficult to see. If one 
substitutes Eq. (4.10) into Eq. (4.9) and, consistent with the 
linearized equations (2.13), neglects contributions quadratic 
in Ii, one finds that 

~ V/l-(a _ ~ «(]») + (1 + Ii ~) )pI'~v VI/l-By) 

(4.11) 

This relation will be satisfied identically if the coefficients of 
pi' and pi' Py and the terms independent of p each vanish 
separately. In other words, Eq. (4.10) will in fact provide a 
solution if (i) VI /l- Bv) = 0, (ii) B/l- V /l- «(]> ) = 0, and (iii) 
a(x) - 31i «(]> )Im = const.23 

Condition (i) requires simply that B/l- be a Killing field. 
If, moreover, the hydrodynamic moments of 1 are to exist, 
one must demand that B/l- be timelike. 17 That such a Killing 
field exists is of course guaranteed since, by assumption, the 
space-time is static. Condition (ii) requires that B/l- Lie derive 
the average «(]> ), i.e., that «(]> ) be "time independent." If one 
supposes that B = {3 at, Eq. (4.10) takes the form 

logl = const + ...:..31i.--.:...( (]>---'-) 
m 

_ {3( - Ytt)1/2( 1 + Ii ~) )tm2 + y"bpaPb )1/2 

31i «(]> ) 
= const + ..:...-~--'­

m 

__ 1_(1 + Ii «(]» )(m2 + y"bpaPb )1/2, 
kT(x) m 

where, now, 

kT(x)( - Ytt)1/2 {3 -I = const. 

(4.12) 

(4.13) 

It should be observed that the coefficient of {3 in Eq. (4.12) is 
nothing other than the Hamiltonian (2.7), viewed as a func­
tion ofthe average «(]> ). The T (x) defined by Eq. (4.13) is of 
course the "physical," red-shifted temperature. 17

,24 The 
presence of the factor 31i «(]> ) 1m, required by condition (iii), 
is a manifestation of the noninvariance of the six-dimension­
al volume element: aFalapa #0. 
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B. Radiative modes In a spatially flat Friedmann 
cosmology 

The mean field description developed in Sec. III may 
also be used to describe such phenomena as radiative modes 
in a k = 0 Friedmann cosmology. Here, of course, the metric 
may be written in the form 

cJs2 = f} 2(?J)( - d?J2 + 8ab dxa dxb). (4.14) 

And thus, if one supposes (i) that the conformal factor 
f} ex: f' ex: rf/(1 - p) , and (ii) that (p) = 0 (Le., that only fields 
need be considered), one is led to an homogeneous wave 
equation of the form 

a1/(X) - [p(2p - 1)1(1 - p)2](l + 6n)(x) -.:1 (X> = o. 
(4.15) 

If one assumes that p =~, Le., that the cosmology is 
dominated by a zero-pressure fluid, and looks for solutions 
with spatial dependence exp(ikaxa), one obtains the ampli­
tude equation 

i" - [2(1 + 6n)I?J2]i + k 2i = O. (4.16) 

In terms of the rescaled 

; (?J) = ?J- 1/2i(?J), 

this relation takes the form 

;" + (I/?J);' + (k 2 - VI?J2);=O, 

where 

v = ~(1 + 16nI3)!l2. 

(4.17) 

(4.18) 

(4.19) 

Equation (4.18) is of course Bessel's equation and, 
therefore, the general solution takes the form 

(CP (xa,?J) = exp(ikaxa)?J-3/2 [AJv(k?J) + BNv(k?J)]. 
(4.20) 

In the limit of short-wavelength disturbances, Eq. (4.20) im­
plies an oscillatory time dependence. Alternatively, in the 
limit of long wavelengths, one obtains a simple power law 
behavior. For the conformally invariant wave equation, with 
n = - i and v = ~, the long-wavelength limit implies that 
(CP) ex: ?J- I or ?J- 2

• In other words, one is led to damped 
solutions 

(4.21) 

For the minimally coupled equation, with n = 0 and v = ~, 

the long-wavelength modes exhibit a time-dependence 
(CP) ex:?J0 or ?J- 3

, i.e., 

(4.22) 

Again, in this case, there are no growing modes. If, however, 
one allows for any n > 0, one will in fact obtain solutions that 
grow with time. Thus, in particular, the case when n = +! 
implies that (CP > ex: t 1/3 or t -4/3. 

V. LINEARIZED GRAVITATIONAL INTERACTIONS IN A 
SPATIALLY FLAT FRIEDMANN COSMOLOGY 

Tum now to the linearized gravitational interaction de­
scribed in Sec. I. For the special case of a spatially flat Fried­
mann cosmology, with a metric given by Eq. (4.14), the parti­
cle equations of motion take the forms 
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and 

dia dT j I A (')"rA (')P I' v --= - --4-:U aA lu /-'V I i Pi' 
d?J d?J f) m 

(5.1) 

where, recall, 8r~v is defined by Eq. (1.2), pj/-' = ?J,.,vi v' 
and 

A f} 2 -2 
:Upv = ?J,.,v + m P,.,Pv, (5.2) 

where ?Jpv is the Minkowski metric. 
When considering the field equation for hI' v, it is very 

convenient to impose the so-called synchronous gauge con­
dition25

•
26 

hT/ T/ = ha T/ = O. (5.3) 

This condition implies that one need only consider the spa­
tial components of the field equation, and, moreover, that 
they may be viewed as a relation involving the 3 X 3 spatial 
tensor ha b. The perturbed Einstein tensor 8G /3 may of 
course be generated from the perturbed Ricci tensor by the 
relation 

8G p = 8R p - 18 P8R I' 
a a 2 a ~, (5.4) 

and it is straightforward to calculate13
•
26 that, for the metric 

(4.14), 

8Rb a = ~ac aahb c + ac abhc 0_ ac achb 0_ aa abhc C) 
2!1 

+ ~ 2aT/ 2hb a + ~ >T/hb 0+ !'30b a aT/hc c (5.5) 

and 

DR T/ = (1!2f) 2)a 2h c + (f) '/2f} 3\;) h c 
T/ T/ c I'-'T/ c • (5.6) 

It is useful to re-express Eqs. (5.5) and (5.6) in terms of 
the new function 

(5.7) 

for which 

ha b = Sa b - !Oa b5c c. (5.8) 

Thus, with this substitution, one finds that 

oGo b = (1!2f) 2) [aT/ 250 b + (2f) 'If} )aT/5a b - (.:1510 b], 
(5.9) 

where27 

(.:15)0 b = ac ac5a b - ~ ac5a c 

- ac aa5c b + 00 b iP ac5d
c 

+ aa ~5c c - ~oa b ac ac5d d. (5.10) 

In Eq. (5.10), one is again instructed to raise and lower in­
dices with the conformal metric Ypv, so that 
ac = yl'ap = ?JCl'ap = ac • These relations lead to an inho­
mogeneous wave equation of the form 

aT/ 250 b + (2fl 'If) )aT/5a b - (.:15)a b 

= 161rfl 2(Ta b - [To b h), (5.11) 

where, recall, Tl'v and [Tp V]B denote, respectively, the 
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stress energies appropriate for the "true" and "background" 
space-times. 

It is convenient at this stage to eliminate explicit refer­
ence to [Ta b ] B by rewriting Sa b in the form 

S/=Ha b- [Habh, (5.12) 

where 

a,/[Habh + (2il'lil)a'7[Habh -(A [HhV 

= 161Til 2 [ Ta b ] B' (5.13) 

This decomposition of 5a b is of course not unique. In any 
case, Eqs. (5.12) and (5.13) imply that 

a 2H b+(2il'lil)a H b-(AH) b 
17 a "1 a a 

1617' "d7i . b (3) 
= ~£.. -d p'aPi b [XC -xi

C(1])], 
mJ~ i 1] 

(5.14) 

where one has inserted the explicit form of Ta b • 

One is now in a position to expand the linear field Ha b 

in terms of appropriately defined field oscillators. In analogy 
with the discussion in Sec. III, the idea is to view Eq. (5.14) as 
an operator equation on a Hilbert space with inner product 

(5.15) 

The important point again is that if one canjustify neglecting 
all surface terms when integrating by parts, one may show 
that A is in fact symmetric28

: 

(5.16) 

This implies that the eigenvalues of A will be real and that 
the eigenvectors will be orthogonal. Had one worked instead 
with ha b , rather than with 5 a b , the analysis would have been 
more complicated. 

If, as in Sec. III, one assumes that the modes are both 
discrete and complete, Ha b may be expressed as a linear 
combination of the form 

00 

Ha b(xc,1]) = L qA (1])tPAa b(XC), 
A=l 

where 

(AtPA)a b + liJA 2tPAa b = 0. 

If one then imposes the normalization 

(tPA ,tPB) = 41Tb AB' 

the assumption of completeness requires that 

LtPA ab(Xe)tPA Cd (x e
) = 4m5(abbc)d0(3)(Xe _ ye). 

A 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

At this stage, it is easy to obtain the equations of motion 
for the individual oscillators. All that one need do is substi­
tute the expansion (5.17) into Eq. (5.14), take the inner pro­
duct with tPB (i), and divide through by 417': 

Alternatively, Eq. (5.21) may be viewed as a coupled first­
order system of the form 

3294 J. Math. Phys., Vol. 25, No. 11, November 1984 

and 

~; = - ~'PA +liJA 2qA - ~a/(i)tPAba(i). (5.22) 

Given the equations of motion (5.1) and (5.22), it is 
straightforward to define a distribution function 
f-l(x1a,p1a ,· .. ,qA ,PA , ... ;1]) and to formulate an N-particle con­
servation equation. In analogy with Eq. (3.8), this relation 
takes the form 

af-l + ,,~(d7; _l_p af-l) 
a1] ~ ax; a d1] il 2m ' 

(5.23) 

Such matters as the definitions of reduced distributions will 
of course be trivial. 

It is also simple enough to explore the consequences of a 
self-consistent field approximation of the form generated by 
Eq. (3.15). Thus, in this approximation, it is easy to see that 

af(i) + d7, ~ af 
a1] d1] mil 2 ax, a 

- a;ia (~: il ~m A a.dij(br;v(i)p/p; J) = 0, 

(5.24) 

where, now, (br;v) denotes the "perturbed Christoffel 
symbol" associated with the average (hflv) [c.r. Eq. (1.5)]: 

(or~v)-!(VfI(h/) +Vv(h/) -VA(hflV»)' (5.25) 

Consistent with the gauge conditions (5.3), (hl'v) is con­
strained so that 

(h'7 '7) = (h'7 a) = (ha '7) = 0, (5.26) 

whereas the spatial components satisfy the relation 

(5.27) 

where 

(Sa b) = (Ha b) - [H/ h 

= ~ J dqA dPA g(A )qA tPAa b - [H/ h. (5.28) 

The quantity (Ha b ) may be viewed as an average value for 
Ha b defined with respect to the one-particleg(A )'s. In a simi­
lar fashion, one finds that, in this approximation, 

ag(A) _ PA ag _ 2il ' ~(PAg) + liJA 2qA ag 
a1] aqA il apA apA 

-NJd3Xld3plf(1)aab(1)tPAba(1):~ =0. (5.29) 

It is again straightforward to verify that Eq. (5.29) im­
plies a well-defined "average" field equation. Thus, in ana­
logy with Eq. (3.20), it is easy to see that 
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~ f dq,4 dPA g(A )qA t/lA/ = - f dqA dPA g(A lPA t/lA/' 

(S.30) 

and, therefore, one may verify that 

a,/(H/) + (W 'I{J )a
7J 

(Ha b) - (.1 (H»)a b 

= 161T{J 2(T/), 

or, equivalently, that 

8Ga b [(H)] = 81T(Ta b), 

(S.31) 

(S.32) 

where 8Ga b [(H)] denotes the linearized Einstein tensor 
associated with (Ha b), and (Ta b) is defined by Eq. (3.32). 

As a simple example, one may suppose that the "aver­
age" (TJl v ) is characterized completely by an average four­
velocity (if), an isotropic pressure (P), and an average 
energy density (E) = (p) + 3(P) (this will, for example, be 
the case if the one-particle distribution is a local Maxwel­
lian29

). In this event, (TJl V) takes the form appropriate for a 
perfect fluid: 

(S.33) 

If one then assumes further that, in the usual way, [TJl V] B is 
itself given as a perfect fluid, and recalls that the quantity 
(Ta b) - [To b ] B is to be treated as a linearized perturba­
tion, one concludes that 

(8Tab)=(Tab) - [Tabh =8a
b(8P), (S.34) 

so that the "average" field equation takes the form 

8Ga b [ (t)] = 81T(8T/) = 81T8a b (8P). (S.3S) 

In a similar fashion, one may record hydrodynamic mo­
ment equations involving the particle distribution. Thus, for 
example, it is easy to see that the average current (.P' ) satis­
fies the relation 

(S.36) 

And, similarly, one finds that the energy-momentum ba­
lance equation takes the form 

Va (TafJ ) = - (8r~v)(8).fJ(TJlV) + (T).fJJlV»), (S.37) 

where, now, 

(S.38) 

It is of some interest to consider solutions to Eq. (S.3S) 
for the special case when (8Ta b) = O. If one supposes that 
[J a: 1J2 a: t 2/3, and looks for plane-wave solutions, one ob­
tains an amplitude equation of the form 

ta b" + (4/1J)ta b, + k 2ta b - k bkcto c _ k ckatc b 

+ 8a bk dkctd c + k bkatc c - ~8a bk 2td d = 0, (S.39) 

where, explicitly, k 2 = kck c = kckc' Equation (S.39) is still 
rather complicated, since it couples together the various 
components ta b. If, however, one restricts attention to trace­
less modes with hc c = 0, so that 

(ha
b) = (tab), 

and supposes further that Va (h a b) = 0, so that 

katb a = 0, 
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(S.4O) 

(S.41) 

one obtains the comparatively simple relation 

ha b" + ~ha b, + k 2ha b = O. 
1J 

It follows immediately from Eq. (S.42) that 

(ha b(xc,1J) 

(S.42) 

= 1J-3/2 exp(ikcxC)[ Aa bJ3/2(k1J) + Ba bN3/2(k1J)], 
(S.43) 

where Aa band Ba b are constants so chosen that 
kaAb a = kaBb a = 0 and Aa a = Ba a = O. In the limit of 
short-wavelength disturbances, those solutions will exhibit 
an oscillatory behavior. Alternatively, in the limit of long 
wavelengths, they will exhibit a time dependence of the form 

(hab)a:tO or t- I , (5.44) 

so that (hJlv ) gJla (hv a) a: t 4/3 or t 1/3. These are of course 
well-known results.25 
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An exact solution of the equations of general relativity is given which tends to Einstein-de Sitter at 
late times. The energy density is inhomogeneous at early times, and is singular on two spherical 
surfaces which may be related to the "bubbles" typical of inflationary universe models. 
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I. INTRODUCTION 

The universe at the present time can be reasonably well 
described by a solution of Einstein's equations in which the 
energy density of matter is homogeneous and isotropic and 
the pressure of matter is zero. The simplest such solution is 
the Einstein-de Sitter one. However, it is now widely ac­
knowledged that the universe at early times cannot be well 
described by solutions of this type: they lead to serious astro­
physical problems, of which the best known are those to do 
with flatness, the horizon, and galaxy formation. These 
problems have been known for a while, and can in principle 
be resolved by a model which is Einstein-de Sitter at late 
times but differs from this at early times. This has been one of 
the motivations for the study of inhomogeneous and aniso­
tropic solutions of Einstein's equations (see Refs. 1-4 for 
reviews). Attempts to resolve the classical astrophysical 
problems have been recently renewed, and have led to the 
proposal of the "inflationary" universe models.5

.
6 Many so­

lutions of Einstein's equations which are inflationary in na­
ture are also inhomogeneous and anistropic,7 so the motiva­
tion for studying solutions of the latter type has also been 
recently renewed. 

Although there is strong motivation for studying solu­
tions of Einstein's equations which are Einstein-de Sitter at 
late times but differ from this at early times, most solutions 
of the desired type are too complicated to work with easily in 
astrophysical contexts. Therefore, an attempt has been made 
to find solutions of the desired type which are relatively sim­
ple. The procedure which has been adopted is naive but ef­
fective. In the Einstein-de Sitter solution, distances vary as 
f2/3, wheref = t and t is the time. An attempt has been made 
to find "generalized" Einstein-de Sitter solutions which are 
spherically symmetric and have f = kit + k~(R ) + k3' 
where the k 's are constants and g(R ) is a function of a radial 
space coordinate. In what follows, a particularly simple so­
lution of this type will be presented. 

II. A COSMOLOGICAL SOLUTION 

A spherically symmetric metric is taken in the form 

ds2 = e<7 dt 2 _ e'" dR 2 _ r(dfJ 2 + sin2 fJ d¢ 2). (1) 

Here, the metric coefficients CT, liJ, and r are all functions of 
the time t and a comoving radial space coordinate R. Deriva­
tives with respect to t and R will be denoted by (.) and (,), 
respectively. With (1) and a perfect-fluid energy-momentum 
tensor, Einstein's equations can be expressed8

-
10 as five rela­

tions (of which the first is really a definition). These are 

2mlr= 1 + e~<7r _ e~"'r'2, (2a) 

117 = - 41Trrp, 

m' = 41Trr' E, 

CT' = - 2p'l(p + E), 

iu = - 2U(p + E) - 4rlr. 

(2b) 

(2c) 

(2d) 

(2e) 

Here, m is the mass, p is the pressure, and E is the energy 
density. Units have been chosen in which the magnitudes of 
the Newtonian gravitational constant and the velocity of 
light are unity. 

It may be verified by direct substitution that a solution 
of (2) is given by 

f=klt + k210ge R + k3' (3a) 

e<712=1, e"'/2=f2l3(1+2k2/3f), r=f2l3R, (3b) 

m = 2kiR 3/9, P = 0, E = ki/21Tf(2k2 + 3f). (3c) 

Here, as mentioned above, the k 's are constants. 

III. DISCUSSION 

The solution (3) has some interesting properties, of 
which the main ones may be mentioned here. For t-oo, 
f - kit, e"'/2 - f2l3, E - (61Tt 2) -I, and is homogeneous, and the 
solution tends to Einstein-de Sitter. For t-o, E is inhomo­
geneous. The energy density is singlular (E-oo) on two hy­
persurfaces, namely f = 0 and (2k2 + 3f) = O. On these hy­
persurfaces, the metric is also singular, since r-o and 
e",/2-o, respectively. This behavior appears to be typical of 
solutions like this, since in another solution of this type9 a 
similar behavior is found. It is not necessarily unphysical, 
since by a suitable choice of parameters such solutions can be 
interpreted as cosmological models. 11 Indeed, the existence 
of singular hypersurfaces in (3) may be regarded as an asset. 
These surfaces are spherical in ordinary three-dimensional 
space, and may therefore be related to the "bubbles" typical 
of inflationary universe models.5

-
7 These latter models are 

characterized by two or more regions separated by singular 
surfaces, where at least one of the regions has a finite vacuum 
energy density. The latter can be incorporated into the solu­
tion (3) by the usual device7 of assuming that the total energy 
density (E) and total pressure (P) can be expressed as sums of a 
matter part and a vacuum part: E-Em + Ev' P Pm + Pv' 
For Ev = - Pv = A 181T, this is equivalent to introducing 
the cosmological constant A. It is hoped to report in greater 
detail on the astrophysical applications of (3) and its relation 
to inflationary universe models in future work. 
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The problem of the coupled Einstein-Maxwell scalar field in the framework of general scalar 
tensor theory of Nordtvedt is completely solved for plane symmetric static matter-free space­
time. Special cases are considered for some special choices of UJ as functions of the scalar field. 
Solutions are given also in the absence of the electromagnetic field and these are shown to generate 
a few special cases of Bianchi I cosmological models when subject to a set of complex 
transformations of coordinates. 

PACS numbers: 04.50. + h, 04.20.Jb 

I. INTRODUCTION 

Amongst different scalar tensor theories of gravitation 
Brans-Dickel theory attracted attention at a certain stage 
since the theory could incorporate Mach's principle in its 
framework and also because there is no a priori reason to 
exclude the introduction of a scalar field in the universe. 
However, the results of recent experiments pointed towards 
very large values of UJ at the present stage of the universe 
making only a very little deviation from Einstein's theory. In 
this context the general scalar tensor theory in which UJ is a 
function of the scalar field and is a variable (Nordtvede) may 
be worth investigating. The implication of the said theory in 
cosmological models appear to be particularly appealing in 
view of the fact that the parameter UJ, which is apparently 
quite large at the present stage of evolution, might be small at 
other epochs and small UJ will introduce a distinct difference 
in the dynamics of a model from that of the corresponding 
model in the absence of the scalar field. Because of such a 
possible role of the scalar field in the generalized scalar ten­
sor theory exact static and nonstatic solutions should be 
studied. In fact there are already some in the literature in 
Nordtvedt's theory (Banerjee and Duttachoudhury,3 Bar­
kar,4 Banerjee and Santos,5.6 Rao and Reddy,? and Van den 
Bergh8

). 

In the present paper we propose to find exact solutions 
of the gravitational field equations for the electrovac in 
Nordtvedt's scalar-tensor theory for a plane symmetric stat­
ic space-time, which by definition admits three parameter 
groups with minimum varieties as zero-curvature two-di­
mensional surfaces. The work of Amundsen and Gr0n9 con­
tains exhaustive references of existing solutions for plane 
symmetric static and nonstatic solutions, none of which, 
however, refers to Nordtvedt's scalar tensor theory. 

In Sec. II we consider the plane symmetric metric in the 
form of Taub and completely solve the field equations in 
presence of electromagnetic field and scalar field. Solutions 
are given for different choices of UJ as functions of ¢. The 
functional forms are chosen as examples from the different 
theories as given clearly in Van den Bergh's paper previously 
mentioned and the corresponding solutions are given. They 
include the Brans-Dicke solution as a special case for 
UJ = const. 

In Sec. III exact solutions in the absence of electromag­
netic field are obtained. 

Lastly, in Sec. IVa few special cases of Bianchi I cosmo­
logical solutions are constructed from the static plane sym­
metric solutions by complex transformations of the coordi­
nates and some of their properties are indicated. 

II. SOLUTIONS OF THE FIELD EQUATIONS 

We consider the line element in the form (Taub) 

ds2 = e2a(dt 2 _ dx2) _ e2fJ (dy2 + dz2), (2.1) 

where a and {3 are functions of x alone. The coupled Nordt­
vedt-Maxwell field equations in matter-free space may be 
written as 

2{3" + 3{3,2 - 2a'{3 , 

e - 2al/J 12 (i)t// 2 , , til 1//' 
= - ¢ - 2~ +(a -2{3),¢ - ¢,(2.2) 

e - 2aA, ,2 .,/2 .,/ .'." 
a" +{3" +{3,2 = 'I' - ~ -{3' L - -'1'- (2.3) 

¢ 2~ ¢ ¢ , 
e - 2aA, ,2 .,/2 .,/ 

{3,2 + 2a'{3' = - ¢'I' + ~~ - (a' + 2{3')¢", (2.4) 

where a prime indicates differentiation with respect to x. 
Further the wave equation for the scalar field ¢ and the Max­
well equation for the electric potential ¢ are given, respec­
tively, by 

¢" + 2{3'¢' = - UJ'¢'/(2w + 3), (2.5) 

and 

[e - 2(a - fJ I¢ '] , = O. (2.6) 

The Maxwell equation (2.6) can be readily integrated to yield 

e2IfJ-al¢' = q, (2.7) 

where q is an arbitrary constant which is seen to be related to 
the charge contained by the source. Adding (2.2) and (2.4) 
together we obtain 

2{3" ¢ + 4f3 '2¢ + ¢" + 4{3 '¢' = - 2e - 2a¢ '2. (2.8) 

Multiplying Eq. (2.8) throughout by e2fJ and using Eq. (2.7) 
we arrive at the equation 

[e2fJ¢ ]" + 2q¢ , = 0, 

which in turn yields on integration 

[e2fJ¢]' + 2q¢ = p, 

(2.9) 

(2.10) 

where p is another arbitrary constant. Next we multiply Eq. 
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(2.3) by 2 and add the result with the equation obtained by 
subtracting Eq. (2.4) from Eq. (2.2). This gives 

(2a" + 4a'{J ')¢ + (2a' + 2f3 ')¢' + ¢" - 2e - 2a¢ ,2 = o. 
(2.11) 

BymeansofEq. (2.6) wenoweliminate{J' fromEq. (2.11)and 
obtain 

(e2a¢),,¢, _ (e2a¢)'¢" = 2¢ '3, 

which on integration gives 

e2a¢ = (¢ 2 + a¢ + b ), 

(2.12) 

(2.13) 

where a and b are arbitrary constants. Again Eq. (2.10) may 
also be written as 

(2.14) 

Dividing Eq. (2.14) by (2.13) and using Eq. (2.7) we get 

2{J'+ ¢' = (p/q-2¢)¢', (2.15) 
¢ ¢2+a¢ +b 

which can be integrated in three different cases, viz. a2 > 4b, 
a2 = 4b, and a2 < 4b, to yield the following relations: 

(a) a2>4b, 

e2/3¢ = (¢ 2 + a¢ + b ) - 1 

X [2¢ + a - ~~a2"'------'-4b"--- ] ( pi q + all ~ a' - 4b ; 

2¢ + a + ~a2 - 4b 

(b) a2 = 4b, 

e2/3¢ = (2¢ + a)-2exp [_ 2(P/q + a)]; 
(2¢+a) 

(c) a2 <4b, 

e2/3¢ = (¢ 2 + a¢ + b)-I 

X [
2(P/q+a) t -I (2¢ +a)] exp an . 
~4b - a2 ~4b - a2 

(2.16a) 

(2.16b) 

(2.16c) 

Equations (2.13) and (2.16) relate the metric with the electric 
potential and the scalar field. In view of (2.7), (2.13), and 
(2.16) one gets equations for the electric potential ¢, which 
on integration yield the following different solutions in dif­
ferent cases: 

(i) a2 > 4b, p/q=j:. - a, p/q=j:. - a ± ~a2 - 4b, 

(2¢ + p/q + 2a)2 + (p2/q2 + 2ap/q + 4b) 
4(P/q + a)(p2/q2 + 2ap/q + 4b) 
X(2¢ + a - ~a2 _ 4b )[(Plq+a)/~a'-4b ]-1 

X(2¢ + a + ~a2 _ 4b)- [(plq+a)/~a'-4b ]-1 

= (q/S)x + n l ; (2.17a) 

(ii) a2>4b p/q= -a, 

1 [ (2¢ + a) 
2(a2 - 4b ) 4(¢ 2 + a¢ + b ) 

+ 1 I (2¢ + a - ~a2 - 4b )] 
2~ a2 _ 4b n 2¢ + a + ~ a2 - 4b 

= (q/S)x + n2; (2.17b) 

(iii) a2>4b, p/q = - a ± ~a2 - 4b, 
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± 4a2 - 4b [!(2¢ + a) ±1~a2 - 4b J2 

+ 1 { 1 
( ± ~ a2 - 4b) 2¢ + a ± ~ a2 - 4b 

+ 1 I (2¢ + a - ~ a2 
- 4b )}] 

2~a2 _ 4b n 2¢ + a + ~a2 - 4b 

= (q/S)x + n3; (2.17c) 

(iv) a2 = 4b, p/q=j:. - a, 

1 
4(P/q + af [(2¢ + a)(2¢ + 3a + 2p/q) 

+ 2(p/q + a)Z]e- Z(Plq+a)l2(IP+ a) 

= (q/2)x + n4 ; (2. 17d) 

(v) a2 = 4b, p/q = - a, 

¢=! [(-3q/2)x+ns ]-1/3_ a/2; (2.17e) 

(vi) aZ<4b, p/q=j:. -a, 

exp [2(2¢ + a) tan-I ( 2¢ + a )] 
~4b - a2 ~4b _ a2 

X [4(p/q + a)(pZ/q2 + 2ap/q + 4b)]-1 

X [2(P/q + a)Z cosz {tan-I ( 2¢ + a )} 
(4b - aZ) ~4b _ a2 

+ (p/q+a) sin 2 {tan-I ( 2¢ +a )} + 1] 
~4b - a2 ~4b - a2 

= (q/S)x + n6 ; (2.17f) 

(vii) a2 <4b, p/q= -a, 

1 [ 2¢+a 
2(4b - a2) 4(¢ 2 + a¢ + b) 

+ 1 tan- I (2¢+a)] 
~ 4b - a2 ~ 4b - a2 

= (q/S)x + n7• (2.17g) 

In the above n l ,n2 ,n3, ... ,n7 are arbitrary constants. It may be 
noted that except for the case (v) the solutions for ¢ given by 
(2.17e) are in transcendental forms preventing us from ob­
taining algebraically ¢ as a function of x. 

We next use relations (2.13) and (2.16) to eliminate a 
and the derivatives of a and {J from the field equations and 
arrive at the equation 

¢'z ¢ ,2 

(2w + 3) -Z = (p2/qZ + 2ap/q + 4b) 2 . 

¢ ~ +~+bf 
(2.1S) 

Now with ¢ given by (2.17) we can solve Eq. (2.1S) for ¢, 
at least in principle, provided an exact functional form of 
w(¢) is known. It then follows from relations (2.13) and (2.16) 
that it is formally possible to obtain the explicit forms for the 
metric. 

Again with Eqs. (2.13) and (2. 16)-(2. IS) at hand it is not 
difficult to discuss the corresponding cases in the absence of 
the scalar field. Now in view of(2.1S), ¢' vanishes when (p2/ 
qZ + 2ap/q + 4b) = O. Bearing this in mind while eliminat­
ing ¢ between (2. 16a) and (2.17c) one arrives at the expres­
sion for aZ > 4b,p/q = - a ± ~a2 - 4b, 
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e2flt/J + [2/(plq + a)]ePt/JI/2 

+ [2/(plq + af] In[ 1 - (plq + a)ePt/JI /2] 

= 2(plq + a)(qx + Sn3)' (2.19) 

On the other hand using (2.17e) in (2.13) and (2. 16b), respec­
tively, one obtains for a2 = 4b andplq = - a 

eZa = (1/4t/J)( - (3qI2).x + n5 )-213, (2.20) 

(2.21) 

Equations (2.19)-(2.21) with t/J = const can be easily recog­
nized as Patnaik's results for the electrovac in general rela­
tivity.1O It is not difficult to see that here /3 = a leads us to 
¢ I = 0, which means that field equations in this case do not 
admit an electrovac solution. 

III. GRAVITATIONAL FIELDS DUE TO AN UNCHARGED 
SOURCE 

In the absence of the electric field, ¢' = 0 and Eqs. (2.S) 
and (2.11) yield, respectively, on integration 

(3.1) 

and 

e2flt/J(2a' + t/J' I t/J) = J, (3.2) 

e, d, and/being arbitrary constants. Now combining (3.1) 
and (3.2) one has 

2a'+t/J'It/J=/I(ex+d), (3.3) 

which in tum integrates to give, after suitable coordinate 
transformations absoring the integration constant, 

ezat/J = (ex + d YIC. (3.4) 

Now eliminating the derivatives of a and /3 by means of (3.1) 
and (3.4) one obtains from the field equations 

(2lu + 3) ~; = (1 + 2l\ e
2 

2' (3.5) 
'f' ~) (ex +d) 

It follows from Eq. (3.5) that the constant (1 + 2/ Ie) and 
(2lu + 3) must have the same sign. In what follows we shall, 
however, choose (2lu + 3) > O. This choice corresponds to 
the scalar field with positive energy density of the contribu­
tion from the scalar field. 

By virtue of the above analysis integration of the field 
equations is essentially reduced to the task of solving Eq. 
(3.5) with a suitable functional form of w(t/J). Equations (3.1) 
and (3.4) then give the explicit forms for the metric provided 
the integration of (3.5) yields t/J as an exact function of x. 

Different theories suggest different forms of w as func­
tions of the scalar field (see Ref. S and references therein). We 
now integrate Eq.(3.5) and give explicit forms for the metric 
by means of (3.1) and (3.4) in some of these theories. 

A. Brans-Dicke theory: w = const 

Here, 

t/J = t/Jo(ex + dt, (3.6a) 

(3.6b) 

eZa = t/Jo- I(ex + d Ylc - \ (3.6c) 

with k 2 = [( 1 + 2/ 1e)/(2lu + 3)] and t/Jo an arbitrary con­
stant. In this context it may be mentioned that the solutions 
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given by Reddy I I in this case are erroneous owing to use of 
an incorrect set of field equation in the work. 

B. Barkar theory: OJ = (4 - 3t/J)/2(t/J - 1) 

Here, 

t/J=sec2[ln (A(ex+d)/)], (3.7a) 

e2f3 = (ex + d)cos2[ln(A (ex + dn]' (3.7b) 

e2a = (ex + d Ylc cos2 [ln(A (ex + d V)]' (3.7c) 

with /2 = !(1 + ¥ Ie) and A an arbitrary constant. Solutions 
(3.7) were previously given by Banerjee and Duttachoud­
hUry? 

C. Schwinger theory: OJ = (1 - 3nt/J)l2nt/J. n being a 
constant [n > 0] 

Here, 

t/J = [In(B(ex + dIm)] -2, 

e2f3 = (ex + d )[In[B (ex + d t) p, 
e2a = (ex + d y/c[ln[B (ex + dr) p, 

(3.Sa) 

(3.Sb) 

(3.Sc) 

with m2 = Un(1 + 2/ Ie)] and B an arbitrary constant. 

D. Models with curvature coupling: OJ = 3t/J12(1 - I/J) 
Here, 

t/J = 4D(ex + dr[1 +D(ex + dn -2, (3.9a) 

e2f3 = (1/4D )(ex + d )1- n[ 1 + D (ex + d rP, (3.9b) 

e2a = (1/4D )(ex + d Ylc- n[ 1 + D (ex + d rp. (3.9c) 

In the above n2 = 1/3(1 + 2/ Ie) and D is an arbitrary con­
stant. It may be pointed out here that any other scalar de­
fined to be proportional to (1 - t/J)1/2 will satisfy a confor­
mally invariant equation (0 + 1R ) r = 0 (see PenroseI2

). 

IV. COSMOLOGICAL SOLUTION 

The static solutions (3.6)-(3.9) can yield special cases of 
Bianchi I homogeneous solutions when one performs a set of 
complex coordinate transformations 

x-i(t - die), t_ix, e- - ie, /- - if. 
In the following we give the final forms of a few cosmological 
solutions obtained in the above manner. 

A. Brans-Dicke theory (OJ = const) 

Here, 

e2f3 = t/Jo- leI - ktrl - \ 

e2a = t/Jo-Ielflc-kltlflc-kl, 

t/J = t/Jaekt \ 
R 3 = e(a+2f3 1 = t/JO-3IZek,t k" 

and the Ricci scalar g'"'vR/Lv is given by 

g'"'vR/Lv = - t/Joe
2 + k'k 20Jt k" 

where 

k 2 = (1 + 2/ 1e)(2lu + 3)-1, 

kl = H2luk 2 + 3(k - 1)2], 

k2= - [(w+ l)k 2+!(k-1)2+ 1]. 
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In the above situation it is very clear for (J) > O. We note that 
R-o and g'vRl'v_oo as t-O. The model is monotonically 
expanding or contracting without having a turning point. At 
the initial epoch " is either vanishingly small or infinitely 
large depending on the sign of the constant K. The same 
conclusion was also previously arrived at by Matzner and 
Ryan. 13 

B. Barkar theory 

The cosmological solutions corresponding to static so­
lutions (3.7) are 

and 

with 

e2/3 = ct cos2(/ln t + A ), 

e2a = cflet lie cos2(/ln t + A), 

" = sec2(/ln t + A ), 
R 3 = era + 2/31 = cl,t I, cos3(/ln t + A), 

/2 = l(1 + 2/ Ie), A = In(Ac/ ), II = (/2 + 3/4). 

(4.2a) 

(4.2b) 

(4.2c) 

(4.2d) 

Here we see that as t-o, we have R 3-0, i.e., the spatial 
volume of the model is zero and at a subsequent time when 
sec(/ln t + A )-0, we have again R 3-0. There is a turning 
point inbetween at t = exp[( 111) { tan - V 1/31) - A 1], where 
the spatial volume attains a maximum value. It is also seen 
that" has a minimum value that is " = 1 at t = exp( - A II ). 
At this epoch, since the parameter (J) becomes infinitely 
large, there is little difference from the corresponding situa­
tion in general relativity. One may also readily verify that ,,> 0 when R = O. In other words the expansion halts after 
the scalar field crosses its minimum. 

C. Schwinger theory 

In view of the static solutions (3.8) the corresponding 
cosmological solutions are 

e2/3 = T [In(BTmW, 

e2a = Tlle[ln(BTmW, 

,,= [In(BTm)] -2, 

R 3 = era + 2fJI = T(l +112el[ln(BTm)p, 

and the Ricci scalar 

(4.3a) 

(4.3b) 

(4.3c) 

(4.3d) 

gl'vRl'v = ( - 2/n)m2c2T - 2(1 +112el[ln(BTm)] -2, (4.3e) 

where the symbol T stands for ct. 
Here we observe that R 3-0 and g'vRl'v-+oo as t ap-' 

proaches 0 and also 1I( CB 11m) and R = 0 at an intermediate 
stage. It can be easily shown that for m < 0, R < 0 at the 
turning point R = 0 and thus we have a maximum of the 
spatial volume at this epoch. Further the scalar field" ap­
proaches zero or infinity as the spatial volume vanishes, i.e., 
R 3-o. 
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D. Curvature coupling 

Bianchi I type cosmological solutions are obtained from 
(3.9) in the form 

e2fJ = lD -I T(l- nl[ 1 + DTnP, 

e2a =lD- I T(fle-nl[1 +DTnp, 

t,b=4DTn[1 +DTn]-2, 

and gl'vRl'v = 0 with Twritten for ct. 

(4.4a) 

(4.4b) 

(4.4c) 

The above model has a monotonic time behavior indi­
cating that there is no turning point anywhere in the evolu­
tion from t = 0 to t = 00. One should note that the vanishing 
of" at any instant indicates the infinitely large value of the 
gravitational constant, which, however, ensures the exis­
tence of singularity. 

We have seen that in none of the cosmological models 
cited above the existence of singularity can be avoided. For 
all the above models expressed in the metrics given in (4.5)­
(4.8) if one puts if = 0 one finds immediately that the line 
element in each case reduces to the form 

ds2 = (ct )-1/2(dt 2 - dx2) - ct (dy2 + dz2). (4.5) 

Now introducing new time and space coordinates by 

t = ~C-1/4t3/4, X = (3c/4)-'/3x , 

y = (3c/4)1/3y , Z = (3c/4)'/3z, 

and then dropping bars over coordinates it is not difficult to 
show that (4.5) reduces finally to the form 

ds2 = dt 2 - t -2/3dx2 - t4/3(dy2 + dr). (4.6) 

The above metric can easily be recognized as a special case of 
the Kasner universe. 14 
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Probability measures and Hamiltonian models on Bethe lattices. I. Properties 
and construction of MRT probability measures 
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The properties of one-step Markov, rotationally and m-step (m = lor 2) translationally invariant 
(MRT) probability measures on q-state-site (qSS) Bethe lattices are studied. A theorem is prpven, 
which completely defines such measures in terms of m(q2 + q) fundamental probabilities. These 
are explicitly calculated for any MR T -qSS Hamiltonian model. As a consequence of our 
approach, the dychotomy between alternative solutions of Hamiltonian models on Bethe lattices 
is solved. 

PACS numbers: 05.50 + q, 02.50. + s, 64.60. - i 

I. INTRODUCTION 

Hamiltonian models on regular lattices are the subjects 
of great attention in statistical mechanics, since they are 
schematizations which retain the most relevant physical 
properties of many real systems. Despite their apparent sim­
plicity, such models are not exactly solved, except for few 
cases. This is due to the problem of taking into account cor­
relation effects, which is an enormous task for systems with 
only nearest-neighbor interactions, too. These difficulties 
justify the fast development of new approximation methods 
and the continuous refinements of old ones in order to ex­
tract useful information about the models under investiga­
tion. An alternative strategy is the modification of the topo­
logical structure oflattices, provided this preserves the main 
physical features of the original systems and (possibly) gives 
exact solutions. This further schematization can be done by 
studying Hamiltonian models on hierarchical lattices and 
Bethe lattices. As regards to the former ones, which can be 
obtained through iterated decoration and miniaturization of 
an initial structure, refer to the recent papers by Griffiths 
and Kaufman, I and references therein. Although finite por­
tions of a Bethe lattice could be seen as hierarchical lattices I 
we shall follow a distinct approach here. 

The main feature of Bet he lattices is their thin structure. 
Only one path joins every pair of sites, so that correlations 
can be taken into account exactly for any m-step Markov 
system.2 Due to this property, Hamiltonian models on this 
kind oflattices were studied in detail by many authors. 3

-
21 It 

is known (see, e.g., Ref. 20) that distinct results can be ob­
tained for the same system in the thermodynamic limit: they 
are usually referred to as (i) Cayley tree solutions and (ii) 
Bethe lattice solutions. These labels are somewhat mislead­
ing, and it is important to realize that they do not refer to 
distinct topological objects (see the Appendix A), but to dis­
tinct ways of calculating the per site values of extensive func­
tions in the thermodynamic limit. In fact, the huge number 
of surface sites in any finite tree gives rise to non-negligible 
surface effects which are retained by type (i) approaches and 
neglected by type (ii) approaches. From the mathematical 
point of view type (i) methods seem to be correct, while the 
others are criticizable since they do not give formal justifica­
tions for the rejection of surface effects. From the physical 
point of view the situation is reversed, since residual surface 

effects in the thermodynamic limit can be seen as undesired 
contributions from a "ghost surface" which actually does 
not exist in the infinite system. 

The previously described dichotomy between alterna­
tive solutions is related to the concept of convergence in the 
sense of Van Hove. 22 Roughly speaking, the per site free 
energy of an infinite system is not defined univocally, but 
depends on the sequence offinite subsystems used to take the 
thermodynamic limit: Van Hove's convergence condition is 
a criterion to select those sequences which give the "physi­
cally good" result. In this connection, Bethe lattices are very 
singular objects, since the use of this criterion in its standard 
form (see Sec. VII) implies that no sequence of finite trees 
converges to an infinite tree in the sense of Van Hove. As a 
consequence two interpretations arise: (I) Van Hove's con­
vergence condition is considered meaningless on Bethe lat­
tices, and therefore it may be disregarded [as it is done by the 
authors who follow type (i) approaches]; (II) this criterion is 
considered meaningful on Bethe lattices, which implies that 
"good" solutions perhaps can be obtained by "artificial" de­
letion of surface effects [this way is followed by all type (ii) 
approaches]. From the formal point of view this double in­
terpretation is unsatisfactory, since it seems to imply that 
statistical mechanics cannot be extended to Hamiltonian 
models on Bethe lattices without uncertainty. 

It is our aim to remark that this uncertainty may be 
removed, and that a new definition and a univocal interpre­
tation of Van Hove's convergence condition may be found, 
by means of some results of rigorous statistical mechanics, 
which have been recently collected, generalized, and unified 
by RuelleY The main point of interest of Ruelle's approach, 
in the present case, is the fact that the thermodynamic limit 
of probability measures always exists on any discrete state 
countable lattice, and does not depend on the choice of the 
sequence of finite subsystems used to take the limit. In view 
of this property, the probability measure approach can be 
seen as the canonical method for the solution ofHamiItonian 
models on lattices, and Van Hove's convergence condition 
can be interpreted as a test of compatibility of the thermody­
namic limits of the free energy with that of Gibbs probability 
measures. This subject is considered explicitly by Ruelle for 
Hamiltonian models on hypercubic lattices, and will be stud­
ied here on Bethe lattices by means offormal applications of 
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the probability measure approach. In this paper we will also 
prove that, owing to the simple structure of Bethe lattices, 
the probability measure approach can be applied explicitly, 
and gives the complete analytical solution of a large class of 
Hamiltonian models [including as very special cases the Is­
ing model, the Potts model, the vector (or planar) Potts mod­
el, the Ashkin-Teller model, the Z (q) (or clock) model, and 
all the previous models with annealed site dilution]. To do 
this, some tools of measure theory, probability theory, and 
graph theory will be applied. 

We first study the properties of a one-step Markov (M) 
probability measure f-l defined on a q-state-site (qSS) Bethe 
lattice: q = 2,3, .... We prove a decomposition rule which 
completely defines f-l in terms of two classes of elementary 
objects ("site" probabilities and "bond" probabilities). If f-l is 
also rotationally and one- or two-step translationally invar­
iant (RT) on the Bethe lattice, the distinct elementary proba­
bilities reduce to m(q2 + q) fundamental probabilities, where 
m = 1 (m = 2) if f-l is one-step (two-step) translationally in­
variant. Then we introduce the most general Hamiltonian 
model characterized by MRT interactions on a qSS Bethe 
lattice, and show that the physical expectation for R T Gibbs 
probability measure(s) describing pure phase(s) of the system 
in the thermodynamic limit, corresponds to the mathemat­
ical requirement that a certain piecewise contracting proper­
ty holds. When this takes place (which, e.g., is the case for the 
ferromagnetic or antiferromagnetic Ising and Potts models) 
the fundamental probabilities are easily calculated, and al­
low us to construct the measure f-l relative to each phase that 
appears in the system. Furthermore, any thermodynamic 
limit characterized by RT breakdown is shown to be a "mix­
ture," i.e., a probability measure which describes phase mix­
ing. One can prove that the results obtained are the same (but 
much more detailed) as those given by the Bethe-Peierls 
cluster approximation24 on standard lattices, while general 
agreement with those of the previously described type (ii) 
methods can be checked easily. These results and the proof 
that the thermodynamic limit of the free energy [as it is done 
in type (i) approaches] is affected by a topological discrepan­
cy, show that Van Hove's convergence condition is extendi­
ble in its standard form to Bethe lattices, and is meaningful 
on these graphs. All these subjects are contained in the pres­
ent paper. 

Although the knowledge of f-l formally solves every con­
figurational problem on the qSS Bethe lattice, the thermal 
properties of the model under investigation could have no 
simple relations with Gibbs probability measures. This prob­
lem is entirely solved by finding the "correct" free energy of 
the infinite system in terms of the fundamental probabilities. 
One can do that, and actually one can find the correct ther­
modynamic limit of any extensive function on Bethe lattices, 
through a localization procedure which takes advantage of 
the above-mentioned decomposition property of f-l. In fact, 
as regards to the thermodynamic limit oflocal quantities, it 
is irrelevant whether Van Hove's convergence condition 
holds or does not. The subjects above and other topics (e.g., 
the solution of all polychromatic MRT -correlated-site/ran­
dom-bond percolation models) are collected in a following 
paper25 (which we call paper II from now on). 
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The outline of this paper is as follows. In Sec. II the 
general terminology is established. A theorem concerning 
the definition of a MR T probability measure f-l on the qSS 
Bethe lattice in terms of the above-mentioned fundamental 
probabilities is proven in Sec. III. The M probability mea­
sures on finite trees are studied in Sec. IV, while the problem 
of the construction ofM Gibbs probability measures on fin­
ite trees is considered in Sec. V. The thermodynamic limit is 
treated in Sec. VI. Conclusions and comparisons with other 
methods of solution are given in Sec. VII. Useful definitions 
concerning trees, and their relations with other terminolo­
gies, are reported in Appendix A. The infinite-dimensional 
character of Bethe lattices, and the "classical" character of 
related solutions are briefly considered in Appendix B. Spe­
cialization of our general formalism in order to obtain some 
relevant Hamiltonian models is described in Appendix C. A 
proof concerning arguments in Sec. VI is given in Appendix 
D. 

Finally, we remark that preliminary reading ofSecs. I 
and VIII of paper II could be very useful for physicists who 
are more interested in the applications of the present proce­
dure, rather than its mathematical justification. 

II. NOTATION AND GENERAL REMARKS 

Let us consider an infinite, connected, and locally finite 
graph 26 G = (V,E) with a countable set of sites. We suppose 
that every site iE V assumes q states which will be labeled by 
the variable Vi = 1,2, ... ,q. Each configuration of V can be 
represented by the collection [ VOl, V(2), ... , Vlql I, where each 
set VI'I contains all the sites iEVsuch that Vi = r; r = l, ... ,q. 
Therefore, the set of all the configurations of V is in one--one 
correspondence with the set II V II of all ordered partitions of 
Vin q sets. Let A l' A 2, ... , Aq be finite sets of sites of G. The 
local event [A l' A2, ... , Aq 1 on V will be defined as the set of 
all the configurations in II V II which attribute the state Vi = r 
to every site iEA,; r = 1, ... , q. When there is no confusion we 
use the notation g:' A to denote any local event (A l' ... , Aq 1 
with basis A u;'~ IA,. Notice that, if AsnA, #0 at least for 
one pair of indices s#t, [AI' ... , Aq 1 is incompatible with all 
the configurations of Vand is the null event 0. The global 
event containing all the configurations of V is 
[0,0, ... ,01 = IIVII. The following inclusion rule and com­
position rule follow by definition: 

(AI, .. ·,Aq 1 ::J [A; , ... ,A; I<=>A, CA;, r = 1, ... ,q, 

(AI, ... ,Aq In(A ;', .. ·,A;I = [AluA i', .. ·,AquA ;1. (1) 
Let Va be a finite nonvoid subset of V. Using relations (1) it is 
easy to see that the set of all local events g:' A such that 
A C V(A ~ Va) is a semiring27 R (Ra)' i.e., the simplest collec­
tion of sets where (probability) measures27,28 can be defined. 
We may also consider generalized local and nonlocal events 
on V (generalized local events on Va), i.e., the elements of the 
smallest a-field27 F::J R [Fa ::JRa (actually Ra contains a finite 
number of elements, and Fa is a ring)27]. This follows by the 
fact that any measure f-l * defined on a semiring R * can be 
extended to the a -field F * ::J R * of all f-l * -measurable 
events.27 Notice that the collection II Vall of all local events 
g:' Va ERa such that g:' Va # 0 may be seen as the set of all the 
configurations of Va· Obviously, the knowledge of f-la W va) 

Fulvio Peruggi 3304 



                                                                                                                                    

for every If va Ell Voll completely defines the probability mea­
sure /1-0 on R o. 

Up to now the bonds in G were not used: we need them 
to introduce a metric in V. We define the length of a walk26 in 
G as its number of bonds, and the distance between any pair 
i,j of sites in Vas the length of the shortest walk( s) connecting 
i to j in G. Given a finite nonvoid XCV and a fixed number 
m > 0, we define the internal boundary..:::lX (the external 
boundary aX) of X as the set of all the sites in X (V - X) such 
that their distance from at least one point in V - X (X) is less 
than or equal to m. Let Ybe another finite subset of V such 
that XnY = 0 and ax!: Y; and let If x' Ifax' If y be local 
events such that If y!: Ifax . We say that the probability 
measure /1- on R is m-step Markov2 if and only if the equality 
between conditional probabilities28 

(2) 

is verified for every choice of the sets of sites and the associat­
ed events which satisfies the above-mentioned conditions, 
and does not hold if m is decreased by 1. The same definition 
can be done for /1-0 on Ro by substituting Vo to V. 

We are interested in the construction of Gibbs probabil­
ity measures on R associated to Hamiltonian models on G. 
To this end, let us introduce an interaction I in the system, 
which associates a certain energy to every local configura­
tion of V. In other terms I may be considered as a real func­
tion defined on the elements of R, which is zero on the global 
event. The general theory requires that I is properly 
normed. 23 This will be satisfied here by assuming that 
I (If) = 0 for every If ER whose basis contains at least two 
sites at a distance larger than a fixed number m > O. Notice 
that the hypothesis above also implies that any Gibbs prob­
ability measure on Ro(R ) generated by I is m-step Markov. 
Given two local events If Vo' If avo, the Hamiltonian on Vo 
relative to If v. is defined as29 

o 

- /3~0(1f vo)= L I(If), 
/!feR$;;;?/!f vo 

while the interface Hamiltonian on..:::l Vo, relative to the 
"boundary condition" If ava, is defined as29 

(3) 

- /3..:::l~0(1f vo;1f avo) L I(If). 
1feR$;;;? 1f von1f avo; 1f;;:j it' vo;1f;;:j 1f avo 

(4) 

The Gibbs probability measure /1-0 on Ro is obtained in the 
conventional way by assuming the following probability for 
every If va ERo: 

/1-0(1f vo )=(lIZo)exp[ -/3~0(1f vol], 
(5) 

In a similar way we define the (conditional) Gibbs probabil­
ity measure /1-oc on R o (given that If avo is an event with prob­
ability 1): 

/1-oc (If Va Ilf avo) 

==(lIZoc )exp [ - /3~0(1f vol - /3..:::l~0(1f vo;1f avo)]' 
(6) 
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Let us consider a sequence { Vn J;:' = 1 of finite subsets of V 
(ordered by inclusion) such that u;:' = 1 Vn = V. Furthermore, 
let /1-n be a probability measure on R n, and let n A be an index 
such that A C Vn for every n > n A' The following can be 
shown.23 

Proposition 1: One can choose a subsequence { Vn• J;;; = 1 

of { Vn J;:' = 1 such that the limit 

exists for every If A ER, and defines the probability measure/1-
onR. 

We say that/1- is a thermodynamic limit ofthe/1-n 's, and 
use the conventional notation 

(7) 

When every /1-n is a probability measure given by (6), we 
obtain Gibbs probability measures (=Gibbs states) describ­
ing the infinite system governed by the interaction I. In this 
case the need of subsequences in Proposition 1 is better un­
derstood by noting that distinct limits may be obtained ac­
cording to the selected (subsequence {/1-n' J;;; = 1 and the cor­
responding) boundary conditions. The closed hull of the 
thermodynamic limits found in such a way is the set %1 of 
all Gibbs states23 [in fact it contains, as well, the limits ob­
tained when every /1-n is given by (5)]. The set %1 is convex 
and compact, and is a simplex.23 In other terms, any nonex­
tremal element of %1 has a unique decomposition in terms 
of extremal Gibbs states, i.e., it is a convex or integral combi­
nation of these probability measures. 

III. PROPERTIES OF MRT PROBABILITY MEASURES 
ON qSS BETHE LATTICES 

A Bethe lattice L = (V,E) is an infinite connected tree26 

whose sites have the same coordination number 0" + 1. We 
shall identify L with the graph G of the preceding section, in 
order to study the special properties that anyone-step Mar­
kov probability measure (not necessarily a Gibbs state) /1- on 
R exhibits is such a case. In fact, the following theorem 
holds. 

Theorem 1: If /1- is MRT on L, i.e., if it is one-step Mar­
kov (M), and invariant under any elementary rotation and 
m-step translation (m = lor 2) that carry L onto itself (RT), 
then /1- is completely defined by a set of m(q2 + q) fundamen­
tal probabilities. 

To begin, we give a formal definition of m-step transla­
tions and elementary rotations of L. The first step in our 
procedure is the construction of a proper labeling for every 
site of L. To do this we choose a reference site iE Vand con­
sider a partition of V in shells surrounding i. The / th shell 
contains all the sites hE V at distance / [=1 (i,h )=number of 
bonds of the unique walk connecting i to h ] from i; 
/ = 1,2, .... Let us consider a numerical representation using 
0" + 2 digits, and assign the digit 0 to i, and the digits 
1,2, ... ,[0"], [0" + 1] to the sites of the first shell. Then proceed 
in the following way: (1) execute steps (2)-(4) fori = 1,2, ... ; (2) 
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choose a site k belonging to the / th shell surrounding i; (3) 
assign the digits 1, ... , [0-] to the sites of the (/ + 1)-th shell 
which are adjacent to k; and (4) repeat steps (2)-(3) for every k 
belonging to the / th shell. Let i=vo, VI' .•. , VI =h be the sites 
of the walk WlkL connectingitoh,andlet [a,] be the digit 
assigned to v,;t = 1, ... ,/. The site h will be labeled with the 
number [a l ][a2]···[a/] which we denote ai(h ) to stress its de­
pendence on the reference site i. Let iE VandjE Vbe two sites 
of L at distance n. The n-step translation .7 ij of L onto itself 
that carries i into j is defined as the isomorphism that carries 
every hE V onto the site kEV such that ai(h) = aj(k). Let 
g; [slIt 1 be the permutation of the digits 1, ... , [0 + 1] which 
interchanges the digits [s] and [t] and leaves unchanged the 
others. The elementary rotation fit i[sl [, 1 of L around the site i 
is defined as the isomorphism that carries each hE V - ! i 1 
labeled by ai(h )=[al ][a2] ••• [a/] onto the site kEV - ! iJ la­
beled by ai(k )= g; [slIt 1([a l ])[a2]..· [a/ ] .Note that, since ev­
ery bond of L is identified univocally by its terminal sites, 
bond transformation of Lunder .7 ij and fit i[sl [, J is trivially 
implied by site transformation. 

ProofofTheorem 1: For every hEV let us consider the 
local events {!h J,0, ... ,0}, {0,!h J,0, ... ,0}, ... , 
{0, ... ,0,! h l}, which will be denoted, respectively, by 
~ hv.;Vh = 1,2, ... ,q. For a given local event ~ A 
= !AI,· .. ,Aq J, let TA = (VAJEA) be the smallest connected 

subgraph of L such that the basis A of ~ A is contained in VA' 

!:t OJ + 1 be the coordination number ofjE VA in TA , and let 
A = VA - A. His clear that the local events in IIA II are mutu­
ally disjoint, and that their union is the global event 
~ 0 = !0, ... ,0}. Then we have 

Jl(IfA)=Jl(~AnIf0)= L Jl(IfAnlf;;j-)' (8) 
W::«'IIAII 

Since TA is a tree, and owing to the M property, we may 
interpret ~ A nlf A as a branching process. 28 It starts from the 
source site iEVA , propagates along the bonds Ihk )EEA (ori­
ented along the running direction), and stops into the surface 
sites of TA (see Appendix A). Then we have 

Jl( If A) = L Jl( If iV) II Jl( I&' kVk Ilf hv.! (9a) 
IIA II Ihk )EEA 

= L II(hk )EEAJl(1&' hVP~kVk) , (9b) 

IIAII IIjEVA [Jl(l&'jv)] J 

where, by definition, zeAruA r implies V z = r(r = 1, ... ,q); 
while the second equality shows that.u( If A) does not depend 
on the choice of the source. Therefore, we have proven that 
the probability measure of any local event in R (therefore of 
any event in F) can be determined by means of the site proba­
bilities, 

Jl(If;v,l, iEV, Vi = 1, ... ,q; 

and the bond probabilities, 

.u( If kVk Ilf hV,)} 

(I&' II&' (hk)EE, Vh,Vk = 1, ... ,q. 
Jl hVh kVk) 

(10) 

(11) 

Now, let us choose two adjacent reference sites u, v of L, and 
let us apply the RT property for m = 1. By repeated applica­
tion of one-step translations we have 
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Jl(lf ir ) = Jl(l&'ur) Pr' iEV, r=l, ... ,q. (12) 

By application of the translation that carries k in h, and of an 
elementary rotation, we prove that Jl( ~ ks II&' hr) 
= Jl(~ hs I ~ kr)' for every (hk )EE, andrrS = I, ... ,q. Then, ap­
plying other isomorphisms of L onto itself, we find 

Jl(1f ks II&' hr) = Jl( ~ us I ~ urI Prs' 

(hk )EE, r,s = 1, ... ,q, (13) 

proving the theorem for m = 1. Now, let us consider the case 
m = 2. It is easy to see that two-step translations induce a 
partition of Vin two subsets ve and VO such that all the sites 
of L which are adjacent tojEveVEVo) belong to V°(Ve). 
Moreover, ve and VO do not mix under rotations of L. We 
use again two adjacent reference sites u, v of L, such that 
UE V e

• As in the preceding case, repeated applications of ele­
mentary rotations and two-step translations give 

Jl(lfir)=Jl(~ur) P~, iEve} _ . 

(
I&') (eP . r - 1, ... ,q, 

Jl ir =Jl 0 ur) P~, IEVo 
(14a) 

Jl(~ ks Ilf hr) = Jl(1&' us Ilf urI P~s,} hEve,(hk )EE, 
If (14b) 

Jl( hs Ilf kr) = Jl(~ us I ~ ur) P~s' r,s = 1, ... ,q. 

Thus, in the present case, we have 2q + 2q2 fundamental 
probabilities. 

Q.E.D. 
We also state the following. 

Corollary 1: There are at most q2 - 1 independent fun­
damental probabilities for m = 2; they are at most (q + 2) 
(q - 1)/2 for m = 1. 

Proof For m = 2 the following relations hold: 
q 

L P~ = 1, x = e,o; (15a) 
r=l 

q 

L P~s = 1, x = e,o; r = I, ... q; (I5b) 
s=l 

P~P~s = Jl(~ urnI&' us) = P~P~r' r,s = l, ... ,q. (ISc) 

Using the normalization condition (ISb) for x = 0, and the 
symmetry condition (I5c), we see that 

q 

P~ = L P;P~s' 
t~ 1 

r,s = I, ... ,q; (16) 

o P~P~s 
Psr == q e e ' 

~t=lPtPts 
i.e., o-probabilities depend on e-probabilities. These must sa­
tisfy relations (I5a)-(ISb) for x = e, which imply that only 
q2 _ 1 of them are independent. For m = 1, relations (15) 
still hold, provided we delete all the upper indices. In such a 
case, the symmetry condition can be used only to prove that 
Psr = PrPrs/Ps; r=/=s. Then we can consider every Psr with 
s> r as a function of the other (q + 1 )q/2 + q fundamental 
probabilities. The normalization conditions allow us to 
eliminate other q + 1 terms, thus proving the statement. • 

IV. PROPERTIES OF M PROBABILITY MEASURES ON 
qSS FINITE TREES 

Let JlT be a one-step Markov probability measure on 
the semiring RT of all qSS local events defined on a finite tree 
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T = (V roE T)' We choose a reference site UE V T and orientate 
every bond (ij)EET in such a way that / (u,i) < / (uJ). 

Lemma 1: f1 T is completely defined by the probabilities 

f1T(~ uri, r = 1, ... ,q - 1, 

f1T(~jsl~ir)' r= 1, ... ,q, s= 1, ... ,q-1, 

Iij)EET • 

Proof It is enough to use relation (9a), provided we re­
quire that TA must contain the site u, and that u is chosen 
always as source site. Some probabilities are not needed since 
they are given by obvious normalization conditions. • 

We call V~(V';-) the set of all the sites in V T such that 
their distance from u is an even (odd) number. Let VE V';- be a 
site adjacent to u, and WE V~ be a site adjacent to v and 
distinct from u. We say that f1 T satisfies two-step partial 
invariance (PI) on Tif, for every Iij)EET, we have 

f1T(~jS I ~ir) = f1T(~ us I ~ uri, iEV~, 

f1T(~jsl~ir)=f1T(~wsl~ur)' iEV';-, 

r,s = 1, ... ,q. (17) 

One-step PI is recovered if f1 T( ~ us I ~ ur) = f1 T( ~ ws I ~ ur) for 
every pair of indices. Remark that, as a trivial consequence 
of Lemma 1 and relation (9a), PI implies that f1 T( ~ hr) 
= f1T(~ kr) (r = 1, ... ,q) for every pair h,k of sites in Tsuch 
that / (u,h ) = / (u,k). We say that f1T satisfies two-step (one­
step) global invariance (GI) if relations as (14) [(12)-(l3)] are 
verified on T. 

Lemma 2: f1T is m-step GI on T if it is m-step PI and 

f1T(~ urnI&' us) = f1T(~ usn~ wr)' m = 2, 

f1T(~urn~us) =f1T(~usn~ur)' m = 1, 

r,s = 1, ... ,q. 
Proof The case m = 2. Note that 

q 

f1T(~ uri = I f1T(~ urn~ us) 
s= 1 

q 

= I f1T(~ usn~ wr) (18) 
s= 1 

= f1T(~ wr)' r = 1, ... ,q. 

Let u==Zo, Z l, ... ,zd be the sites of a walk connecting u to the 
surface site Zd of T. Suppose the following equality holds: 

f1T(~z.,)=IIT(~z s), s= 1, ... ,q. 
r- r- 1+ 2 

Then PI and (19) imply 
q 

f1T(~zl+,r) = If1T(~z,s)f1T(~z/+l'l~z,s) 
s= 1 

q 

(19) 

= I f1T(~Zld)f1T(~zl+3rl~zl+2S) (20) 
s= 1 

= f1T(~ z r)' r = 1, ... ,q; 
1+3 

f1T(~Z2S) =f1T(~ ws), S = 1, ... ,q. 

From (18) and (20) it follows by induction that (19) is true for 
/ = 0, 1, ... ,d - 2; i.e., relations as (14a) hold. Then GI for f1T 
will be achieved if we show that 
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f1T(~ z,r I ~ ZI+ IS) = f1T(~ Z'+2' II&' Z/+ IS)' 

f1T(~ z,+ ,s I ~ z,,) = f1T(~ Zl+ ,s I ~ Z'+2')' 

O</<d - 2, r,s = 1, ... ,q. 

J. Math. Phys., Vol. 25, No. 11, November 1984 

(21) 

Remark thatf1T(~ I ~') = f1T(~'1 ~)f1T(~)lf1T(~')' There­
fore PI and (19) imply that it is enough to prove the second 
equality (21) for / = O. Without loss of generality we can 
choose Z 1 =V and Z2=W, In this case, our starting hypothesis 
and (18) imply the desired result. The case m = 1 can be 
proved in the same way. • 

We are interested in the determination of the probabil­
ity measure f1 of the preceding section through a thermody­
namic limit. Therefore, we introduce a sequence! Tn J;;' = 1 of 
connected section graphs of the Bethe lattice L = (V,E), 
which are constructed as follows. We choose a reference site 
UE Vand define Tl as the tree formed by u, its adjacent sites in 
L, and the bonds connecting them. The tree Tn + 1 is ob­
tained by adding to Tn = (Vn ,En) the sites in Vbelonging to 
the shell at distance n + 1 from u, and the bonds in E con­
necting them to sites in Vn . The whole sequence follows by 
induction. Note that the sets V~, V~ defined as above, auto­
matically induce the partition of the sites of L into subsets 
ve,Vo. 

LetfiT({tn) be the restriction of the probability measure 
f1 on R to the semiring R T(R n ) of all local events defined on 
the finite tree TCL (Tn CL, n = 1,2, ... ). Furthermore, let 
! Tn' J;; = 1 be a subsequence of ! Tn J ;;'= 1 • 

Lemma 3:f1 is MRT on the Bethe latticeL iffin' is MGI 
on Tn' for every index n'. 

Proof Remark that, as a consequence of Theorem 1, 
any MGI probabilitymeasuref1T onRT spans a MRTprob­
ability measure on R, Therefore, f1 is MR T on L if, for every 
T, fiT is characterized by the same set !p J offundamental 
probabilities. We see that all thefin' 'scorrespond to the same 
!p J. since. for every index nb, fi ' can be considered as the 

no 

restriction to R , of any fin' with n' > nb· Moreover, any fiT 
no 

corresponds to the same !p J. since. for every T, there exists 
large enough n; such that TC T , and fiT can be seen as the n, 
restriction of fi " • n, 

Finally. we look for the structure of the most general 
interaction Ion R which is compatible with a MRT Gibbs 
probability measure f1. According to the M property. the 
maximum range of I must be m = 1, i.e., it is nonzero only on 
maximal local events ~ A ER such that A contains only one 
site (_external fields), or a pair of adjacent sites (-nearest 
neighbor coupling terms). Adding to this the request for ro­
tational and two-step translational invariance. we deduce 
that the Hamiltonian (3) relative to each tree Tn is given by 

-PJYn(~ vJ 

= ~ K~v+ ~ H~ .. IJ ~ , 
(ij Eli. ieV. 

(22) 

Here x is e (0) if iE ve (iE Va); 

K;s -K~" r.s = 1 •... ,q; (23) 

and one-step translational invariance can be recovered by 
deleting sublattice dependence. i.e., by dropping everywhere 
the upper indices. As regards to the interface Hamiltonian 
(4), the M property implies that it contains only coupling 
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terms associated to pairs of adjacent sites lying, respectively, 
in.J Vn and avn, i.e., to bonds connecting surface sites of Tn 
to their adjacent sites in V - Vn (=the perimeter26 of Tn). 
Without loss of generality, we will represent them by means 
of effective fields acting on each site of the surface of Tn : 

- P.J!Ir'n ('l/ V
n

; 'l/ av.! 
= I I ('l/iv,n'l/jV ) 

f6"v,J f6'v
n
;f6'jv

j
J f6'av

n
' (ij)eE j 

= ~ B\nl £.. IV·" 
~VII I 

(24) 

For convenience we set H ~~~=H~, + B ~~~ for every iE..:i Vn, 
and introduce the shortened notation 

+ 

v. CONSTRUCTION OF M GIBBS PROBABILITY 
MEASURES ON qSS FINITE TREES 

(25) 

Let u be the common central site of the trees of the 
sequence { Tn J;:' = 1 • Given an index n, we consider a site h of 
Tn which is distinct from u and does not belong to the sur­
face of Tn' Deletion26 of h disconnects the tree Tn' Let 
Tn (h ) = (Vn (h ),En (h )) be the tree formed by h, the discon­
nected parts not containing u, and the bonds of Tn joining 
them to h. For hE..:i Vn we set Tn (h )=( {h J ,0). Finally, for 
h =u, and for every k such that I (u,k) = 1, we introduce the 
tree Tn (h,k ) which we obtain by Tn through deletion of all 
the sites in Tn (k ). We write again Tn (h ), instead of Tn (h ,k ), 
when there is no confusion. For every Tn (h ) we also define 

.J Vn (h )= Vn (h )n.J Vn, 

An(h,vh)= I exp( I K~'Vj 
II Vn(h I - {h III (ij)EE.(h) 

+ I H~, + I H\~~). (26) 
iEV.(h I -.:I V.(h I iE.:! V.(h I 

Let V (h ) be the set of sites in Tn (h ) which are adjacent to h. 
The hierarchic relations 

An(h,Vh) = exp(H~.l II ( ± eXp(K~hvk)An(k,Vd) 
kEV(h) Vk= 1 

(27) 

give the values of all the A 's in terms of 

An(i,vi)=exp(H\~~), iE..:iVn. (28) 

For every X!: V(h ),x #0, we also introduce 

rn(h,vh;X)= U( v~ leXp(K~hvk)An(k,Vd} (29) 

Letjbe a site of Tn' and let u==zo, zl, ... ,zd,iJbe the sites 
of the walk connecting u to j. We find 

1 q 

,un ('l/ir) = Zn ~~I An (u,to) 

q 

X I exp(K~"" +Ht.) 
~,=I 

Xrn (ZI,tl; V(ZI) - {Z2}) 
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X··· 
q 

X I exp(K;d_l~d +Ht) 
~d= 1 

Xrn(Zd,td;V(Zd) - {ill 

Xexp(K~dr +H;Wn(i,r;V(i) - UJ) (30) 
q 

X I exp(K;,)A n Ij,t ) 
,= 1 

q 

=!l'n(i,r) I exp(K;,)Anlj,t) 
,= 1 

,un ('l/irn'l/js! =!l' n(i,r)exp(K;s)Anlj,s). 

Therefore Lemma I implies that,un is completely defined, 
since we have 

(
'l/ ) = An (u,r) "2.;= 1 exp(K~,)An (v,t) 

,un ur q , 

"2.s= IAn (u,s) "2.;= 1 exp(K:,)An(v,t) (31) 

'l/ I'l/ exp(K;s)A n Ij,s) 
,un ( js ir) = ----'-'-----

"2.; = 1 exp(K;,)A n Ij,t ) 

Notice that these probabilities are homogeneous functions 
(of degree zero) of the A's, and can be expressed in terms of 

An (h,r) 
An (h,r)= , hEVn, r = I, ... ,q. 

An(h,l) 

These new parameters satisfy the hierarchic relations 

An (h,r) = exp(H; _ H~) II ( "2.;= 1 exp(K;s)An(k,s) ) 
kEV(h I "2.;= 1 exp(K ~s)An (k,s) 

(32) 

=I[/;(A n (k,s)), r = 2, ... ,q, (33) 

that give all of them in terms of 

An (i,t) = exp(H \~) - H ~7'), iE..:i Vn, t = 2, ... ,q. (34) 

Let us consider now the special case of uniform bound­
ary conditions, i.e., H~~I = H~nl for every iE..:i Vn, t = I, ... ,q . 
These give shell symmetry on Tn' and imply that site depen­
dence is substituted by shell index (=distance from u) depen­
dence in every A, r, andA. Moreover, the hierarchic rela­
tions (33) are substituted by the recursive relations 

An (I - I,r) = cP ;(An (/,s)), r = 2, ... ,q, 

where x is eta) if 1- 1 is even (odd), and 

CP;(An(/,s))=exp(H;-H~) s=1 rsl'"n' , 
(

"2.q exp(K x \ 1 (I s) )" 

"2.; = 1 exp(K ~s)An (/,s) 

r = 2, ... ,q, I <I<n. 

(35) 

(36) 

We will say that {A e(r) J; = 2 is a fixed point of the system 
(Tn ;!Ir'n + .J!Ir'n) if and only if 

A e(r) = cP ~(CP ~(A e(t ))), r = 2, ... ,q; (37) 

and define the auxiliary fixed point parameters {A O(s) J; = 2 

as 

A O(s)=CP~(A e(t)), S = 2, ... ,q. (38) 

Note that every fixed point corresponds to a set of uniform 
boundary conditions such that the probability measure,un is 
(two-step or, in case, one-step) PIon Tn' In the particular 
case of an interaction such that 

H~ = H~-Hr' r,s = I, ... ,q, (39) 
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fLn will be one-step PIon Tn if and only if 

A e(r) = A O(r)==A (r), r = 2, ... ,q. 

We state the following. 

(40) 

Lemma 4: The probability measure fLn is GI on Tn at 
every fixed point of the system. 

Proof We will show thatfLn is at least two-step GI on 
Tn. Because of Lemma 2 it is enough to prove that 

fLn(lfurnlfvs) = fLn (lfvsnlfwr)' r,s= 1, ... ,q, (41) 

where VE VI - ! u I and WE V2 - VI are two adjacent sites of 
Tn; n = 2, 3, .... This relation is equivalent to 

An(u,r)exp(K~s +H~)rn(v,s;V(v) - !wl) 
q 

X I exp(K ~t)A n (w,t ) 
t= I 

q 

= I An(u,t)exp(K;s +H~) 
t= I 

xrn(V,S;V(V) - !wJ)exp(K~r)An(w,r). (42) 

Using (23) it becomes 
q 

I exp(K~t)[An(u,r)An(w,t}-An(u,t)An(w,r)] = O. (43) 
t= I 

By means of(32) we see that the term in the brackets is zero if 

An (u,r) = An (w,r) , (44) 
An (u,t) An (w,t) 

which is certainly satisfied at every fixed point since 
/(u,w) = 2. • 

When (39) holds, applying again Lemma 2 for m = 1 
and other simple procedures, one can also prove that condi­
tion (40) is necessary and sufficient to assure that fLn is one­
step GI on Tn. 

Finally, we remark that, if fLn is GI on Tn' it is com­
pletely defined by the following set of fundamental probabi­
lities: 

A X(r) ~r = I exp(K ~t)A Y(t ) 
P:= ----~~~~~~--~--

~'! = I A X(s)~r = I exp(K:t)A Y(t) 

exp(K:s)A Y(s) 

P:s = ~r= I exp(K:t)A Y(t) , 

x,y = e,o or o,e, r,s = 1, ... ,q, (45) 

where! A X(r) I; = 2 are fixed points for x = e, and the asso­
ciated auxiliary parameters for x = o. 

VI. THE THERMODYNAMIC LIMIT OF M SYSTEMS ON 
qSS BETHE LATTICES 

In the first part of this section we limit our consider­
ations to thermodynamic limits (see Proposition 1) obtained 
with sequences {! H ~n'li = I}: = I of uniform boundary con­
ditions on the trees Tn. 

We denote 9l'~-I(9l';,-I) the sector of the (q - I)-di­
mensional real space which contains all the points with non­
negative (positive) coordinates. Let </> x:9l'~ - 1~9l';, - I be the 
functions with the components! </>: I; = 2 defined by (36). 
We construct a sequence Igm J,; = I of functions by setting 
gl=</> eo</> °;gm + I glogm; m = 1,2, .... The properties of 
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thermodynamic limits on Bethe lattices are related to the 
asymptotic behavior of !gm I: = I . On principle, for every 
!A (r)J;=2=AE9l'~-1, the sequence !gm(A )1:= I of points 
in 9l'~ - 1 converges, or exhibits ergodic, turbulent, or cyclic 
behavior. We say that the iterative equations (35) are 
piecewise contracting (PC) if !gm (A ) I: = 1 has a limit point 
A * g(A) for every AE9l'~ - 1. In other terms, the PC property 
holds if we have the pointwise convergencegm~g on 9l'~ - 1. 

Theorem 2: The probability measure fL = limn~oo fLn is 
RT on the Bethe lattice if the recursive relations (35) are Pc. 

Proof Let ! Tn' I;: = 1 be the subsequence of ! Tn I: = 1 

which defines fL (see Proposition 1). We denote 
An,(h) !An,(h,r)J;=2 [A*(h) !A*(h,r)j;=2] the set of 
parameters associated by fL n' Ip) to the site hE Vn,. We assume 
that L1 Vn' C v e for every tree Tn" This can be done without 
loss of generality, because any Tn' with odd n' and uniform 
boundary conditions An' (n') on L1 Vn' can be substituted by 
Tn' _ 1 with the boundary conditions An' _ 1 (n' - 1) 
==An' (n' - 1) = </> elAn' (n')) on L1 Vn' _ I [obtained by means 
of(35)]. Finally, let us consider a tree T = (VT,ET) belonging 
to the sequence ! Tn' I;: = 1 • 

The convergence fL n' ~fL implies that, for every € > 0, 
there exists large enough n~ such that TC Tn' and 

(46) 

for every n' > n~ and iELl VT (here the brackets represent the 
Euclidean distance in 9l'q - 1). Due to the continuity of </> e 
and </> 0, the relation above can be extended to every iE V T for 
n' greater than a certain n; >n~. On the other hand, the PC 
property implies that, given AE9l'~ - 1, for every 1] > 0 there 
exists large enough m(A ) such that 

(47) 

foreverym' > m(A )andm" > m(A). This means that, given T, 
for every € > 0 there exists large enough n; (A ) such that 
TCTn, and 

[An' (i);An' (j)] < d3, (48) 

for every n' > n; (A ), iEV~, andjEV~ (now A is the boundary 
condition on L1 Vn' ). Relations (46) and (48) imply 

[A *(i);A *(j) l.;;; [A *(i);An' (i)] 

+ [An' (i);An' (j)] 

+ [An,(j);A *(j)] <€, (49) 

for every € > 0, iE V~, andjE V~. By Lemma 4 it follows that 
the restriction it on R T of the probability measure fL on R is 
MGIon T for every Tbelonging to ! Tn' I;: = l' Therefore 
Lemma 3 applies, thus completing our proof. • 

Remark that every point of the graph of g is a fixed 
point of the system, since A * = g(A ) satisfies 

,.1,* = gl(A *), (50) 

for every AE9l'~ - 1. In general we expect a finite set 
I A : I ~ = 1 of distinct solutions for (50), i.e., g is a step func­
tion on 9l'~ - 1. This means that there exists a partition 
! D a I ~ = I of 9l'~ - 1 (in domains of attraction) such that every 
seed A goes into the same fixed point A : = g(A ), for every 
AEDa;a = 1, ... ,a.AsaconsequenceofTheorem 1, Theorem 
2, and Lemma 4, we state the following. 
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Corollary 2: If the recursive relations (35) are PC, the 
fundamental probabilities which define f.l are given by (45) at 
each fixed point of the system. 

The proof that the PC property holds in the special case 
of the ferromagnetic or antiferromagnetic Ising and Potts 
models is reported in Appendix D. We do not give here a 
general proof that the iterative equations (35) are PC. 30 How­
ever, it is easy to see that the pointwise convergence g m---+g 
holds at least in a domain Dc;;;,.9P~ - I. Notice that the func­
tions <P: defined by (36) have finite upper bounds for all real 
K:' and H:. This implies that there exists a hypercube Ub 

=! AE.9P~ - I : A (r)';;;;b; r = 2, ... ,q J, and large enough b > 0, 
such thatgl(A )EUb for every AEUb • Therefore, Brouwer's 
theorem31 applies, and there is at least one fixed point satis­
fying (50) in Ub , whose domain of attraction is the above­
mentioned set D. This fixed point is certainly unique (and 
D = .9P~ - I) in the infinite temperature limit, since our solu­
tion must recover RT Bernoulli measures associated to ran­
dom distributions of states. As a matter of fact, when K :s---+O 
for every x,r,s, relations (36)-(38) give32 

A X(r) = <P :(A Y(s)) = exp(H: - H ~), 
X,y = e,O or o,e, r,s = l, ... ,q (51) 

(where H: is the infinite temperature limit of H :), and rela­
tions (45) become 

x -,.Y _ A X(r) 
P, -Ysr - , 

l:;= IA X(!) 

X,Y = e,O or o,e, r,s = 1, ... ,q. (52) 

The existence of several fixed points (corresponding to the 
same set of coupling terms and external fields, and distinct 
sets of boundary conditions) is related to distinct orderings of 
the system. Each of them corresponds to a pure thermody­
namic phase described by a certain MRT probability mea­
sure. This would be the typical case at low temperatures. 

Now we briefly consider the case of thermodynamic 
limits with nonuniform boundary conditions. It is easy to 
convince oneself that, when (35) are PC, this procedure does 
not give rise to new pure phases. This is mainly due to the 
mixing/damping properties ofthe functions If/'s defined by 
(33). When (50) admits only one fixed point, it is clear that 
any choice of nonuniform boundary conditions will generate 
in the thermodynamic limit the same state for the system 
through the If/'s. When (50) admits several fixed points, two 
cases arise. The mixing/damping properties may prevail 
over the nonuniformity of the boundary conditions, and 
then bring the system into one of the above-mentioned fixed 
points. Due to the branching structure of the trees Tn' we 
can also find certain boundary conditions whose nonunifor­
mities evolve towards distinct fixed points and do not mix 
until the center (or any finite central zone) of the tree is 
reached. In the thermodynamic limit this corresponds to the 
breakdown of rotational and translational invariance asso­
ciated to phase mixing. The appearance of these mixtures 
has the maximum physical relevance when they describe ac­
tual first-order transitions between pure phases, i.e., when 
each component pure phase is characterized by the same free 
energy. 25,33 

Using the terminology introduced in Sec. II, we say that 
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every probability measure corresponding to a fixed point of 
the system is an extremal point of %1' Other extremal 
points describing non-RT Gibbs states will be found in the 
set of all the mixtures. 

Finally, we remark that (a preliminary version of) the 
present procedure has been applied by Peruggi, di Liberto, 
and Monroy34 to solve the Potts model. The reader is re­
ferred to that reference for a simple realization of our general 
results. Connections with the solution of the Potts model are 
given in Appendix D, while addenda to, and some remarks 
on, the results of Ref. 34 are given, respectively, in paper II 
and in the following section. 

VII. FINAL REMARKS 

From the physical point of view it is interesting to com­
pare the results obtained by means of the present approach 
to the solution of Hamiltonian models on Bethe lattices, with 
the results given by the methods described in the introduc­
tion. 

For what concerns type (ii) approaches, simple checks 
show that there is general agreement with our procedure. 
Here we focus mainly on those type (ii) methods which re­
duce to adaptations of the Bethe-Peierls cluster approxima­
tion24 (BPCA) on Bethe lattices, and on the BPCA itself on 
regular infinite lattice graphs26 of coordination number 
u + 1. Notice that the above-mentioned "cluster" and the 
relative Hamiltonian are, in the present terminology, the sys­
tems (TI"W\ + .J,w'Il or (T2,,w'2 + .J,w'2) with uniform 
boundary conditions. The state of these systems is character­
ized by imposing m-step consistency conditions on the re­
spective "magnetization(s)," i.e., 

(53a) 

(53b) 

The physical idea under (53) is that they would select GI 
probability measure(s) which describe approximately the 
translationally invariant equilibrium state(s) of the regular 
lattice. In particular, (53a) is used when (39) holds and the 
system (TI' ,w'1 + .J,w'I) is expected to be described by a 
one-step GI probability measure. By means of Lemma 4 we 
deduce that every MR T solution on the Bethe lattice is a 
solution for the BPCA. Conversely, it is easy to see that (53a) 
implies AI(u,r) = AI(v,r) for r = 2, ... ,q; i.e., 

A * = <P(A *). (54) 

In regard to (53b), it could be satisfied at nonfixed points, 
too. One expects that these solutions (if any) do not corre­
spond to physical states. The uncertainty can be removed by 
substituting condition (53b) with (41) for n = 2. 

In conclusion, these results imply that the probability 
measure f.l (i.e., the exact solution obtained for a MRT -qSS 
Hamiltonian model on Bethe lattices with the present meth­
od) is the same as the MRT extension of the probability mea­
suref.ll 1J.t2) (i.e., the approximate solution obtained for that 
model on regular lattices with the BPCA).35 Let us empha­
size the fact that we have not introduced just a formally more 
satisfying version than BPCA and type (ii) methods: our pro­
cedure is a substantial improvement. In fact it gives in a very 
simple way the free energy25.33 of the system under investiga-
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tion in terms of the fundamental probabilities, which in turn 
provides complete information about the physical properties 
of the system. Furthermore, the knowledge of the probabil­
ity measure describing a system allows us to solve almost all 
problems concerning that system, not only thermal ones 
(see, e.g., the topics studied in paper II). 

The above proofs also suggest that our results and those 
of type (i) approaches do not agree. Notwithstanding this, in 
the following we will study in detail the problems concerning 
the thermodynamic limits of extensive functions on Bethe 
lattices. In fact, the decomposition rule (9) makes more 
transparent the underlying reasons for the above-mentioned 
disagreement, and also suggests the way to follow in order to 
obtain limits consistent with the probability measure ap­
proach. First, we add some definitions and remarks to the 
general formalism introduced in Sec. II. Let an m-step Mar­
kov qSS Hamiltonian model be defined on an infinite, con­
nected, and locally finite graph26 G = (V,E) with a countable 
set of sites. We say that the sequence { Vn 1;:' = 1 of finite sub­
sets of V, tends to Vin the sense of Van Hove if the boundary­
to-bulk ratioPn =1.:1 Vn 1/1 Vn I of its components satisfies the 
condition 

lim Pn = O. (55) 

The thermodynamic formalism for translationally invariant 
systems (typically d-dimensional hypercubic lattices; 
d = 1,2, ... ) requires the use of sequences which satisfy Van 
Hove's convergence condition when the thermodynamic 
limits of extensive functions, as the entropy or the free ener­
gy, are taken.23 This assures their existence, their uniqueness 
(in the sense that the limits obtained do not depend on the 
choice ofthe sequence), and their consistence with the limit 
of Gibbs probability measures. [We remark again that no 
requirement as (55) is needed when the n-+oo limit ofprob­
ability measures is taken; see Secs. I-II and Ref. 23.] Rough­
ly speaking, the convergence in the sense of Van Hove as­
sures that we do not retain systematical errors when the 
thermodynamic limit is used to find the per site expectation 
values of extensive functions. When condition (55) does not 
hold for the sequence { Vn 1;:,= 1 , we expect that the n-+ 00 

limit of 

<I)n= ) f('C vJlln('C vJ, (56) 
ft'v~Vnll 

in general is not equal to 

<1)=,( fdll, 
Jilvil 

(57) 

wherefis a per site extensive physical observable defined on 
the configurations of Vn (V), and Il = limn_ oo Iln' Simple 
checks may be done by looking for the internal energy, 
whose expression (57) for (one-step) translationally invariant 
infinite systems reduces, for every iE V, to 

{Jo/£ = ') _1_ (I('C A ). 

ft'"eR:~.6("';A3; IA I 
(58) 

Let us apply the arguments above to the Bethe lattice L. 
We see that no sequence { Tn 1;:,= 1 of finite trees tends to L in 
the sense of Van Hove, since, for every m-step Markov sys­
tem, one finds 
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lim Pn >((7 - 1)/(7, (59) 
n-oo 

where the equality holds for m = 1. For major clarity let us 
assume that both the interaction Ion R (which characterizes 
the Hamiltonian model on L ) and the probability measure Il 
on R (which describes that model) are MRT, one-step trans­
lationally invariant, on L. Then (58) and (22) or (25) give 

q (7+1 q 

{Jo/£ = - r~l HrPr - -2- r,~ 1 KrsPrPrs' (60) 

where we have used the fact that Oy/rOy!' (Oy/r) is the indicator 
of the event 'C ;rn'Cjs('C;r)' i.e., the function defined on II VII 
which is Ion the configurations belonging to 'C;rn'Cjs('C;r)' 
and 0 elsewhere. On the other hand, on Tn we have 

1 1 
IVn I {Jo/£ n = IVn I (f3Kn) n 

1 q 

= - -I V I ~ L Hrlln('C;r) 
n ,eY"r=l 

- lEn lit; ~ K (~n'C) 
I V liE I 

~ nlln Ir js' 
n n (I} eE. r,s = 1 

(61) 

Note that this relation holds in both cases offree boundary 
conditions [Hamiltonian (22)] or fixed boundary conditions 
[Hamiltonian (25)]. In fact, the interface Hamiltonian (24) 
does not "belong" to the system [definition (25) was intro­
duced for notation convenience only], and has influence on 
its state only through the values of site and bond probabili­
ties. Relation (61) implies 

. 1 q q 

hm -{Jo/£ n = - L HrPr - L KrsPrPrs' (62) 
"_00 I Vn I r = 1 r,s = 1 

As was expected in view of (59), we see that {Jo/£ and the 
thermodynamic limit of {Jo/£ n are not equal. This result can 
be extended to the case ofnon-RT Il too,36.37 since the terms 
Pr andprPrs in (60) and (62) may be considered, in such a case, 
as the averages ofll('C;r) andll('C;rn'Cjs), respectively, over 
alliEVand (ij)EE; r,s = 1, ... ,q. It is easy to see thatthe above 
disagreement is due to a discrepancy [related to (59)] 
between the asymptotic topological properties of { Tn 1;:,= 1 

and those of L. Let us define the local number of bonds per 
site 1/1; (G *). relative to the site i of a locally finite graph G *, as 
half the coordination number of i in G *, and let the mean 
number of bonds per site 1/1(G *) be the average of 1/1;(G *) on 
G*. We have 

(63a) 

(63b) 

(63c) 

(63d) 

Relation (61) depends on ¢(Tn), while (60) depends on ¢(L): 
(60) and (62) do not agree because of the "surface effect" 
(63d). The entropy on Tn (which is explicitly calculated in 
paper II) depends on ¢(Tn): this implies that (63d) affects its 
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n---+oo limit, too, and therefore the limit of the free energy. 
In conclusion, in this section we have found the follow­

ing results: (a) the BPCA and type (ii) methods agree with the 
probability measure approach, while type (i) methods do not; 
(b) Van Hove's convergence condition, in its standard form, 
is not satisfied by Hamiltonian models on Bethe lattices; and 
(c) the thermodynamic limit of the free energy, as is calculat­
ed by type (i) approaches, is affected by a topological discrep­
ancy. In agreement with the point of view which we ex­
plained in the Introduction, our interpretation of (a)-(c) is 
the following: (1) Van Hove's convergence condition can be 
extended to, and is meaningful on, Bethe lattices; and (2) the 
probability measure approach should be seen as the canoni­
cal method for the solution of models on Bethe lattices, since 
it is the unique method which is, at the same time, rigorous 
and unaffected by surface effects. 

The above picture seems to imply that we are unable to 
find the correct free energy of systems defined on Bethe lat­
tices, which, in fact, is the common lack of all type (ii) meth­
ods except for one special case,20 where an integration proce­
dure, starting from the equation of state, is used. However, in 
the context of a type (i) method, Baumgartel and Miiller­
Hartmann19 found the generating function of the random 
cluster model and its corresponding form in a BPCA con­
text. Their assumptions, in the present terminology, can be 
expressed as the heuristic rule 

lim r/J( Tn )-r/J(L ). (64) 

Furthermore, for the solution of the Potts model with (a 
preliminary version of) the present method, Peruggi, di Li­
berto, and Monroy34 also introduced (64) to find the free 
energy, and verified that it was consistent with the probabil­
ity measure approach. Although the present results and (64) 
can be used to find the free energy of any MR T Hamiltonian 
model on qSS Bethe lattices, the procedure is formally unsa­
tisfactory. In paper II we will take full advantage of the de­
composition rule (9), which allows us to proceed to the local­
ization of extensive functions (i.e., the association of bond 
terms to the sites). The main point of interest of the localiza­
tion procedure is that the thermodynamic limit of local 
quantities is not affected by topological discrepancies, as can 
be seen by (63c), thus providing a rigorous limit procedure 
which has no need of heuristic rules as (64). 
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APPENDIX A: CAYLEY TREES, BETHE LATTICES, AND 
RELATED TOPICS 

In the physical literature concerning trees, i.e., the 
graphs of main interest in this paper, many distinct, and 
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somewhat confusing, terminologies are used to denote the 
same objects. In order to make easier the connections and 
comparisons of our results with those of other authors, we 
give here our definitions26 of such objects, together with 
those usually found in other works. 

A tree is a connected graph without polygons. In the 
mathematical literature a tree is a Cayley tree, and vice 
versa. We follow this convention, and always drop the name 
"Cayley." A tree T = (VnET) is finite if the set VT(ET) of its 
sites (bonds) contains a finite number of elements. The sur­
face of a tree is the set of all the sites whose coordination 
number is equal to 1. The interior of a tree is the set of all the 
sites which do not belong to its surface. Given a sequence 
I Tm J;: ~ 1 of finite trees, we say that it is strictly increasing if 
the interior of T m + 1 contains V m for every index m. Any 
strictly increasing sequence of finite trees defines an infinite 
tree, namely, 

(AI) 

To be concise we say that I T m J ;: ~ 1 tends to L. This type of 
convergence may be used in thermodynamic limit proce­
dures (see Sec. II), where the knowledge of the behavior of a 
model on growing finite systems (e.g., Tm; m = 1,2, ... ) allows 
one to deduce its properties on an infinite system (e.g., L ). 
Actually this is done in all the papers concerning the present 
subject, where strictly increasing sequences of trees are al­
ways used. Remark that relation (A 1) implies that every iE V 
is an interior site of L: in fact, by definition, it belongs to 
infinitely many trees in the sequence I T m J ;: ~ 1 • Although 
obvious, this fact clearly shows that the surface or the 
"boundary" of the infinite (Cayley) tree, which are often 
mentioned in the physical literature, are not real topological 
objects: their authors refer only to the retaining of surface 
effects when the thermodynamic limit of extensive func­
tions, defined on the elements of sequences as I T m J;: ~ 1 , is 
taken (see Secs. I and VII). 

Let us consider, now, the connection between other ter­
minologies and ours. Some authors reserve the label "(finite) 
Cayley trees" to denote those finite trees whose interior sites 
have the same coordination number 17 + 1. As a trivial con­
sequence of the remark above, we see that all the sites of the 
tree, generated by a strictly increasing sequence of such 
graphs, have the same coordination number 17 + 1, i.e., in 
the present case, the "(infinite) Cayley tree" is exactly the 
same as the Bethe lattice (see the definition at the beginning 
of Sec. III). Other authors reserve the label "(regular) Cayley 
tree" to denote those finite trees whose interior sites have the 
same coordination number 17 + 1, except the "central" site, 
whose coordination number is 17. The "(infinite) Cayley tree" 
or "regular Bethe lattice" generated by a strictly increasing 
sequence of such graphs may be called, in our terminology, 
single-defect Bethe lattice. In fact, it is a Bethe lattice of 
coordination number 17 + 1 which has one site (the defect) 
with coordination number 17. It is physically intuitive that 
the defect has no relevance with respect to the properties of 
the model under investigation: actually, the authors who in­
troduce these graphs use them only in order to make easier 
calculations. 
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APPENDIX B: THE DIMENSIONALITY OF BETHE 
LATTICES 

Throughout this paper, graphs and trees are only used 
as topological supports for abstract Hamiltonian models. 
However it is customary for physicists to think of these ob­
jects in more concrete terms, i.e., to consider realizations of 
the graphs (=drawings of sites and bonds as points and seg­
ments) in a Euclidean space where the interactions defining 
the models have proper spatial distributions. Since the set of 
sites of a Bethe lattice L is countable (see Sec. III), and any 
finite tree is planar,26 it follows that one can consider realiza­
tions of L in the plane (see Fig. 1), and actually in every d­
dimensional real space &ld. In this connection, the question 
arises concerning the effective dimensionality of Bethe lat­
tices. 

One can provide answers from the topological point of 
view (notice that topology and interactions are strictly relat­
ed here). The fact that no polygons are present in the Bethe 
lattice seems to suggest a one-dimensional character. On the 
other hand, the dimensionality can be defined as the smallest 
positive integer d such that a regular representation of L can 
be drawn in &ld. Since it is known that (for every u> 1) the 
angles between bonds, and the lengths of bonds, in a repre­
sentation of L in &ld cannot be bounded below by any posi­
tive constant for every d,38 one may deduce that L has an 
infinite-dimensional character. Also the method described 
by Baxter,20 which gives correct results for the dimensiona­
lity of all the regular two- and three-dimensional lattices, 
gives d = 00. In both cases the result obtained is due to the 
fact that the number of sites of L at distance I from a given 
site (see Sec. III) grows exponentially when I increases. 

Other suggestions about the dimensionality of Bethe 
lattices may be argued by analysis of solutions. For conve­
nience we refer to the class of models which satisfy the sym­
metry condition: 

q q 

L exp(K;s) = L exp(K~s)' x = e,o; r = 2, ... ,q. (Bl) 
s= 1 s= 1 

In such a case, at zero external fields and for any tempera­
ture, Eqs. (37) admit the fixed point A. e(2) = A. e(3) = ... 

, , 

\ I , , 
121 

\ I 
\ I 

112 

I , 

FIG. 1. Finite portion ofa realization on the plane of the Bethe lattice with 
coordination number a + I = 3. Lexicographic ordering of the sites is 
shown. 
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= A. e(q) = 1. By means of (38) and (45) we see that it de­
scribes the disordered state of the system, and by means of 
(34) we see that it is always obtained with free boundary 
conditions (H~n) = 0; t = 1, ... ,q; n = 1,2, ... ). In a sense we 
can say that it is the "natural" phase of the system, thus 
deducing a one-dimensional character of Bethe lattices. (Let 
us remark that, for u = 1, our formalism recovers the one­
dimensional chain, which is always found in such a phase, in 
agreement with Ruelle's proof3 of absence of phase transi­
tions in a class of models which includes those studied here.) 
However, for u> 1 and sufficiently low temperatures, the 
"natural" phase may correspond to a repulsive fixed point, 
i.e., (arbitrarily small) fixed boundary conditions bring the 
system into attractive fixed points that describe ordered 
phases which actually minimize the free energy (see Sec. III 
of paper II). Therefore, we are led again to an infinite-dimen­
sional character of Bethe lattices, associated to solutions de­
scribed by "classical" exponents at the critical point(s). This 
is supported by the equivalence of our results and the Bethe­
Peierls cluster approximation on standard lattices (see Sec. 
VII), since it is known that the latter belongs to the same 
class of approximations, and actually is an improvement, of 
the mean field theory (further details about these topics will 
be found in the works by Domb4 and Baxter20). Another 
connection between the infinite-dimensional character of 
Bethe lattices and the classical values of the critical expo­
nents r and v is discussed by Peruggi, di Liberto, and Mon­
roy.39 

In conclusion, we think that the effective dimensiona­
lity of Bethe lattices, at least for the MRT -qSS Hamiltonian 
models studied here, is neither "subjective," as stated by 
Hughes and Sahimi,38 nor "quasi-one-dimensional," as stat­
ed by Moraal, 17 but actually is d = 00. The doubts about this 
fact may be related, in technical terms, to the unusual pres­
ence of the "natural" phase at low temperatures, too. In fact, 
such an extremal point of %1 is not expected on hypercubic 
lattices,23 and certainly does not exist for the Ising model on 
the square lattice.40 This subject is discussed extensively, in 
connection with the free energy properties, in Sec. III of 
paper II. 

APPENDIX C: SOME RELEVANT MODELS RECOVERED 
BY THE PRESENT FORMALISM 

A large class of Hamiltonian models can be expressed in 
the form (22). Complete characterization of a certain system 
is obtained by means of proper assignments of symmetry 
conditions and/or relative ratios to the coupling terms K; •. 
As regards to the external fields H;, no special prescriptions 
are needed since they were introduced in order to make 
acc~s.s~ble the largest s~t of values for the fundamental pro­
babilIties (from a phYSical point of view they can be seen as 
chemical potentials which govern the relative densities of 
states). 
. . The Potts model is recovered by the following special­
IzatIOn of the general formalism: 

K;s = Kors ' x = e,o, r,s = 1, ... ,q. (Cl) 

The ferromagnetic (antiferromagnetic) model is character­
ized by K > 0 (K < 0); (a model isomorph to) the Ising model 
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is found for q = 2. 
The vector (or planar) Potts model is recovered through 

the choice 

K;s = K Cos(21Tlr - sllq), x = e,o, r,s = l, ... ,q (C2) 

[remark that for q = 2 (q_ 00 ) one obtains the Ising model 
(the classical Heisenberg model)). The solution of the models 
(Cl) and (C2) can be found in the series of papers on the Potts 
model by Peruggi, di Liberto, and Monroy.34.4 I ,42 

Another interesting model contained as a special case in 
the present formalism is the Ashkin-Teller model. This is 
defined for q = 4 and is characterized by the following inter­
action matrix: 

K) K2 
, x=e,o, 

K, 
r,s = 1,2,3,4. 

K 
(C3) 

The Z (q) (or clock) model, which has recently attracted 
great attention in field theory, is also recovered. Its interac­
tion matrix is cyclic: 

K;s=K1r _ sl ' x=e,o, r,s=l, ... ,q (C4) 

[note that (C2) is a special case of (C4)]. 

APPENDIX D: PROOF OF THE PC PROPERTY FOR THE 
POTTS MODEL 

We limit our considerations to the Potts model with 
only one external field, which is recovered by adding to (C 1) 
the following relation: 

H; =H8r" x = e,o, r= l, ... ,q. (Dl) 

In view of(Cl) and (Dl), the iterative functions (36) have no 
sublattice dependence, and reduce to 

<l>r(A XIs)) 

=e- H ( 1 +eKAX(r) + l:i=2(,,,,rI AX(t) )", 

eK + l:;=2A X(t) 

r= 2, ... ,q. (D2) 

Remark that the model of Ref. 34 was constructed with the 
total equivalence between the states r = 2, ... ,q. Although its 
Hamiltonian is exactly the same, the present model is the 
Potts limit of a general model and retains (possible) distinc­
tions. These will be disregarded, and complete identification 
will be achieved, if we also set 

A X(2) = A X(3) = ... = A X(q)~ x, x = e,o. (D3) 

This implies that all the relations (D2) become 

<1>(,1, X) = e-H( 1 + (~+ q - 2),1, X)", (D4) 
eK + (q _ 1),1, x 

and that the definitions of Sec. VI are relative, now, to the 
positive (nonnegative) real line !!ll> (!!ll> ). A little algebra 
shows that the function g I:!!ll > _!!ll > is monotone increas­
ing and has finite positive lower and upper bounds for every 
real K and H. As a consequence, Eq. (50) admits at least one 
solution, i.e., there is at least one fixed point for the system. 
Let I A: I ~ = I be the solutions ofEq. (50) in increasing order. 
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We consider the open intervals (O,A. n (A r, A!); ... ; (A :,00 ). 
Let (b,c) be one of these intervals. Observe that we have 
g,(A) >,1, foreverYAE(b,c),org,(A) <A foreveryAE(b,c).Sup­
pose the first (second) case is true. The definition of the func­
tions g m' and the monotoneness of g 1 imply that, for every 
AE(b,c), (gm (A) I;;; = I is an increasing (decreasing) sequence 
of points in (b,c) whose least upper bound is c (greatest lower 
bound is b ). It follows that gm (A )_g(A ) = c [gm (A )-g(A ) 
= b ] for every AE(b,c), i.e., the PC property holds. 

The classification of every A: as an attractive, repul­
sive, or mixed fixed point, and the partition (D a J ~ = 1 of!!ll > 
follow trivially from the preceding results. Furthermore, al­
though our proof does not depend on the number of fixed 
points, we can also see that in the present case a<3. 

A numerical study of the general relations (D2), with­
out the one-parameter condition (D3), can be found in Ref. 
41. 

I M. Kaufman and R. B. Griffiths, Phys. Rev. B 24, 496 (1981); R. B. Grif­
fiths and M. Kaufman, Phys. Rev. B 26,5022 (1982); also see M. Kaufman 
and R. B. Griffiths, Phys. Rev. B 26,5282 (1982). 

2See, e.g., Y. G. Sinai, Theory of Phase Transitions: Rigorous Results (Perga­
mon, Oxford, 1982). Also see the definition of Markov processes in Ref. 
28. 

3M. Kurata, R. Kikuchi, and T. Watari, J. Chern. Phys. 21,434 (1953). 
'c. Domb, Adv. Phys. 9,149 (1960). 
'G. W. Woodbury, Jr., J. Chern. Phys. 47, 270 (1967); L. K. Runnels, J. 
Math. Phys. 8, 2081 (1967). 

"T. Obokata and T. Oguchi, J. Phys. Soc. Jpn. 25, 322 (1968). 
7J. C. Wheeler and B. Widom, J. Chern. Phys. 52, 5334 (1970). 
"T. P. Eggarter, Phys. Rev. B 9,2989 (1974). 
9J. von Heimburg and H. Thomas, J. Phys. C 7,3433 (1974); M. Matsuda, 
Prog. Theor. Phys. 51,1053 (1974). 

lOS. Katsura and M. Takizawa, Prog. Theor. Phys. 51, 82 (1974); S. Katsura, 
J. Phys. A 8,252 (1975). 

liE. Miiller-Hartmann and J. Zittartz, Phys. Rev. Lett. 33, 893 (1974); E. 
Miiller-Hartmann and J. Zittartz, Z. Phys. B 22, 59 (1975); E. Miiller­
Hartmann, Z. Phys. B 27, 61 (1977). 

12H. Falk, Phys. Rev. B 12, 5184 (1975). 
13 A. Coniglio, J. Phys. A 8, 1773 (1975); A. Coniglio, Phys. Rev. B 13, 2194 

(1976). 
14T. Morita and T. Horiguchi, Prog. Theor. Phys. 54, 982 (1975); T. Morita 

and T. Horiguchi, J. Stat. Phys. 26, 665 (1981). 
ISS. Muto and T. Oguchi, Prog. Theor. Phys. 55, 81 (1976). 
16y' K. Wang and F. Y. Wu, J. Phys. A 9,593 (1976). 
I7H. Moraal, Physica A 85, 457 (1976); H. Moraal, Physica A 92, 305 (1978); 

H. Moraal, Physica A lOS, 472 (1981); H. Moraal, Physica A 113, 44 
(1982); H. Moraal, PhysicaA 113, 67 (1982); H. Moraal, Z. Phys. B45, 237 
(1982). Also see H. Moraal, J. Phys. CIS, L55 (1982); H. Moraal, Phys. 
Lett. A 89, 310 (1982); H. Moraal, Physica A 122, 313 (1983). 

\8C. Thompson, J. Stat. Phys. 27, 441 (1982). 
19H. G. Baumgiirtel and E. Miiller-Hartmann, Z. Phys. B 46,227 (1982). 
20R. J. Baxter, Exactly solved models in Statistical Mechanics (Academic, 

New York, 1982). 
2IThe set of Refs. 3-20 is not exhaustive. 
22This concept was first introduced for classical systems [see, e.g., the proofs 

of van Hove's theorem and the theorems of Yang and Lee given by K. 
Huang, Statistical Mechanics (Wiley, New York, 1963)]; its generalization 
to lattice systems can be found in D. Ruelle, Statistical Mechanics (Benja­
min, New York, 1969), also see Ref. 23. The historical development of 
thermodynamic limit procedures, van Hove's convergence condition, and 
many related topics were discussed in detail by R. B. Griffiths, in Phase 
Transitions and Critical Phenomena, edited by C. Domb and M. S. Green 
(Academic, New York, 1972), Vol. 1. 

23D. Ruelle, Thermodynamic Formalism, Encyclopedia of Mathematics and 
its Applications (Addison-Wesley, Reading, MA, 1978), Vol. 5. 

Fulvio Peruggi 3314 



                                                                                                                                    

24H. A. Bethe, Proc. R. Soc. London, Ser. AlSO, 122 (1935); R. Peierls, 
Proc. Camb. Phyl. Soc. 32, 471 (1936). Also see the reviews by Domb (Ref. 
4) and by D. M. Burley, in Phase transitions and Critical Phenomena, 
edited byC. Domband M. S. Green (Academic, New York, 1972), Vol. 2. 

2'F. Peruggi, J. Math. Phys. 25,3316 (1984). 
26We refer to the terminology of graph theory established by J. W. Essam 

and M. E. Fisher, Rev. Mod. Phys. 42, 272 (1970). 
27For definitions and results of abstract measure theory we refer to the book 

by A. C. Zaanen, Integration (North-Holland, Amsterdam, 1967). 
28For definitions and results of probability theory we refer to the books by 

W. Feller, An Introduction to Probability Theory and its Applications (New 
York, 1968), Vols. 1 and 2; and M. Loeve, Probability Theory (Springer, 
New York. 1977), Vols. 1 and 2. 

2~ote that the basis of the null event is not defined univoca1Iy, but the value 
of I (0) is irrelevant since it is not included in (3) and (4). Also note that the 
energy associated to the global event, which appears only in (3). is a shift of 
the zero-energy level. Therefore the aasumption I ('if Ql )=="O was done with­
out loss of generality. 

"'This and other subjects wi\l be treated in a following paper III. 
"See, e.g., L. Collatz, Functional Analysis and Numerical Mathematics 

(Academic, New York, 1966). 
32We remark that coupling terms and external fields depend on the tem­

perature through the included Boltzmann factor /3. 
"Extensive functions as the free energy wi\l be always considered per site of 

3315 J. Math. Phys., Vol. 25, No. 11, November 1984 

the lattice. 
34F. Peruggi, F. di Liberto, and G. Monroy, J. Phys. A 16, 811 (1983). 
"In other words the BPCA is exact on Bethe lattices and corresponds to the 

direct search for the fixed points of the system. This extends to every 
MRT -qSS Hamiltonian model (satisfying the PC property) the consisten­
cy checks given in Refs. 3,4, 10, and 16 for the Ising and Potts models, and 
justifies the name of "Bethe lattice." 

3tYfherefore the suggestion in Ref. 34, that the results of type (i) methods 
could correspond to non-RT probability measures, is erroneous. 

37 Also the condition that the interaction I is RT may be relaxed. See F. 
Peruggi, J. Phys. A 16, L713 (1983). 

38B. D. Hughes and M. Sahimi, J. Stat. Phys. 29, 781 (1982). 
39F. Peruggi, F. di Liberto, and G. Monroy, Physica A 123,175 (1984). 
40J. Lebowitz andA. Martin-Lof, Commun. Math. Phys. 25, 276 (1972); A. 

Messager and S. Miracle-Sole, Commun. Math. Phys. 40, 187 (1975). Also 
see A. Coniglio, C. R. Nappi, F. Peruggi, and L. Russo, Commun. Math. 
Phys. 51, 315 (1976). 

41F. Peruggi, F. di Liberto, and G. Monroy, "Critical behavior in three-state 
Potts antiferromagnets" (to be published); F. Peruggi, F. di Liberto, and 
G. Monroy, "The Potts model on Bethe lattices. II: New results" (to be 
published). 

42F. Peruggi, F. di Liberto, and G. Monroy, "The Potts model on Bethe 
lattices. III: The vector model" (in preparation). 

Fulvia Peruggi 3315 



                                                                                                                                    

Probability measures and Hamiltonian models on Bethe lattices. II. The 
solution of thermal and configurational problems 
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In a previous paper we introduced a method for the construction of rotationally and 
translationally invariant probability measures generated by one-step Markov Hamiltonian 
models on q-state-site Bethe lattices. Here, the corresponding thermal problems are solved by 
finding the relative free energy, which gives complete information on the properties of the models 
under study. Configurational problems also can be solved with the present tools. As an example, 
the solution of polychromatic correlated-site/random-bond percolation models is found. 

PACS numbers: 05.50. + q, 02.50. + s, 64.60. - i, 05.70.Jk 

I. INTRODUCTION 

The interest of Bet he lattices and hierarchical lattices in 
statistical mechanics is related to their iterative topological 
properties.! In particular, the very simple structure of Bethe 
lattices suggests that Hamiltonian models on these kind of 
lattices can be solved with a reduced number of technical 
problems. 

In a previous paper2 (which will be called paper I, from 
now on) we studied the properties of general Hamiltonian 
models defined on q-state-site (qSS) Bethe lattices, and char­
acterized by one-step Markov (M), rotationally and one- or 
two-step translationally invariant (R T) interactions. We 
showed that these models generate at least one R T Gibbs 
probability measure, and that only R T Gibbs probability 
measures, or their mixtures, are obtained if a certain 
piecewise contracting (PC) property holds. Furthermore, 
any R T probability measure was explicitly calculated in 
terms of a small number of known fundamental probabili­
ties. 

All previous methods of solution of Hamiltonian mod­
els on Bethe lattices3 do not use explicitly probability mea­
sures. They must tackle the common technical problem that 
no sequence of finite trees tends to an infinite tree in the sense 
of Van Hove2.4,5 (roughly speaking, this means that the bulk 
properties of Hamiltonian models on a finite tree are domi­
nated by its surface). As a consequence, each of these meth­
ods can be classified according to whether, in the calculation 
of thermal extensive functions, (i) it takes into account the 
non-neglegible surface effects, or (ii) it deletes them by means 
of proper artifices. The distinguishing feature of our ap­
proach is the exclusive use of Gibbs probability measures. 
This is very important when the limit towards an infinite 
system is taken. In fact the thermodynamic limit ofprobabil­
ity measures does not depend on the topological properties 
of the sequences of finite subsystems chosen to take the lim­
it.4 On Bethe lattices this implies that our approach is (A) a 
rigorous limit procedure, which is (B) unaffected by surface 
effects. On the other hand, type (i) approaches satisfy only 
property (A), while type (ii) approaches satisfy only property 
(B). Our interpretation of these facts was extensively dis­
cussed in Secs. I and VII of paper I. 

In the present article the results of paper I will be used 

for the solution of thermal and configurational problems 
(concerning models which satisfy the PC property). The lo­
calization procedure of extensive functions, which was sug­
gested in paper I in order to obtain thermodynamic limits 
not affected by topological discrepancies, is introduced and 
applied. This provides a rigorous limit procedure which 
gives the internal energy, the entropy, and the free energy6 in 
terms of the fundamental probabilities. The analytic expres­
sion of the free energy provides, in turn, other thermal func­
tions of interest. Furthermore, a configurational approach is 
used to reduce the evaluation of the pair correlation function 
to the diagonalization of a known matrix. 

As compared with other approaches, our procedure has 
two striking advantages: the properties of the fundamental 
probabilities are physically intuitive and their use is very 
simple; the free energy is easily obtained and gives complete 
information about the behavior of the models under investi­
gation. As a matter of fact, the solution of the Potts model 
obtained by Peruggi, di Liberto, and Monro/ with (a pre­
liminary version of) the present method can be compared 
with other papers8 where both type (i) and (ii) approaches are 
followed. 

A generalization of our method is considered in the fi­
nal part of the present paper. It is used to solve a special 
configurational problem, i.e., polychromatic correlated­
site/random-bond (CS/RB) percolation models, whose 
physical relevance in several theoretical and experimental 
contexts has been recently investigated. 9 

The outline of this paper is as follows. The entropy ofM 
systems on qSS finite trees is found in Sec. II. The free energy 
of every MRT -qSS Hamiltonian model on Bethe lattices is 
calculated in Sec. III. Any thermal function of interest can 
be found by means of the free energy, except the pair correla­
tion function (because of the RT property). However, it is 
found directly in Sec. IV by means of an alternative ap­
proach. Some applications of the preceding results to the 
Potts model, which also show another useful property of the 
general procedure, are collected in Sec. V. In Sec. VI we 
consider general infinite connected graphs, introduce q­
state-site/two-state-bond events and the relevant probability 
measures, define formally the characteristic functions of per­
colation models, and prove a useful sum rule relating them. 
These subjects are used in Sec. VII, where MRT polychro-
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matic CS/RB percolation models on Bethe lattices are 
solved. A sort of user's guide is given in Sec. VIII. 

Finally, we remark that the present work is the natural 
continuation of paper I, whose reading must be considered 
as a prerequisite. The same notation will be used here, but, to 
avoid unnecessary repetitions, we shall not give again the 
definitions. However, reference to the relative sections (and 
to the formulas) of paper I will be made (the symbol I is 
added before their identification numbers). 

II. THE ENTROPY OF M SYSTEMS ON qSS FINITE TREES 

Let T = (V TO E T) be a finite tree, R T be the semiring of 
all qSS local events on V T' and J.lT be a M probability mea­
sure defined on R T (I/Sec. II). We introduce an ensemble n T 

formed by liJ copies of T. Let us consider an assignment of 
one configuration to each element of n T' The most probable 
distribution of configurations (MPDC) in nTis realized by 
all the assignments such that every configuration 'lJ'vT 
Ell VTII CRT appearsliJJ.lT ('lJ' vT) times in the ensemble. Start­
ing from one of these assignments we can generate all the 
others using the liJ! permutations of its configurations over 
the elements of nT . Since the permutations which inter­
change identical configurations do not generate new assign­
ments, the total number of distinct assignments satisfying 
the MPDC on nT is given by 

liJ! ----------- (1 ) 

II {[liJJ.lT('lJ'vT)]!} 
w vTEIIV~1 

Therefore the expected number of ways to obtain the MPDC 
for one copy of Tis B 1/"" and the entropy ofthe system (T, 
J.lT) is 

Y T =k InBI/'" 

= !..(In(liJ!)- I In{[liJJ.lT('lJ'vT)]!}), (2) 
liJ W v TEIIV ~I 

where k is the Boltzmann constant. Letting liJ_ 00, and ap­
plying Stirling's formula and the normalization condition 

)' J.lT('lJ' vT) = 1, 
Wv;;mv~1 

(3) 

relation (2) gives 

Y T = - k I J.lT('lJ' vT)lnJ.lT('lJ' vT)· (4) 
If VTEII V~I 

Obviously, this expression is the same as the formal defini­
tion of the entropy.4 Using [I/(9b)] we have 

(5) 

On the other hand, the definition of conditional probabilities 
implies 

J.lT('lJ'vT) = J.lT('lJ'j"jlJ.lT('lJ' VI-I 'lJ'jv) 

= J.lT(I5\vh n 'lJ' kv. )J.lT('lJ' vTI15\Vhn'lJ' kv.)' (6) 
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where V;'=VT - Uj; V~=VT - [h,k j; 'lJ'v,n'lJ'jv-'lJ'v" 
T ) T 

n'lJ' hvP'lJ' kv. _'lJ' VT' Inserting (5) and (6) into relation (4), and 
introducing the function 2'(a)=a In a, the entropy of (T, 
J.l T) becomes 

Y T = k( - )' i 2' (J.lT('lJ' hVhn'lJ' kv.l) 
<h~ETVh.Vk = 1 

x 

(7) 

The conditional probability that everything happens on V;' 
(V~) provided thatjis in the state Vj (h is in the state V h and 
k in the state vd is equal to 1. Therefore (7) reduces to 

YT=k(- I i 2'(J.lT('lJ'hrn 'lJ'ks)) 
(hk )EE,.r,s = 1 

III. THE FREE ENERGY OF MRT HAMILTONIAN 
MODELS ON qSS BETHE LATIICES 

(8) 

Let us consider the sequence [Tn j:= 1 (I/Sec. IV) of 
finite trees tending to the Bethe lattice L = (V,E). Suppose 
that the interaction I (I/Sec. II) defined on R generates the 
Hamiltonian with boundary terms [1/(25)], and letJ.ln on Rn 
be the Gibbs probability measure (I/Sec. II) associated to the 
system (Tn' Jf'n + LtJf'n); n = 1,2,00' . According to [1/(56)], 
and proceeding as for the calculation of [1/(61)], the internal 
energy on Tn is given by 

(9) 

We see that the entropy (8) and the internal energy (9) rela­
tive to M Gibbs probability measures on finite trees are 
formed by bond and site terms. As suggested in (I/Sec. VII), 
we proceed to their localization associating bond contribu­
tions to the sites. As a matter offact, we can write the inter­
nal energy relative to the site iEV~ (x = e, 0) as 

q 

- IH;J.ln('lJ'ir), iEVn -LtVn' 
r= 1 

{30/£ in = (10) q 

- bn(ij) I K;sJ.ln('lJ'irn'lJ'jS) 
r,S = 1 

q 

- I H ;J.l n ( 'lJ' ir ), iELl Vn , 
r= 1 

wherej in the third row is the unique site adjacent to i in Tn' 
and the topological weight factors bn (ij) were introduced for 
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maximum generality in the assignment of bond terms. Three 
obvious physical requirements are imposed to the weights. 
They are non-negative. They must be normalized, i.e., bn (ij) 
+ b n (j,i)=:= 1 for every n;;;d and (ij) eE n' Furthermore, for 

every (ij)eE, we want that the n- 00 limit of bn (ij) exists. 
Notice that these hypotheses and the rotational and one-step 
translational in variance of the Bethe lattice itself (I/Sec. III) 
imply 

lim bn (ij) =~. (11) 
n~oo 

Similar weight factors (possibly the same) can be used for the 
entropy associated to the site i, which is 

q 1 -Yo = i In 
+ 0' L 2'Vtn(~ir))' ieVn -.1 Vn (12) 

r= 1 

q 

- b ~(ij) L 2'(ltn(~irn~jS))' ie.J Vn· 
r,s= 1 

Now, suppose that the recursive relations [1/(35)] are PC (II 
Sec. VI), and that the probability measure It, obtained in the 
thermodynamic limit, describes a pure phase, i.e., it is MRT 
on L. In the case of two-step translational invariance, for 
every ieVx, we have 

f3~X 0'+ 1 f KX x x f HX x 
= - -2- ~ rsP;P,.. - ~ ;Pr' 

r,s=l r=1 
(13a) 

J.. yx = _ 0' + 1 ± 2' (p;p;') + 0' ± 2' (p;), (13b) 
i 2 r,s=1 r=1 

x=e,o. 

It follows that the mean internal energy, the mean entropy, 
and the mean free energy on L are given by 

f3~ = !(f3~e +f3~O), 

i-IY = !( i-lye +i-IYO), 

f3Y = M f3ye + f3YO), 

where the sublattice free energies are defined as 

(14) 

f3yx==/3~x - i-IYX, x = e,o. (15) 

If I and It are one-step translationally invariant on L, there is 
no sublattice dependence, and all the upper indices disap­
pear. 10.11 

The main features of the models under investigation 
will be obtained by studying the properties of the free energy. 
It is useful to consider also (a) its first derivatives, which 
(because offormal deductions) must satisfy the following re­
lations: 

af3Y --- {
constant temperature, 
x = e, 0, r = 1, ... ,q; 

f3 a~; = f3~ , constant fields; 

(16) 

and (b) the second derivatives with respect to the fields or the 
temperature, i.e., the generalized isothermal susceptibilities 
and the specific heat at constant fields. Since the "magnetiz­
ations" and the internal energy are known functions, we see 
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that an analytical or numerical check of relations (16) pro­
vides a test of internal consistence for our procedure. Fur­
thermore, the second derivatives may be used to verify 
whether the usual convexity properties are satisfied by f3Y. 
These controls where done in Ref. 7, where (a preliminary 
version of) the present method was applied to solve the Ising 
and Potts models: (16) were verified analytically; and evi­
dence of non con vexity of the free energy was found, because 
the "natural" phase (1/ Appendix B) below the critical tem­
perature is characterized by negative susceptibility. Actually 
we expect that, given a certain set of external fields and cou­
pling terms, several phases characterized by distinct values 
of f3Y may be found in the system, for more general models 
too. We classify these R T Gibbs states (I/Sec. II) as unstable 
states (negative specific heat andlor susceptibilities, high 
free energy), metastable states (positive specific heat and sus­
ceptibilities, intermediate free energy), and stable states 
(positive specific heat and susceptibilities, the lowest free en­
ergy). We will give analytic expressions of the second deriva­
tives of the free energy, and will study their properties, to­
gether with those of the above-mentioned phases, in a 
following paper III. Here we focus on the nonconvexity of 
the free energy, which would be irrelevant in the context of 
an approximation method, but needs special consideration 
in the present case, where we are dealing with a rigorous 
approach. From a mathematical point of view, this unusual 
property is easily understood. Remark that standard proofs 
of existence and convexity of the free energy on hypercubic 
lattices4

•
5 make use of the thermodynamic limit on sequences 

of nested boxes, and subsequently are extended to any se­
quence which converges to the infinite lattice in the sense of 
Van Hove. On the other hand, we know that such sequences 
do not exist on Bethe lattices (I/Sec. VII), so that the pre­
viously described localization procedure must be introduced 
to avoid the topological discrepancy [1/(63d)]. As a conse­
quence, generalization of the usual convexity proofs to the 
free energy on Bethe lattices is prevented. To understand this 
fact from a physical point of view, we remind the reader of 
the following exclusive properties of any Bethe lattice L. 

(A) for every finite tree T = (V T' E T ) CL we have lav T 1 

> 1.1 V T 1 > IV T - .1 V T I, i.e., any fixed or free boundary con­
dition on T (I/Sec. II and IV) actually is a "bulk" condition. 

(B) No closed walk exists on L, i.e., no correlations 
propagate from a site to itself along external paths. 

(A) and (B) imply that on a finite tree one has the maxi­
mum sensitivity to the boundary conditions, which means 
that, in the thermodynamic limit, the Bethe lattice may be 
forced into Gibbs states which would be "unphysical" on 
standard lattices. 

In conclusion, we deduce that the properties of Bethe 
lattices, which allowed us to solve MR T -qSS Hamiltonian 
models, also imply some peculiar features. Their study will 
be useful for intrinsic interest and in connection with non­
equilibrium statistical mechanics. Furthermore, we empha­
size that use of Bethe lattices as suggested in the Introduc­
tion of paper I, i.e., as a tool to extract information 
concerning models of interest on standard lattices, will also 
be fruitful. In such a case it is sufficient to concentrate one's 
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attention on the stable state(s) of the system, in order to find 
the nature of phase transitions, their location, and the com­
plete phase diagram of the model under study. The equiv­
alence with the Bethe-Peierls cluster approximation (I/Sec. 
VII) assures that our exact results, although described by 
classical critical exponents (II Appendix B), will be good ap­
proximations on (bipartite) d-dimensionallattices for every 
d>3, with increasing accuracy for high d (as a matter off act 
see Ref. 7). 

IV. THE PAIR CORRELATION FUNCTION OF MRT 
SYSTEMS ON qSS BETHE LATTICES 

Let us consider the Bethe lattice L = (V, E ), and a MR T 
probability measure p on the semiring R of all qSS local 
events on L. The pair correlation function relative to the sites 
i andj of L, in the states Vi = rand Vj = s, is defined as 

[§ ij(r,s) p(1firn1fjs!-p(1fir)p(1fjs!' (17) 

LetW= (ti,h,k, ... zJJ,! (ih ),(hk ), ... ,(zj) J) = (Vw,Ew)CL 
be the walk connecting i toj. Then, using [I/(9a)], we find 

[§ ij (r,s) = p( 1f ir)( L p( 1f hv.l1f ir )p( 1f kvJ 1f hvJ 
IlVw-lijlli 

X ···p(1fjS 11f zv,l- p(1fjs )). (18) 

If p is one-step translationally invariant on L, we see 
that the function (18) does not depend on i andj, but on their 
distance I =1 (iJJ (IISec. III). Moreover, defining the matrix 

(rITls) Prs' r,s = I, ... ,q, (19) 

we find 

(20) 

Thus the evaluation of the pair correlation function reduces 
to the determination of the I th power ofT, i.e., to its diagona­
lization. This can be done numerically with standard proce­
dures, after calculation of the fundamental probabilities [II 
(45)], or analytically in some simple cases (an example is giv­
en in the next section). 

If p is two-step translationally invariant on L, it is use­
ful to preserve the dependence of the pair correlation func­
tion by the distance I, only, defining 

[§ I (r,s)=H [§ /(r,s) + [§ f(r,s)] . (21) 

Here the upper indices mean that the relative (partial) corre­
lation function must be calculated by choosing the site i on 
the corresponding sublattice. This time we introduce 

q 

(rITeols) Prs= LP~,P~ .. 
1=1 

r,s = I, ... ,q, 

so we find 

(22a) 

(22b) 

(23) 

the pair correlation function reduces again to the diagonali­
zation of a matrix. 

V. SOME APPLICATIONS TO THE POTTS MODEL 

The Potts model is recovered by our general formalism 
if we set 

K~s =KDrs , H~ =HDrl , 

x = e, 0, r,s = I, ... ,q. (24) 

We limit our considerations to the one-parameter model (II 
Appendix D and Ref. 7). Its properties and the normaliza­
tion conditions between the fundamental probabilities imply 

p~ = (1 - pn/(q - I), P~r = (I - P~l )I(q - 1), 

x = e,o, r = 2, ... ,q; 

P~l = P~l' P~r = P~2' 
(25) 

x = e,o, r = 3, ... ,q; 

x = e,o, r=/=s, r,s = 2, ... ,q. 

In other terms only eight fundamental probabilities may be 
used to define each probability measure p associated to the 
model, namely: {p~ ,P~l ,P~l 'P~2} x = e,o' These often reduce to 
four (when sublattice dependence disappears): in fact, a pro­
cedure similar to that in Appendix D of paper I can be used 
to show that two-step translationally invariant probability 
measures arise only in the antiferromagnetic (K < 0) model at 
sufficiently low temperatures. [Actually, (I/Corollary 1) also 
shows that the above-mentioned fundamental probabilities 
are not independent, but this fact will not be used here, since 
it is more convenient to follow the same notation as in Ref. 
7.] 

Relations (25) allow us to find explicitly the pair corre­
lation function for the Potts model. It is easy to see that the 
matrices (22), in the present case, can be partitioned as 

TX- ( aX 
yXC 

pXR ) 
txS + tXI ' 

x=e,o; 

Teo = (;~ tlt:tl} 
(26) 

where I is the (q - 1) X (q - I) identity matrix, R is a row 
vector whose q - 1 elements are equal to 1, C=R, and 
S=CR. The equalities 

(Teo)m = (Teo)m - ITeo = Teo(Teo)m-1 

imply 

(27) 

am = a1am -I + (q - I)fJY17m _ I' (28a) 

17m = a m_ 1 + [(q - l)tl + t ]7]m-l 
=a l7]m_1 +(q-I)tm-l +tm-l, (28b) 

tm =PY7]m-l + [(q - l)tl + t ]tm-I + tlt m- I. (28c) 
and similar relations for [§f(r,s). Therefore the calculation of Since (28b) gives 
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Sm-I = [l/(q-l)l[am_ 1 - [a l 

-(q-1lSl-t]7Jm_I-tm-IJ, (29) 

(28c) can be neglected. 12 Therefore our problem reduces to 
the diagonalization of a 2 X 2 matrix X, because (28a) and 
(28b) imply 

where 

(q - l).8y ) 
(q - I)SI +t . 

(30) 

(31) 

Expressing all the terms as functions of the jump probabili­
ties Prs defined by (22b), and applying elementary algebra, 
one finds 

(rl(TeTls) = P~ + [l/(q - 1)] [1T(r,s)..:1 m 

+ 1T(r,s)(q - 2)t m], (32) 

(rl(TeTTel s) = P~ + [l/(q - 1)][ 1T(r,s)..:1 m..:1 e 

+ 1T(r,s)(q - 2)t mt e], 

where 

..:1 Pll - Pw 
t =[(q - 1)P22 + P21 - 1]/(q - 2) 

..:1 x pfl - P~I' 

t x [(q-1)P~2 +P~I -l]/(q-2) 

1T(r,s)=(q8Is -1)(8rl -p~), 

1T(r,s)=(1-8rl)(1-8Is)/[(q-l)8rs -(q-2)], 

x=e,o. (33) 

Finally, noticing that..:1 =..:1 e..:1 0, t = teto, and introducing 
(32) in (23) we obtain 

~Hr,s) = 

where 

1 e 
- PI [E(r s)pe (..:1 e..:1 0)112 

(q-lf 'I 

+ €(r,s)(teto)112], even I, 
1 e 

(q = ~;2 [E(r,s)p~ (..:1 e)11 + 11/2(..:1 °)1 /- 1)12 

+ €(r,s)(te)l/+ 11/2(tO)I/-1)I2], odd I, 

E(r,s)=q28rI8Is - q(8rl + 81s ) + 1, 

€(r,s)=(q - 1)8rs - q8rl + (8rl + 8 1s ) - 1. 

(34) 

(35) 

Besides its physical interest, 13 the pair correlation func­
tion is relevant since it gives another check on the internal 
consistency of our method. As a matter of fact, using the 
standard and staggered fluctuation relations 

x = I~ 1(1,1), 
jEV 

(36) 

it is easy to verify that one recovers the standard and stag­
gered susceptibilities obtained in Ref. 7 through differenti­
ation of the free energy. 
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VI. SITE/BOND EVENTS AND CHARACTERISTIC 
FUNCTIONS OF PERCOLATION MODELS 

In this section we consider the infinite, connected, and 
locally finite graph G = (V,E) of (IISec. II), and make the 
auxiliary hypothesis that it has no multiedges. 14 We intro­
duce more general events on G than those defined in (I/Sec. 
II) and studied up to now. Besides the q states assumed by 
each site in V, also bonds in E are allowed to take up two 
states, which we call "active" and "nonactive," and label 
with the indices 1,0, respectively. Bond configurations are 
represen ted by the ordered partitions ! E (0), E (II J of E in two 
subsets (of nonactive and active bonds), whose collection will 
be denoted by liE II. Given two finite subsetsBo, BI of E, the 
local bond event! Bo, B IJ is formed by all the configurations 
in liE II such that every (ij)ElJo is nonactive, and every 
(ij)ElJ I is active. The same procedure as in (I/Sec. II) can be 
used to define the null and global events, and the semiring Ii 
of all local bond events. Sitelbond configurations (sitelbond 
local events) on G are the elements of the set 

A _ 

IIG II-II VII ® liE II (of the semiring R =R ®R). 
Let us introduce, now, a percolation model 15 on the 

graph G. We consider a (self-avoiding) walk oflength 1'>0 in 
G, i.e., a subgraph WI = 0 VO,VI"",VI J, 
! (VOVI),(VIV2),···,(VI_I VI) J) = (Vw,Ew)· We say that WI is 
an r-walk in each configuration of G such that all the sites in 
V ware in the state r, and all the bonds in E ware active . 
Given a configuration in IIG II, we define an r-cluster as each 
maximal subgraph 14 of G such that all its sites are connected 
by r-walks. The size m of a cluster is, by definition, the num­
ber of its sites. The following events are needed to define 
percolative functions: 

g';"=! cEllG II:iEV belong to a cluster of size m J, 
00 

g';= u g';", (37) 
m=l 

g';", IIG II - g';, 

g'~=!cEIIG II:iEVandjEVbelong to the same finite 
clusterJ. 

Note that these are generalized local events or nonlocal 
events which belong to the smallest l7-field I6 containing R. 
Therefore they are ,u-measurable events 16 for every probabil-

A 

ity measure,u defined on R. The percolation probability, the 
pair connectedness, the mean size of finite clusters, and the 
mean number of finite clusters are, respectively, defined as 

Pir ,u ( g' ;'" I g'ir) = 1 -,u ( g' fI g'ir ) , 

Pijr ,u(g'~ng'ir)' 

~;;; = I m,u (g';"ng' ir) 
Sir = , 

~:= l,u(g''!'ng'ir) 
(38) 

N ir - f ~,u(g';"ng'ir)' 
m=1 m 

iEV, jEV, r = 1, ... ,q. 

Clearly, each cluster species r can be regarded as a color, 
thus justifying the name of polychromatic percolation mod­
el. l

? Also note that the dependence ofthe functions (38) by 
the choice of the site iEVis due to the absence of hypotheses 
about the spatial symmetries of G and/or,u. Furthermore, 
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we remark that, here and in the following, no requirements 
are made about the properties ofp, (e.g., there is no need that 
p, is m-step Markov on G). 

Finally, we prove a useful sum rule which relates the mean 
size of finite clusters to the pair connectedness and the perco­
lation probability. Let r7: and Yvr be, respectively, the indica­
tors of the events 'll'('n'll ir and 'll~n'll ir' i.e., the functions 
which assume the value 1 on the configurations contained in 
those events, and the value 0 on the others. The following 
relation holds for every sitelbond configuration of G and for 
every iEV: 

I (m-I)r7:= L Yvr' 
m~\ jeV-liJ 

(39) 

Averaging over all the configurations with respect to the 
probability measure p, (see the definition [1/(57)]), we have 

'" '" L m(r7:) ~ = L (r7:) ~ + L (Yvr) ~, (40) 
m~\ m~\ jeV-liJ 

which is equivalent to 

S. = 1 + l:jeV-liJPijr (41) 
Ir l:;;; ~ \p, ('ll'('n'll ir) 

The events { { 'll;"n'll ir };. ~ \ };;; ~ \ are mutually disjoint. 
Therefore, using the countable additivity l6 of p" we obtain 
the normalization condition 

'" L p,('ll'('ng>ir) =p,('llfn'llir) =p'('llir)p'('llf!'llir), (42) 
m= 1 

which implies 

Sir = 1 + l:jeV-IiJ Pijr 
p'('llir)(1 - Pir ) 

(43) 

This relation was already obtained by Essam 18 for random 
systems. 

Up to now we have considered standard sitelbond perco­
lation. However the definitions and results above may be 
easily generalized to deB sitelbond percolation mod-
els. 19,20 Let us subdivide the set { 1,2, ... ,q} of site states in two 
disjoint classes d and fJB. For every walk WI = (V w, 
E w) C G, oflength t~o, we will say that it is an deB-walk in 
each configuration of G such that the sites in (the ordered set) 
V ware alternately in states belonging to d and fJB, while all 
the bonds inEw are active. Given a configuration in IIG II, we 
define an deB-cluster as each maximal subgraph of G such 
that all its sites are connected by deB-walks. Relations (38) 
can be used to define deB-percolation functions, too, when 
the following changes are done in their interpretation. The 
index r now stands for the classes d or gj; in the definitions 
of'll;" and 'll ~ the word cluster must be replaced by d gj­

cluster; the event 'll ir is defined as 

'llir={cEIiG II:viEr}, r = d,fJB. (44) 

It is clear that the sum rule (43) remains true for deB -perco­
lative functions. We remark again that in standard polychro­
matic percolation models we can find simultaneously in G 
q distinct colors of clusters labeled by the index r. On the 
contrary, in any d gj -percolation model the graph Gis 
completely filled by the unique species of deB-clusters de­
fined above. 

3321 J. Math. Phys., Vol. 25, No. 11, November 1984 

VII. THE SOLUTION OF MRT POLYCHROMATIC CS/RB 
PERCOLATION MODELS ON BETHE LATTICES 

Suppose that the sitelbond events, just introduced in 
the preceding section, are defined on a Bethe lattice 
L = (V,E) of coordination number u + 1. We make three 
hypotheses about the structure of the probability measure p, 
on R. The first one is that site states do not depend on bond 
states, and vice versa. Therefore we have 

(45) 

i.e., p, is a product measure whose components are two inde­
pendent probability measures f.l on Rand [t on R. The second 
hypothesis is that f.l is MR T. The third one is that bond states 
are randomly distributed, and are rotationally and one-step 
translationally invariant on L. This gives explicitly It: 

[t({Bo,Bd) = pl:,I(1- Pb)IBol, 0=1= IBo,BdER, (46) 

where the external parameter Pb is the probability that a 
bond is active. The physical interest of the associated CS/RB 
percolation models in several problems is discussed else­
where.9 Here we solve only standard (polychromatic) perco­
lation models, assuming that f.l is one-step translationally 
invariant. The solution of deB-percolation models, in the 
case of a two-step translationally invariant probability mea­
surejl, is given by Peruggi, di Liberto, and Monroy. 20 Mixed 
cases follow easily. 

From a "percolative" point of view we are interested 
only in connectivity properties, which will be completely de­
scribed by means of the site probabilities Ip r };. ~ 1 , and the 
transition probabilities 

trr PbPrr' r = 1, ... ,q. (47) 
As a matter offact, let us evaluate the probability of a finite r­
cluster. In formal terms: given the finite connected subgraph 
T = (V T,E T) of L, we want to calculate the measure of the 
generalized local sitelbond event 'll Tr={ cEllL II:Tisar-clus­
ter}. The perimeter of T is by definition the pair (a V T> aE T)' 
where av T is the perimeter of V T as defined in (1/Sec. IV), 
while aET CE is the set of all the bonds which connect sites 
in VT to sites in avT. For fixed size m = IVTI = IETI + 1, 
we have lavTI = laETI = m(u + 1) - 2(m - 1) for every 
shape of T. Applying a simple generalization of [I/(9a)] we 
have 

,u('llTr)=Prt;,';-1(I-trrt(U-I)+2. (48) 

The percolation threshold of our model can be found by con­
sidering the realization of an infinite r-cluster as a branching 
process21 which gives rise to at least one r-walk of infinite 
length. Suppose this r-walk has reached the site iE V: the pro­
cess does not extinguish if at least one of the following u steps 
reaches a site in the state r passing through an active bond. 
Therefore infinite r-clusters exist if 

(49) 

The equality gives the condition which characterizes the r­
threshold. 

Now, we calculate the percolative functions defined in 
the preceding section: to do this we use the generalization of 
a method previously introduced for random systems. 18 Let 
U, v be two adjacent sites of L, and consider the nonlocal 
event 'll:';=={ CEIIL II: the r-walks (r = 1, ... ,q) starting from U 
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towards v extinguish in a finite number of steps I. The knowl­
edge of the probabilities 

(50) 

is essential, because they allow us to distinguish the contri­
butions of finite r-clusters to the percolative functions. Each 
Qr can be obtained by the corresponding recursion relation 

Qr=(I-t")+t,,Q~, r=I, ... ,q, (51) 

which means that a finite r-walk starting from the site u 
(provided v u = r) towards v extinguishes at the first step, or 
after a finite number of steps in the 0' branches departing 
from v. Equation (51) always admits the solution Qr = 1. 
However, when condition (49) is satisfied, another solution 
Qr « 1 appears, which is the physical one in that range since it 
goes to 1 for t,,---+1/O', and goes to 0 for t,,---+1. 

In terms of Qr the percolation probability is given by 

Pr = 1- Q~+ I, r= 1, ... ,q (52) 

(we omit the index representing the reference site because of 
the one-step R T property of jl and L itself). 

Let us consider two sites i,j of L at distance I. The 
perimeter of the walk connecting i to j is formed by 
(I - 1)(0' - 1) + 20' sites (bonds). Then the pair connected­
ness is 

p. =p t l Q(/-I)(<7-11+2<7, r= 1, ... ,q. (53) 
IJr r rr r 

The mean size of finite r-clusters can be obtained by 
using the preceding results and the sum rule (43): 

~oo_ (0'+ l)d- lp t l Q(I-I)(<7-11+2<7 
S=1 I-I r" r 

r + PrQ~+ I 

l+trrQ~-1 
= , r= 1, ... ,q. 

1 - O't"Q~- I 

(54) 

The mean number of finite r-clusters needs a special 
procedure. We will use the relation which gives the cycloma­
tic number 14 CF of any finite graph GF = (VF,EF) in terms of 
I VF I, IE F I, and the number M F of its components 14: 

CF = IEFI- JVFI +MF· (55) 

Let us consider the tree Tn = (Vn,E n ) ofthe sequence 
{ Tn 1;;= I (I/Sec. IV), and the configuration coEIIL II of the 
Bethe lattice. We denote Vnr (E nr) the set of all the sites 
(bonds) in Vn (En) which belong to finite r-clusters in Co' Ap­
plying (55) to the graph Gnr = (Vnr,Enr) we have 

Mnr = I Vnr I - IEnr I (56) 

(Cnr = 0 because Gnr CL has no cycles I4
). Let yf,. and yfij)r 

be the indicators of the events W;nW;r and Wf;j)nW;r 
=={cEIIL lJ:<ij) belongs to a finite r-clusterl, respectively. 
Then, introducing topological weights as in Sec. III, (56) be­
comes 

(57) 

Averaging over all the configurations of L, we obtain the 
expected number Nnr of finite r-clusters onL having at least 
one site in Tn. At local level this is written as 

Nn;r =jl(W;nW;r) -. ! b;(iJ1fl(Wf;j)nW;r), (58) 
J,(fj)EEn 
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which, in the n---+oo limit, gives 

N r =PrQ~+I- [(0'+ 1)!2]p'/"Q;<7, r= 1, ... ,q, (59) 

for every iE V. 
It is easy to check that all previous solutions22 of per co­

lation models on Bethe lattices are recovered. 

VIII. FINAL REMARKS 

This section is devoted to those physicists whose main 
interest is related to the use of our procedure in practical 
cases, rather than its mathematical details. For maximum 
clarity and concision we give the following menu concerning 
the utilization of the general results contained in paper I and 
the present paper II. 

( 1) Write the one-step Markov, rotationally and one- or 
two-step translationally invariant (MRT) Hamiltonian of in­
terest in the form [1/(22)]. (Boundary terms as in [1/(25)] are 
not needed. Note that site-diluted annealed Hamiltonians 
may be considered, too.) 

(2) Verify the piecewise contracting (PC) property de­
fined in (I/Sec. VI). (When this control is done numerically, 
check that any seed introduced into the recursive relations 
[1/(35)] tends to a fixed point as defined by [1/(37)] and [1/ 
(38)].) 

(3) Find the fixed point(s) corresponding to the given set 
of coupling term(s) and external field(s). (Note that both of 
them depend on the temperature via the included Boltz­
mann factor.) 

(4) Evaluate the fundamental probabilities [1/(45)]. 
[This gives the MRT probability measure(s) describing the 
system in the prescribed conditions.] 

(5) Evaluate the internal energy, the entropy, and the 
free energy of the system, as given by relations (13)-(15). 

(6) Evaluate other thermal functions of interest. (If this 
is done analytically, use Eqs. [1/(37)] and [1/(38)] to find the 
derivatives of the fixed point parameters with respect to the 
external fields and the temperature.) 

(7) Diagonalize the matrix (22b) or (19) and find the pair 
correlation function (20) or (21)-(23). 

(8) Define the active bond probability Ph, evaluate the 
transition probabilities (47), and solve equations (51). The 
percolative functions are given by (52)-(54) and (59). 

Finally, let us emphasize again that the knowledge of 
the probability measure(s) describing a certain system is suf­
ficient, on principle, for the solution of every problem con­
cerning that system. The procedure needed in such a case is 
the same we applied for the solution of thermal and percola­
tive problems. One has to write all the "questions" in terms 
of local and/or generalized local events, and to find their 
probability measures by means of relations [1/(9)] (the mea­
sures of nonlocal events must be expressed in terms of the 
above probabilities, directly or through iterative equations). 
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We present a rigorous, nonperturbative derivation of a lattice version of the Faddeev-Popov 
integral. This derivation shows that Gribov copies can occur in the lattice theory for certain 
gauges, but these copies do not affect normalized functional integrals in the lattice theory. 
Furthermore, taking the formal limit as the lattice spacing tends to zero leads to the usual 
continuum Faddeev-Popov integral. 

PACS numbers: 11.15.Ha 

I. INTRODUCTION 

The gauge-fixed functional integral for nonabelian 
gauge field theories as formulated by Faddeev and Popov l 

and generalized by 't Hoofe appears to provide a suitable 
starting point for the rigorous construction of such a theory. 
However, the discovery of Gribov copies3 has shown that 
there are difficulties with the Faddeev-Popov (FP) method 
even at a formallevel. 4 

The simplest reworking of the FP argument which 
takes into account Gribov copies unfortunately leads to a 
replacement of the elegant FP functional integral with an 
unwieldy expression involving the inverse of a sum of inverse 
determinants. 5 Several other modifications of and alterna­
tives to the FP technique have also been put forward. 6 

The references just cited amply demonstrate that Gri­
bov copies have an effect on the functional integrals of the 
theory, but so far no one has been able to say in any genera­
lity what that effect is. Part of the difficulty arises from try­
ing to work in the continuum theory where many of the 
fundamental quantities are not well defined. 

In this paper, we formulate the FP technique for lattice 
gauge theories and give a rigorous proof of a FP formula in 
that setting. We show that Gribov copies can also occur in 
the lattice theory and determine what their influence on the 
relevant functional integrals is. Our work is based on some 
observations of Hirschfeld,7 who argued that the FP formula 
is correct in spite of the existence of Gribov copies. 

Our analysis supports this conclusion. Specifically, we 
show that in lattice gauge theories, the functional integral of 
a gauge invariant function differs from the value it would 
have if there were no Gribov copies only by a multiplicative 
constant. This constant, which we call the gauge degree, de­
pends only on the choice of the gauge-fixing condition. As a 
consequence, the FP formula, because it involves a ratio of 
such integrals, is not affected by Gribov copies. 

This conclusion, that Gribov copies do not invalidate 
the FP formula, is of course a very desirable one. However, it 
should be noted that it depends in an essential way on cancel­
lations between positive and negative contributions to the 
FP integral and the lack of a positive density would be a 
hindrance in numerical studies of these integrals. The ap­
proaches taken in the articles of Ref. 6 do not share this 
difficulty. In particular, in the last article of Ref. 6, the FP 
integral is truncated in such a way that the density that re­
mains is manifestly positive. 

In Sec. II we give a more detailed explanation of the 
claim that the unmodified FP formula is correct and present 
an intuitive argument for this conclusion. A rigorous deriva­
tion of the lattice FP formula is given in Sec. III. In Sec. IV 
we discuss various examples and applications. As a partial 
justification of our choice of definitions in the lattice theory, 
we show in Sec. V that the formal continuum limit of the 
lattice expressions leads to the usual continuum FP formula. 
We derive an expression for the gauge degree in the Appen­
dix. 

II. FORMAL DESCRIPTION 

In this section, we give the idea of our lattice argument 
using the more familiar language of the continuum theory. 

The quantity of central interest is the formal functional 
integral for the expectation of a gauge invariant function. In 

the Euclidean theory this is 

<I> = S I(A) detM(A )EoF(A )e-SIAl}i)A 
S detM(A )EoF(A )e-SIAl§)A 

(1 ) 

Here, I and the action S are invariant under the gauge 
transformation A-.gA. The measure §) A is the (nonexis­
tent) infinite product of Lebesgue measures Ilx./t.jdA £(x). 
The gauge-fixing function F might be for example F(A ) 
= a/tA/t (Landau gauge) or F(A ) = Ao (axial gauge); the fac­

tor Eo F (A ) is typically a gauge-fixing termo(F (A )) or a damp-
ing factor exp(aSTr F (A )2 dx). We are denoting by M (A ) the 
usual FP operator, which arises as the Jacobian for a change 
of variables determined by F. We shall refer to Eq. (1) as the 
"FP formula." 

It is the FP formula which has been cast into doubt by 
Gribov's discovery3 that when the gauge group Gis nonabe­
lian, there can be distinct gauge-related solutions inA ("Gri­
bov copies") of a gauge-fixing condition such as F (A ) = O. 
More pictorially, this is described by saying a gauge orbit 
{ gA J can intersect a gauge-fixing surface {A:F(A) = OJ 
more than once. The conventional derivations of the FP for­
mula 1.8 assume that this is not the case. 

Our aim is to show that the FP formula is nevertheless 
"correct" in the sense that it is equivalent to the naive func­
tional integral expression for (I). That is, we show 
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f/(A )e- S(A)8tJA 

fe- S(AI8tJA 

f/(A) detM(A )EoF(A )e- S(AI8tJA 

f detM(A )EoF(A )e- S(AI8tJA 
(2) 

Let G denote the global gauge group. Equation (2) is a 
consequence of the following. 

Theorem 1: There exists a constant 'T/ such that for any 
gauge invariant function f, 

'T/(f E(C)8tJC)(f I(A )e- S(AI8tJA ) 

= (J 8tJg) (J I(A) detM(A )EoF(A )rS(AI8tJA ), 

(3) 

where 8tJ g denotes the infinite product of Haar measures on 
G. D 

We obtain Eq. (2) by normalizing Eq. (3), 

'T/(f E (C)8tJ C)(f I(A )e - S(A 18tJ A ) 

'T/(f E(C)8tJC)(Se- S(AI8tJA) 

= (S8tJg)(f/(A) detM(A )EoF(A )e- S(AI8tJA) 

(S8tJg)(f det M(A ) EoF(A)e -S(AI8tJA) 

and cancelling identical factors. As in the original FP argu­
ment, the volume of the gauge group cancels in the normali­
zation. What is different in our derivation is the factor 'T/ 
which appears in some of the intermediate steps. 

The constant 'T/ is given by 

(4) 

where the integral extends over all gauge transformations g. 
It would appear from Eq. (4) that 'T/ depends on A and C, but 
one of the main results of this paper is to show that this is not 
the case. Assuming for the moment that 'T/ is indeed a con­
stant, we can obtain Eq. (3) by integrating both sides of Eq. 
(4) against E (C )/(A ) exp( - S (A )), which gives 

'T/ (f E(C)8tJC) (f I(A )e- S(AI8tJA ) 

= J J I(A) detM(gA )EoF(gA )e- S(AI 8tJA 8tJg. (5) 

Now change the integration variable on the right-hand side 
ofEq. (5) formA to gAo Because f, S, and the measure 8tJA 
are invariant under this transformation, the result is Eq. (3). 

As we have just seen, the crux of our argument is the 
assertion that 'T/ is independent of A and C. We now discuss 
the reasons why this assertion is true. For the moment, we 
shall use the notation 'T/(A,C) instead of'T/. Suppose that for 
each copy gkA for which F(gkA) = C, we can find a small 
neighborhood Uk of gk which contains no other gj' Then by 
Eq. (4), 

'T/(A,C) = L r det M(gA )c5( F(gA) - C).!iJg. 
k JUk 

Within each neighborhood Uk we need only integrate over 
those g which are infinitesimally close to gk' Such g can be 
written as g = (I + y + o (r))gk and the measure .!iJg as 
.!iJy = nx,idy(X), where y(x) = l:y(x) ti is an element of the 
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Lie algebra of the gauge group written in terms of the genera­
tors I ti }. Also, 

F(gA) - C =F((l+Y+O(rl)gkA) _F(gkA) 

=M(gkA )y+ O(r), 

by the definition l of M(gkA). Consequently, 

r det M(gA )c5(F(gA) - C)8tJg 
JUk 

= det M (gk A ) L k 8(M (g, A )y)8tJ y 

detM(gkA) 

I detM(gkA)1 

Thus 

'T/(A,C) = L sgn detM(gkA). (6) 
k 

As Hirschfeld7 has pointed out, in discussions involving the 
FP formula, one cannot afford to be careless about absolute 
value signs. For example, in deriving Eq. (6) it is essential not 
to neglect the fact that in a change of variables the volume 
element changes by the absolute value of the Jacobian deter-

minant [in this case, I det M(gkA)I]· 
Hirschfeld uses Eq. (6) to argue that 'T/(A,O) is indepen­

dent of A by identifying it with the oriented intersection 
number of the gauge orbit I gA } with the gauge-fixing sur­
faceZ = I A:F (A ) = O}. To have this identification, however, 
one must make assumptions about the gauge-fixing surface 
[i.e., assume that C = 0 is a regular value of F (A )] and about 
the orbit-surface intersections (i.e., that they are transver­
sal). 

We offer a different interpretation of'T/ based on Eq. (6), 
namely that it is the oriented degree9 of the map g-F (g A ). 
This requires neither of the assumptions mentioned above 
and allows us to show easily that 'T/(A,C) is independent of 
both A and C. 

There is a simple geometric interpretation of Eq. (6) 
which shows intuitively why 'T/ has this property. Consider 
the simple case of a lattice model with only one point and 
gauge group G = V( I). The function g_F (g A ) is then a map 
from V(l) to V(l) [see Eq. (9) below] and its graph can be 
drawn in the unit square with opposite edges identified (Fig. 

I). In this case, sgn det M (gkA ) is + I (resp., - I) when the 
slope of the function g_F (gA ) is positive (resp., negative) at 

gk' 
Figure I shows that 'T/(A,C) is independent of C because 

as the horizontal line determined by C moves up or down, 
the corresponding points of intersection are created and de­
stroyed in positive-negative pairs. Thus the value of the sum 
in Eq. (6) does not change. 

Moreover, given two gauge fields A and B, change A 
into B in a continuous way so that the graph of F(gA ) is 
continuously deformed into that of F(gB). Vsing the same 
reasoning as above, we see that 'T/(A,C) = 'T/(B,C), i.e., 'T/(A,C) 
is independent of A. 

The notion of degree allows us to carry out the preced­
ing argument in general. We do so in Sec. III where we give a 
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c 

l------'----____ . 
FIG. 1. Sign of det M (gkA) when 
F(SkA) = c. 

rigorous derivation of a lattice version of the FP formula. 
Besides providing a regularization so that the relevant inte­
grals are well defined, the lattice model fits the framework of 
degree theory more closely than does the continuum theory, 
the main difference being that the space of gauge fields is 
compact on the lattice. 

III. THE FP FORMULA IN LATTICE GAUGE THEORIES 

We now give the version of the argument presented in 
Sec. II for a lattice theory in s + 1 space-time dimensions. 

The gauge group G is taken to be a compact, connected 
Lie group which for simplicity we assume is a group of un i­
tary matrices. Its Lie algebra is denoted by L. Let A be a 
finite lattice of points of the form x = (noE, ... ,nsE) with 
nIlEI-NIl' -Nil + 1, ... ,Nll j· The gauge fields are func­
tions a(x,y) from the bonds (x,y) in A into G. They satisfy 

a(x,y) = a(y,x)-I . (7) 

The gauge transformations are functions g(x) from A to G, 
and they act by 

(ga)(x,y) =g(x)a(x,y)g(y)-I. (8) 

We usually think of a gauge transformation g as a point in the 
product group Y =IIx G. Similarly, a gauge field a is regard­
ed as a point in Y *=II(x,y) G. We denote by .!.t' and .!.t'* the 
Lie algebras of Y and Y *, respectively. 

The expectation of a function j(a) of the gauge fields is 
given by 

f j(a)e - S(al da 
<j> = , 

f e-S(al da 

where da denotes the product over all bonds of the normal­
ized Haar measures da(x,y); S (a) is the lattice action. The 
action is a smooth, gauge-invariant function of a. 

The lattice gauge-fixing function F will have the form 

F(a)(x) = II a(x,yt(x.YI , (9) 
Y 

where m(x,y) is an integer. [When the gauge group is nonabe-
1ian the order in which the product is taken in Eq. (9) must be 
specified.] For example, to obtain the lattice verison of the 
Landau gauge with 

EoF(A) = exp (a I Tr(a" A"f d4x) , 

one can choose 

F(a)(x) = a(x,x + eo)a(x,x - eo) .. ·a(x,x + es)a(x,x - es ), 

(lOa) 

3326 J. Math. Phys., Vol. 25, No. 11, November 1984 

E(c) = exp( 2aA -2 ~ Tr(c(x) - /)), 

For the axial gauge, take 

F(a)(x) = a(x,x + eo), 

(lOb) 

(11) 

which is defined for those x for which - ENo<'Xo < ENo. 
Given a gauge-fixing function F and a gauge field a, 

define the map qJ: Y _Y by 

qJ (g) = F(ga)F(a)-1 . 

The lattice Faddeev-Popov operator is the map M (a ):.!.t' -.!.t' 
defined by M (a) = dqJI' This operator plays the role of the 
Jacobian atg = 1 for the change of variables fromg to F(ga) 
in a Haar integral. The lattice Faddeev-Popov determinant is 
detM(a). 

Examples of the FP determinant are discussed in Secs. 
IV and V. 

Theorem 2: (Lattice FP formula) There is a constant 17 
depending only on F such that for any smooth gauge-invar­
iant function jon Y * and any smooth function E on Y, 

17 (IE (c)dc )(I j(a)e - S(al da) 

= I detM(a)j(a)EoF(a)e-S(alda. 

Hence if 17UE (c)dc) #0, 

(j> = fj(a)e-S(alda 
fe-S(al da 

_ f det M(a)j(a)EOF(a)e-S(al da 

f det M(a)EoF(a)e-S(al da 

(12) 

(13) 

The proof of this theorem is based on the notion of the 
degree of a map. Recall that if M and N are compact, con­
nected and oriented manifolds of dimension nand fM-N 
is a smooth map, then the degree9 of f is the number for 
which the equation 

(14) 

holds for any n-form on N. 
Lemma 1: Let 17(a) be the degree of the mapfY-Y 

defined by fIg) = F (ga). Then for all smooth functions E on 
Y, 

L det M(ga)EoF(ga)dg = 17(a) L E(h) dh. (15) 

Proof This is essentially the same as Proposition XIV of 
Ref. 9. 0 

The connection of Eq. (4) with Eq. (15) can be made by 
taking E (h ) = o{hc - I) in the latter equation. 

Hirschfeld7 considered the oriented intersection num­
ber of the orbit and surface manifolds. This quantity is close­
ly related to 17(a). As he pointed out, its utility depends on the 
following lemma. 

Lemma 2: The quantity 17(a) defined in the preceding 
Lemma is independent of a. 

Proof This is a consequence of the fact that degree is a 
homotopy invariant. By assumption, G is connected and 
hence so is ~ *. Thus if aj (i = 0,1) are any two gauge fields 
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there is a path in y. from ao to a I' This path yields a homo­
topy of the two maps 

.t:fg) = F(Ba;) (i = 0,1). 

Hence deg(fo) = deg(ftl. o 
The proof of the lattice FP formula is now simply an 

adaptation of the original continuum argument. 1.8 

Pro%/Theorem 2: The upshot of the lemmas is that for 
some constant 71 depending only on F, 

71 L E(h)dh = L detM(Ba)EoF(Ba)dg. (16) 

Multiply both sides ofEq. (16) by 

r /(a)e - SIal da , Jy. 
and apply Fubini's theorem to obtain 

71 (L E (h )dh )(Iy. /(a)e - SIal da) 

= (L detM(Ba)EoF(Ba) dg) (L./(a)e-S(alda) 

= r r detM(Ba)/(a)EOF(Ba)e-S(aldadg. (17) Jy Jy. 
Now make a change ofvariables on the right-hand side 

ofEq. (17) a to Ba. Because the Haar measure is translation 
invariant and / and S are gauge invariant, we obtain 

r detM(Ba)/(a)E0F(Ba)e-S(alda Jy. 
= r detM(Ba)/(Ba)EoF(Ba)e-S{gal da Jy. 
= r detM(a)/(a)EoF(a)e-S(a1da, Jy. 

and Eq. (17) becomes 

7f(L E(h )dh) (L/(a)e-S(a l da) 

= r r detM(aV(a)E0F(a)e-S(a1dadg Jy Jy. 
= r det M(a)/(a)EoF(a)e-S(a) da , Jy. 

where we have used the fact that S y dg = 1. 0 
Definition: The gauge degree 71 associated with the 

gauge fixing function F is the degree of the map f: Y -+Y , 
/fg) = F(Ba) for any aEY*. 

IV. EXAMPLES AND APPLICATIONS 

(a) Formula/or the gauge degree: Although 71 does not 
appear in the expression (13) for normalized lattice expecta­
tions, it is worth knowing because it contains information 
about the orbit-surface intersections. We shall use this infor­
mation to analyze gauge-fixing on the lattice for the axial 
and Landau gauges. Also, we wish to know when 71 = 0 since 
in that case the gauge-fixing procedure described in Sec. III 
breaks down. 

For gauge-fixing functions F of the form given in Eq. (9) 
we have 
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F(Bl)(x) = IT g(yr(X,y) , (18) 
y 

for some integers n(x,y). [We are ignoring the noncommuta­
tive nature of group multiplication in Eq. (16); the value of 71 
is the same regardless of the order in which the product is 
taken.] We show in the Appendix that 

71 = (det N) r , (19) 

where Nx,y = n(x,y) and r is the rank of G. [The rank of a Lie 
group is the dimension (as a manifold) of a maximal abelian 
subgroup.] 

(b ) Axial gauge: Axial gauge [Eq. (11)] is the easiest to 
handle with these methods. We show first that the FP deter­
minant is identically 1. 

One way to calculate M (a) is to use the fact that if 
g = 1 + r + 0 (i), 

(20) 

[We are suppressing indices to simplify the formulas 
somewhat. For example, the matrix M (a) acts on 2' and so is 
indexed both by the lattice points x and color indices i. Thus, 
M (a)r stands for [M (a)r] ~ = l:j,y M (a)!y r j

( y). ] For axial 
gauge, we have 

F(Ba)(x) F(a)(x)-I 

=g(x)a(x,x + eo)g(x + eo)-Ia(x,x + eo)-I 

= (I + r)(x))a(x,x + eo)(I - r(x + eo)) 

Xa(x,x + eo)-I + o(i) 

= I + r(x) - ad(a(x,x + eo))r(x + eo) + 0 (i) , 

wheread(a)r=ara-I. Thus 

M(a)xx =1, 

M (a)x.x + eo = - ad(a(x,x + eo)), 

M(a)x.y = 0, if Y=l=xo or x + eo. 

( lis the identity operator on L.) Since M is an upper triangu­
lar matrix whose diagonal elements are equal to 1, 

det M (a) = 1 (axial gauge) • 

for every gauge field. 
Now we show that the gauge degree for axial gauge is 

also equal to 1. In this case, 

F(a)(x) = a(x,x + eo), 

so that 

F(Bl)(x) =g(x)g(x + eo)-I . 
The matrix elements of N are 

Nx .x = 1, 

Nx,x+eo = - 1, 

Nx,y = 0, if y=l=x or x + eo . 

By an argument similar to that used for the FP determinant, 
det N = 1 and so 71 = 1. Note that if we take E to be a 8-
function, we obtain the formula of Ref. 10 

J /(a)e - S(al da = J IJ 8(a(x,x + eo))/(a)e - S(al da . 

Bruce Sharpe 3327 



                                                                                                                                    

(c) Landau gauge: The lattice FP determinant for the 
Landau gauge [Eq. (10)] is discussed in Sec. V. For the mo­
ment, we calculate just the gauge degree. 

When F is given by Eq. (lOa), the matrix N is given by 
s 

(Nf)(x) = I [- fIx + el') + 2f(x) - fIx - e,J] . 
I' ~ 0 

(21) 

We have not yet said how to define F(a)(x) when x is on the 
boundary of A. For such, x, the definition (lOa) does not 
make sense since some of the bonds referred to are not in A. 
It takes some care on this point to arrange that 1]#-0. 

We shall proceed as follows. Define F(a)(x) as in (lOa) 
but only for x in the interior of A. In integrals such as the one 
defining 1] [Eq. (12)], integrate over nxdg(x) only for x in the 
interior of A. This is equivalent to requiring that all gauge 
transformations be the identity on the boundary of A. The 
result is that N is given by Eq. (21) with the convention that 
f( y) = 0 when y is on the boundary of A. In other words 

N=ci1 e) , 
where .1 e) is the finite-difference Laplacian operator on A 
with Dirichlet boundary conditions. The eigenvalues ofi1 e) 
are (e.g., see Sec. 9.5 of Ref. 11) 

Ak = ± 4E- 2 sin2 (~) , 
I'~O 4NI' 

(22) 

with kl' = 1,2, ... ,2NI' - 1. In particular, no eigenvalue is 0 
so det N #-0 and 1]#-0. 

We remark that if the boundary values of F(a) had been 
defined by imposing periodic boundary conditions or by sim­
ply omitting any terms a(x,y) for which the bond (x,y) is not 
in A, .1 e) would have been replaced by the Laplacian with 
periodic or Neumann boundary conditions respectively. In 
both cases, we would have 1] = O. 

(d) Existence and uniqueness of orbit-surface intersec­
tions: We now use our knowledge of 1] to answer for the 
lattice theory two questions raised by Gribov3 for the contin­
uum theory. This analysis is based on an alternative formula 
for the degree of a map9: if c is any regular value of f, then 

deg(f) = I E(f,g) , 
ge/-'Ie) 

(23) 

whereE(f,g)is + 1 if fpreserves orientation atgand - 1 if 
f reverses orientation at g. 

The first question is, given a gauge field a and an arbi­
trary function c, does the gauge orbit (ga l intersect the 
gauge-fixing surface F = c? In other words, does there exist a 
gauge transformation g so that 

F(ga) = c? 

It follows from the definition of 1] that the answer is yes if 
1]#-0, for by Eq. (23) any map which is not surjective has 
degree O. 

The second question is, are there any Gribov copies? 
That is, if 

F(a)=c, 

are there any nontrivial gauge transformations g for which 

F(ga) = c? 
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Again the answer is yes if 11]1 #- 1 as can be seen from the 
definition of 1] and Eq. (23). If 11]1 #- 1, there must be more 
than one term in the sum (23). Moreover, because 1] is the 
same for all a and c, if 11] I#- 1 or 0 then every orbit intersects 
every surface more than once. (If 1] = 0 there may be some 
orbit-surface combinations which do not intersect.) 

For Landau gauge as discussed in part (c) we have from 
Eq. (22) 

det N = IT C A k , 

k 

from which it can be shown that det N---+ 00 and hence 1]---+ 00 

as NI' ---+ 00. This shows that for the Landau gauge at least, 
Gribov copies occur in the lattice theory. 

(e) Gauge in variance of the FP determinant: In the origi­
nal formulations of the FP formula it appeared that the FP 
determinant was gauge invariant. The discovery of Gribov 
copies has made this doubtful. We now show that in the 
lattice theory, gauge invariance holds only in very special 
cases. 

Of course, one such case is that where G is abelian, for 
then M (a) is independent of a [see Eq. (20)] and the FP deter­
minant is a constant. If G is nonabelian, take E = 1 in Eq. 
(15) to obtain 

1] = L det M (gal dg . 

If det M (a) were gauge invariant, then we would have 

1] = detM(a) , 

for every field a, and the FP determinant would be a con­
stant. Moreover, suppose k is the dimension of G. By substi­
tuting Eq. (18) into Eq. (20) we find that 

M(l)xy = N xy I, 

but det M(l) = 1] = (det N)' and r = k if and only if Gis 
abelian. Hence it must be that det N = 0 or Idet N I = 1. To 
summarize, if G is nonabelian, then the FP determinant is 
gauge invariant if and only if it is a constant and that con­
stant is 0, + 1, or - 1. In particular, the Landau-gauge FP 
determinant is not gauge invariant. 

v. CONTINUUM LIMIT 

In this section, we illustrate how the continuum FP for­
mula can be obtained formally by taking the limits NI'---+oo 
and E---+O in the finite-volume lattice expression (13). The 
limit is taken assuming that we obtain the lattice gauge field 
from a smooth continuum gauge field AI' by the relation 

( ) 
± AEA" [ x + (112)e,,) 

ax,x ± el' = e , (24) 

where A is the coupling constant. 
For concreteness, we treat the case of Landau gauge 

[Eq. (10)]. The continuum expression in this case is 

(f) = ff(A )detM(A )e-
SaIA

) ~A , 
f det M (A ) e - Sal

A 
) ~ A 

in which 

(25) 

Sa {A ) = - ~ f tr{Fpvf d 4x + a f tr(al'Al'f d
4
x, (26) 
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whereFl'v = al'Av - a"AI' + A. [AI'.Av] andM(A) acts on 
Lie algebra-valued functions B by 

M(A)(B) = -.dB-A. a!, [AI',B] . (27) 

To begin, take Eq. (13) for the finite lattice and let 
NI' _ 00 , so that all expressions now refer to an infinite lattice 
with spacing E. We assume that the action S (a) has been cho­
sen so that, as E--+<>, 

S (a)_ - ~ J tr (F",Y d 4X • (28) 

A simple argument based on Eq. (24) shows that 

EOF(A)-+exp(a J tr(aI'AI')2 d 4x ) (29) 

as £--+<> so that 

EoF(A )e-S{A)-e -S,,(A). 

The remainder of this section is devoted to showing that 
the matrix £-2M (a) converges to the operator M (A ) defined 
by Eq. (27). In the following, the summation convention for 
repeated indices does not apply. 

Given a point x in the lattice, define 

ad( ± Ji)=ad(a(x,x + eo)a(x,x - eo) 

xa(x,x + e!l···a(x,x ± e,,)). 

For F given by Eq. (lOa) and g = 1 + r + 0 (f) we have 

F (ga)(x)F (a)(x)-I 

= ( [ + r(x)) a(x,x + eo)( I - r(x + eo)) 

X ( 1+ r(x))a(x,x - eo)( [ - r(x - eo)) x··· 
X ([ + r(x))a(x,x - esl( [- r(x - es )) 

X [a(x,x + eo)···a(x,x - es )] -I + 0 (f) 

=[ + ! [- ad( -s) + L [ad( +Ji) + ad( -Ji)] )r(x) 
I' 

- L ad( + Ji)r(x + el') - L ad( - Ji)r(x - el') 
I' I' 

+O(f)· 

The matrix element M (a)xy is the coefficient of r( y) in 
the above expression. Thus if B is a Lie algebra-valued func­
tion, 

£-2(M(a)B)(x) = £-2 LM(a)xy B(y) 
y 

= £-2[ [_ ad( -s)] B(x) 

+ £-2 L ad( + Jil[ B (x) - B (x + el')] 
I' 

+ £-2 L ad( -Ji)[B(x) -B(x - el')] 
I' 

= £-2[ [_ ad( -s)] B(x) (30) 

- £-I~ ad( +Ji)8J.l B (x + Tel') 

+£-I~ad(-Ji)8"B(X- ~ el')' 

where8I'f(x)=:£-1 [fix +! el') - fix -! eJ.l)]' 
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We now wish to expand the right-hand side ofEq. (30) 
to 0 (f), using Eq. (24) to write 

( ±) 
±MA,,[x±{1I2)e,,] 

a x,x el' = e 

= [±A.£AJ.l{x ±! eJ.l} 

+! [A.fAJ.l(x ±! el')]2 + O(~), 

so that, for example, 

a(x,x + el' )a(x,x - el') = [ + A.c81'AI' (x) + 0 (~) . 

The result for the terms appearing in Eq. (30) is 

(i) £-2[ 1- ad( - s)] B (x) 

= -A L [8"AI' (x),B (x)] +0(£), 
I' 

(ii) - £-1 ad( + Ji)8J.l B (x +! eJ.l) 

= - £-181' B(x + !el') 

-A. [AI' (x +! e,,), 8"B(x +!) el')] 

+O(E), 
(iii) £-1 ad(-Ji)81' B(x-!el') 

= £-18" B(x -! el') + 0(£). 

Putting these equations into Eq. (30), we get 

£-2(M (a)) B (x) 

= L! -A. [I5I'AJ.l(x),B(x}] -81'81' B(x) 
I' 

-A [AI' (x +! eJ.l),<5J.lB(x +! eJ.l)]) + o (E) 

- - .dB (x) - A. L <51' [AI' (x),B (x)] , 
I' 

as £--+<>. 
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APPENDIX: FORMULA FOR THE GAUGE DEGREE 

We indicate here how one obtains the expression ( 17) for 
the gauge degree for gauge-fixing functions F of the form 
given in Eq. (9). The gauge degree is the degree of the func­
tion f defined by 

f(g) = F(gl) . (AI) 

Thus the problem to be solved is that of finding the degree of 
a function f on the product group G k = II~ G of the form 
[cf. Eq. (16)] 

f(gl,···,gk) = (f1(g1,···,gk),···,Jk(gI,···,gk)), (A2) 

where 
k 

/;(gl,···,gk) = II g;ij. (A3) 
j= 1 
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[The order in which the multiplications in Eq. (A3) occur 
does not affect degf] 

Theorem 3: With I as described above, 

degl = (det N)' , 

where r is the rank of G and Nij = nij' 
The proof of this theorem requires some knowledge of 

the cohomology of compact Lie groups. The relevant points 
are reviewed very briefly below following the notation of 
Ref. 9 to which the reader is referred for more information. 

Let llj denote the projection map 

llj(gP···,gk) =gj' 

and M the multiplication map 

M(gl,.··,gd =glg2"'gk . 

An element w of the cohomology algebra H (G) is primitive if 
k 

M"w = I lly w . (A4) 
j~1 

It follows from Eq. (A4) that if Pm is the m-power map 
Pm (g) = gm and w is primitive, then 

P!, = mw . 

Any primitive has odd degree [as an element of the 
graded algebra H (G)] so if WI and W 2 are primitive 

W IW 2 = - w 2w I . (A5) 

Moreover, there are primitives WI"",(U r so that 

(A6) 

is a nonzero element of the top cohomology group of G. 
The degree of lis given by the equation 

I"w = deg(f)·w , 

where w is any member of the top cohomology group of G k. 

To prove the theorem we shall construct a particular non­
zero iiJ and show that 

l"iiJ = (detN)'iiJ. 

Now 

Suppose w is primitive and consider 

(lliO I)"w . 
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lljO/=MoQi' 

where 

Qi(gl, ... ,gk) = (g7it, ... ,g~ik). 

Consequently, 
k 

(lliO I)"w = Q~oM"w = I (lljQi)lIw 
j~ I 

k k 

= ~ (P Oll)"w = ~ n.· ll" f.' £.. nij J ~ I) ) t.V • 

j~ I j~ I 

Equations (A5) and (A 7) imply that 

I "w(k ) = det(N )w1k 1 , 

where W1kl = (ll~w)(ll~w)···(llfw). 
Define 

(A7) 

(AS) 

where the Wj are those of the expression (A6). Then by Eq. 
(AS), 

l"iiJ = (f "w~k I) ... (f "w~k I) = (det N)'iiJ , 

which proves the theorem. 
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Casimir invariants for the eight-dimensional subgroups of the Poincare group 
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The generalized Casimir operators of all eight-dimensional subgroups of the Poincare group 
P (1,4) are found. These operators include polynomials in the enveloping algebra of the considered 
eight-dimensional Lie algebra, quotients of such polynomials, and also more complicated 
functions of the infinitesimal operators. 

PACS numbers: 11.30.Cp, 02.20 + b 

The existence of invariants (Casimir) operators is one of 
the most important properties of Lie algebras mainly be­
cause of the role the operators play in representation theory. 
They are well known only for semisimple Lie algebras. Every 
invariant operator of a simple Lie algebra is a polynomial in 
certain basic ones. The basic invariant operators are homo­
genous of known degree 1 and their number is equal to the 
rank of the algebra. For nonsemisimple algebras the invar­
iant operators have to be found by lengthy computations and 
not all of them can be written as polynomials in the elements 
of the Lie algebra. It is known that the number of the basic 
invariant operators is equal to the dimension of the algebra 
modulo 2. 

An abundant source of physically interesting 
nonsemisimple Lie algebras is found in the Lie algebras of 
groups of inhomogeneous transformations, in particular the 
Lie algebra P (3, 1) of the Poincare group which is a semidirect 
product of the Lorentz group wi1;h a four-parameter abelian 
group of space-time translations. A complete (infinite) list of 
conjugacy classes of subalgebras of P (3,1) exists.2 The corre­
sponding invariant operators were found in Ref. 3 using the 
method of Ref. 4. In a number of applications it is useful to 
consider also the Lorentz and Poincare groups in larger 
spaces. Thus Fedorchuk5

•
6 found the subalgebras of the 

Poincare Lie algebra P (4, 1) in (4,1 )-dimensional space-time. 
In this article, besides a large number of entries found in 
P(3,1) and those which are of the splitting kind, the most 

interesting ones are the nonsplitting subalgebras of larger 
dimensions. Reference 6 contains all eight-dimensional 
nonsplitting subalgebras of P (4, 1). The purpose of this paper 
is to find the invariant operators for the Lie algebra of Ref. 6 
and those whom are eight-dimensional of Ref. 7. The alge­
bras of Ref. 7 are of the splitting kind. Our method is esssen­
tially that of Ref. 4 with some improvements from Ref. 7. 

The eight-dimensional algebras of Ref. 6 and 7 are, re­
spectively, those of Tables I and II. The generators G, L j , P j , 

Cj , Xv (i = 1,2,3; v = 1,2,3,4) which occur in these alge­
bras are linear combinations of the 15 generators 
MJLv = - M"JL and the Pp, lIt,v = 0, .. .4) satisfy the follow­
ing commutation relations: 

[P~,P~] =0; [Mvv'P~] =gJLUP~ -g"JLP~' 
(1) 

[MJL",Mpu] = gJLPM"U + gvaMJLP - gvpMJLU - gJLUM"p, 

wheregJLv is the metric tensor with components goo = - guu 
= 1 and gJL" = 0 (if p, # v) (0' = 1, ... 4 ; p" v = 0, .. .4). The gen­
erators of the algebras are explicitly 

G = M40, LI = M32, L2 = - M31 , L 3, = M21 , 

Pa = M4a - MaO' La = M4a + MaO' 

Xo=HPb-P~), X4=HPb+P~), Xk=X k, 
where a, k = 1,2,3. 

The commutation relations in terms ofthe generators of 
the algebras are 

TABLE I. Subalgebras of the Poincare algebra of dimension 8 of the nonsplitting kind. 

Generators 

G + aX3, L3 + bX,; PI' P2• p,. XI' X 2• X. 

G + aXo• L,; PI' P2 • p,. XI' X 2• X. 

L3 + Xo. P, + iio%o; PI' P" XI' X 2 • X,. X. 

L, - Xo. P, + iio%o; PI' P2• XI> X 2 • X,. X. 

L,. P, + EXo• X 3; PI' P2• XI' X 2• X. 

G + aX,. L, + dX,; PI' P2• Xo, X,. X 2• X. 

A ==L, - (EI2)(P, + C,) + #0%0; 

Bi ==Li + (E/2)(Pi + Ci ). X,. X 2• X,. X. - Xo 
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Range of the 
parameters 

b #0, 'Va 

a#O 

Invariants 

none 

X ( 
- P,) P IX 2 - P,xl - 2X.L, .exp -- • 
loX. X. 

X •• XI(X, - 2P2) + X 2(X2 + 2P.) - 4X.(L, + Xo) + Xi 

X •• XlIX, + 2P2) + X 2(X2 - 2P.) + 4X.(L, - Xo) + Xi 

X., P'X2 - p,x, - 2L,x. 

'Va,. d3 X~ + xi - 4X.Xo. [PIX 2 - p,x, - 2X.(L3 + dX3 )]lX. 

#o#O.E= ± 1 X~ +Xi +Xi + (X._XO)2. 

i = 1.2.3 (B, + A + (,U212)(X. - Xo))((X. - XO)2 + Xi + Xi + X;) 

+ 2E(X. - X o)(XIB 2 - X2B.) + 2X2(X,B2 - X 2B,) 
+ 2X,(X,B, -X,B,) 

0022-2488/84/113331-03$02.50 © 1984 American Institute of Physics 3331 



                                                                                                                                    

TABLE II. Subalgebras of the Poincare algebra of dimension 8 of the splitting kind. 

Generators 

G; L I• L2• L3• PI' P2• P3• X. 

G. L3; PI' P2• P3• XI' X2• X. 

L3• P3• X3; XI' X2• X •• PI' P2 

G; L I• L2• L3• Xo. XI' X2• X3 

G; L I• L2• L3• XI' X2• X3• X. 

G. XI' ,x2' X3; X •• PI' P2• P3 

G. L3 + bG; XI' X2• X •• PI' P2• P3 

G. L3; Xo. XI' X2• X •• p .. P2 

G. L3• X3; XI' X2• X •• PI' P2 

PI' P2• P3• Xo; XI' X2• X3• X. 

G. L3; Xo. XI' X2• X3• X •• P3 

G. X3; Xo. XI' X2• X3• PI' P2 

Xo. X3• L3; XI' X2• X •• PI' P2 

Xo. L3 + EP3; PI' P2• XI' X2• X3• X. 

X3• L3 + cG; Xo. XI' X2• X •• PI' P2 

Xo. X.; L I• L2• L3• XI' X2• X3 

Range 
of the 
parameters 

E= ± 1 

c>O 

[G,L;) = 0, [G,P;) = - Pi> [G,x;) = ° (i = 1,2,3), 

[G,xo] =Xo, [G,x4] = -X4, 

[Li>Pk ] = E;klP/ (i,k,l = 1,2,3), 

[L3,xd = X2, [L3,x2] = - Xl' 

[L3,x3] = 0, [L3,x4] = 0, 

[ pm,xv] = 2X4Smv (m = 1,2,3; v = 1,2,3,4), 

[Xp,xv] =0 (,u,v=0,1,2,3,4), 

[B;,Bj] = 2EijkBk' whereB;=L; + (El2)(P; + C;), 

[B;,~] = (EI2),UoXi> where _ 
A L3 - (El2) (P3 + C3) + !laKo. (2) 

These commutation relations allow us to determine the 
structure constants for each algebra. The structure constants 
ct are defined by 

[X;..¥;] = ~ctXk' (3) 

Let us give a brief outline of the method used.to calcu­
late the Casimir invariants. For a more detailed description 
of the method we refer to Refs. 3 or 4. Let I X; J be a basis for 
the Lie algebra. We attempt to find a function F(X;) of the 
generators, such that 

(4) 

where the "t' SUbscript sums over all basis elements. The 
way to proceed is to replace the X; by differential operators 

(5) 
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Invariants 

(p·Pl/X •• (P·Ll/X. 

P3/X" (XIP2 - X2PI + 2X.L3l/X• 

X •• X IP2 - X2PI + 2X.L3 
X·L.X·X 

X·L.X·X 

none 

none 

Xi + X~ - 4XoX •• (XIP2 - X2PI + 2X.L3l/X• 

X3• (XIP2 - X2PI - 2X.L3l/X• 

x •. Xi + X~ + X~ - 4XoX. 

Xi +XLX~ -4XoX. 

X3• Xi + X~ - 4XoX. 

X3• X •• X IP2 - X2• PI + 2X.L3• Xi + X~ - 4XoXo 

x •. Xi + X~ + X~ - 4XoX. 

X3• Xi + X~ - 4XoX. 

Xo. X •• X·L. x·x 

We now have a set of differential operators which act on real 
variables. Our problem is translated into one of finding a set 
of F(xk) satisfying the system of partial differential equa­
tions: 

X;F(xk) = 0, i,k = l, ... ,n, (6) 

where we are dealing now with real variables. In the solution 
of the system (6), we replace the real variables Xk, by the 
generators X k • However, we must symmetrize the results to 
take into account the noncommutativity of the Xk's in the 
substitution. The resulting expressions are the Casimir in­
variants satisfying (4). Table I lists all the invariant operators 
for the subalgebra of Ref. 6. In the first column we find all 
eight-dimensional subalgebras classified in Ref. 6. In Table 
II we find the eight-dimensional subalgebras of Ref. 7. The 
generators which appear at the right of the semicolon belong 
to the derived algebras. 

The second column is the range of the parameters of the 
algebras of the first column which in fact may represent sev­
eral of these classified in Ref. 6. Our result, the full set of 
invariant operators for each algebra, is contained in the last 
column. 

Remark: In all cases encountered when the invariants 
are not polynomials, the operator products occurring in the 
invariant expressions commute among themselves. In the 
last algebra of Table I, one of the polynomial Casimir opera­
tors involves noncommutative products of operators. It 
seems that this phenomenon arises when the algebra has a 
nonabelian subalgebra as is the case here for the generators 
B; satisfying the commutation relation 

(7) 
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In Ref. 4 such a case arises under similar conditions:· the 
algebra in question being denoted A 5,40 • 
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The shift operator technique is used to give a complete analysis of all finite- and infinite­
dimensional irreducible representations of the orthosymplectic superalgebra osp(3,2). For all 
cases, the star or grade star conditions for the algebra are investigated. Only two finite­
dimensional representations are grade star representations, if the representation space is required 
to be a graded Hilbert space. When the even part is so(3) Ell sp(2,R);::::;su(2) Ell su(I,I), an infinite class 
of infinite-dimensional star representations is found. One of them can be realized in terms of two­
valued functions of a complex variable. This representation reduces to the sum of two metaplectic 
representations of sp(2). We show that it is precisely this "metaplectic representation for osp(3,2)" 
which gives the spin-energy eigenstates for the one-dimensional harmonic oscillator with spin ~ 
states. 

PACS numbers: 1l.30.Pb, 02.20. + b, 02.90. + p 

I. INTRODUCTION 

Since the simple Lie superalgebras were classified by 
Kac1 and other authors/·3 they have been the subject ofsev­
eral papers. Finite-dimensional representations of superal­
gebras have been studied in general.4 There are also several 
works in which representations of specific Lie superalgebras 
were investigated (see Ref. 5 and references therein). Much 
less is known about infinite-dimensional representations of 
superalgebras. 

In the present paper we analyze both finite- and infinite­
dimensional irreducible representations (irreps) of the ortho­
symplectic superalgebra osp(3,2). We use the shift operator 
technique, developed by Hughes and Yadegar,6 and used by 
Hughes to classify representations of the superalgebra 
osp(I,2).7 

The even part of osp(3,2) is the semisimple Lie algebra 
so(3) Ell sp(2), isomorphic to su(2) Ell su(2). Hence, the shift op­
erators are su(2) Ell su(2) shift operators, which change both 
su(2) labels by certain numbers when acting on a basis state 
of an su(2) Ell su(2) representation. The reduction osp(3,2) 
::J so(3) Ell sp(2) is considered and we show that in general any 
osp(3,2) irrep decomposes into eight irreducible representa­
tions of the subalgebra, a result which was proven in a more 
general way by Kac4 for the finite-dimensional representa­
tions. In the present paper, we show that this property is true 
also for the infinite-dimensional osp(3,2) irreps. The two in­
dependent invariants of osp(3,2), 12 and 14, are explicitly con­
structed and their eigenvalues for an osp(3,2) irrep (p;q) are 
given in terms ofp and q. We show that the 12 and 14 eigenval­
ues do not specify the superalgebra representations unique­
ly. 

The generalization of a Hermitian operation for a Lie 
algebra is a star or grade star operation for a Lie superalge­
bra. 8 The study of star and grade star operations is in fact 
equivalent to the study of the real forms of the complex su­
peralgebra osp(3,2).3 We investigate all possible star and 

alResearch assistant N.F.W.O. (Belgium). Permanent address: Seminarie 
voor Wiskundige Natuurkunde, R.U.G., Krijgslaan 281-S9, 8-9000 
Gent, Belgium. 

grade star operations of osp(3,2), and find that each of the 
four Hermitian operations on the even part osp(3,2)(j can be 
extended in two possible ways to a star or a grade star oper­
ation. Then we consider whether the osp(3,2) irreps are star 
(respectively, grade star) representations, which is the analog 
of anti-Hermitian representations for Lie algebras_ It turns 
out that this problem is closely related to the choice of a 
nondegenerate Hermitian form < I) on the representation 
space V. Moreover we prove that if one requires the Hermi­
tian form to be positive definite, then the finite-dimensional 
representations are not grade star (nor star) representations, 
except for the five-dimensional irrep (O;!) and the eight-di­
mensional irrep (~;!) [the notation (p;q) for an osp(3,2) irrep is 
explained in Sec. V]. It is possible, however, to choose a non­
degenerate Hermitian form which is not positive definite, 
such that all the finite-dimensional osp(3,2) irreps are grade 
star representations. 

We prove that a class of infinite-dimensional osp(3,2) 
irreps are star representations, which are consistent with a 
positive definite Hermitian form on the representation 
space. These representations are finite-dimensional with re­
spect to the so(3) part, but infinite-dimensional with respect 
to the sp(2) part in the reduction osp(3,2)---+so(3) Ell sp(2). Else­
where,9 this algebra has been denoted by Osp(312,R). It is the 
algebra of transformations in a five-dimensional space with 
one "bosonic" degree of freedom (the coordinate x and the 
momentum p) and three "fermionic" degrees of freedom 
(C1,C2,C3 ). The transformations generated by Osp(312,R) 
leave the (anti-)commutation relations 

\Cj,Ck 1 = 2Djk , 
[Cj,x] = [Cj,p] =0, (j,kEp,2,3)) (1.1) 

[x,p] = i, 
invariant. One of the representations of this algebra decom­
poses into only two subalgebra irreps, for which the so(3) 
label is! and the sp(2);::::;su(I,I) label is - i or -~. We call 
this representation the "metaplectic representation" of 
osp(3,2), since on restriction to suI 1, 1) it yields the direct sum 
of two metaplectic representations of suI 1,1). Metaplectic re­
presentations of SU(k,/) have been studied in general by 
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Sternberg and Wolf. 10 For the metaplectic representation of 
osp(3,2), we give the explicit actions of the superalgebra gen­
erators on the basis states. We show how the basis states can 
be realized in terms of elements of JY(C,C2). This is the space 
of hoI om orphic functionsfC---+C2, with components/I and 
/2' which satisfy 

f(I/I(zW + Ih(zW)exp( - IzI2)dA. (z) < 00, 

whereA. is the Lebesgue measure on C. The Lie superalgebra 
generators are then realized as operators acting on JY(C,C2

). 

The results are similar to the properties obtained for the me­
taplectic representation of osp( 1 ,2). 7 

The metaplectic representation for osp(3,2) leads to a 
physical interpretation: we show that the energy eigenstates 
of the one-dimensional harmonic oscillator, which are si­
multaneously spin! states, are precisely the basis vectors of 
the metaplectic representation. This implies that osp(3,2) is 
the spectrum generating algebra for the harmonic oscillator 
with spin! states. 

In a final section, we discuss the Jordan structure of 
osp(3,2), and give the explicit form of its underlying Jordan 
superalgebra. 

II. THE LIE SUPERALGEBRA OSP(3,2) OR B(1,1) 

The even part osp(3,2)0 of the Lie superalgebra osp(3,2) 
consists of the direct sum Lie algebra so(3) aJ sp(2), which is 
isomorphic to A I aJ A I' We denote the generator basis by 
So,s ± and to,t ± ' respectively, which have the following 
commutators: 

[so,s±] = ±s±' [s+,s_] =2s0 , 

[to,t ± ] = ± t ±' [t+,C] = 2to, 

[sp,tv] =0 (,u,v=O,±). 

(2.1) 

The odd part osp(3,2h consists of the tensor product of a 
three-dimensional tensor operator of so(3) and a two-dimen­
sional sp(2) tensor. We denote its components by 
Ra,p(a = - 1,0,1;,8 = -~, + !); these satisfy the following 
relations: 

[so,Ra,p] = aRa,p, 

[s ± ,Ra,p] = [(1 + a)(2 ± a)j1 /2Ra± I,p' 
(2.2) 

[ to,Raft ] = f3Ra,p, 

[t ± ,Raft] = [I! +f3)H ±f3)r/2R a,P± I' 

The multiplication in a Lie superalgebra L = Lo aJ L-r satis­
fies l 

[A,B] = - ( - l)aP [B,A ], 

(- wa[A,[B,C]] + (- naP [B,[C,A ]] 

+ (- IjPY[C,[A,B]] = 0, 

and 

(2.3a) 

(2.3b) 

(2,3c) 

where AELa, BELp, and CELy(a,p,YE(O.Ij). The Cartan 
subalgebra H of osp(3,2h is spanned by (so,to J . A form aEH* 
is a root of osp(3,2) if and only if 
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La = (XEOsp(3,2)I [h,x] = a(h)X, VhEH J # (OJ. 
(2.4) 

J. Math, Phys., Vol. 25, No. 11 , November 1984 

Obviously, the roots of osp(3,2) are the roots of so(3) aJ sp(2) 
and the weights of the tensor representation R [1,1121. If a and 
f3 are two roots of the Lie superalgebra, and if XELa and 
YELp, then we have l 

[X,Y]ELa+p' (2.5) 
In order to obtain the multiplication table for osp(3,2h, we 
make use of (2.5) and the graded Jacobi identity (2.3b). This 
determines the product on osp(3,2h unambiguously (up to 
an overall multiplicative constant for the tensor compo­
nents). The non vanishing products among the tensor com­
ponents are 

[R I,1I2,Ro,_I12] = (1I.J2)s+, 

[RO,1I2,Ro,1I2] = 2t+, 

[R I,1I2,R _ 1,112] = - 2t+, 

[RO,1I2,Ro, _ 112] = - 2to, 

[RI,l12,R -I, -1/2] = - So + 2to, 

[R O,1I2,R _ I, _ 112] = - (1I.J2)s-, 

[RI, _ 112,Ro,1I2] = - (1I.J2)s+, 

[R O,_1I2,Ro,_1I2] = -2t_, 

[RI, -1I2,R -1,112] = So + 2to, 

[Ro, -1I2,R -1,112] = (1I.J2)s_. 

[ R I, _ 112,R _ I, _ 112] = 2t -' 

(2.6) 

The Lie superalgebra osp(3,2) is then completely determined 
by (2.1), (2.2), (2.6), and (2.3a). 

III. INVARIANTS AND SUBALGEBRA SCALARS 

In this section we shall consider some special elements 
of the enveloping algebra of osp(3,2), namely the invariants 
and some scalar operators with respect to the osp(3,2)0 su­
balgebra. The subalgebra osp(3,2)0 is isomorphic to the Lie 
algebra su(2) aJ su(2), and its Casimir invariants are given by 

S 2 = S +s _ + s~ - So, 
(3.1) 

T 2 = t + t _ + t ~ - to' 

In order to determine the subalgebra scalar operators, we 
define 

(R XR )1k~ 1 = ~ (la l lazlka) (1 f31 1 f3211f3 )Ra I> Ra I> , 

'£.. 2 2 "" "'2 (3.2) 

where ( .. +.) is an su(2) Clebsch-Gordan coefficient. The 
second-order invariantlz of osp(3,2) must be a linear combi­
nation of S2, TZ, and (R XR )b~601, and we find 

1z = J6(R XR )b~601 + S2 - 4T2, 

or, explicitly 

12 = 2(RI,1I2R _ I, - 112 - RO,IIZ RO, - liZ 

- R I , _ \12R _ 1,112 + So - to) + SZ - 4Tz, (3.3) 

The following subalgebra scalars of fourth degree in the gen­
erators are defined in terms of (3.2): 

CI2,0;2) = _ ~(R XR )[2,Ol(s s - ~ - s ) J6 0,0 + - ° ° 
+ (R XR )[-='~~os+(2so + 1) 

- (R XR W601s_(2s0 - 1) 
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+ (R XR )[~%S2+ + (R XR W001S2_ , (3.4) 

CI I,I;2) = 2(R XR )[I,lls t + '2[(R XR )[I,~l t 0.0 ° o,,~ 0, I + 
- (R XR )b~illt_ ]so 

+ {i[(R XR )[~'\~os+ - (R XR )\~Olls_ ]to 

+ [(R XR)[~\~_ls+ -(R XR)\~,~lls_]t+ 

- [(R XR )[~\:IS+ - (R XR WiI1S_ ]C, 
(3.5) 

CIO,0;4) = I(2a2 - aIOO)(R XR )~~601(R XR )[~,~l,o' 
a 

(3.6) 

The fourth-order invariant of osp(3,2) is a linear combina­
tion of fourth-order subalgebra scalars (which include pro­
ducts of 12, S2, and T2), and we obtain a solution for the 
coefficients of the linear combination by requiring that the 
invariant must commute with all the tensor components 
R a •fJ • We find (up to an overall multiplicative constant) two 
independent solutions, one of which is precisely (I2t The 
second solution gives the fourth-order invariant 14: 

14 = 11 [6CI2.0;2) + 24CII,I;2) + 1412S
2 + 2412T2 

- S(SZ)Z + 8S 2 T z + 48(TZ)Z + 30S z - 36T 2]. 
(3,7) 

For completeness, we also mention the first relation: 

(Iz)2 = _ ~ C(0,0;4) + 2Iz(S2 - 4T2) _ (SZ)Z 
J5 

+ 8S zT z - 16(T2)2 + 6S 2 + 12Tz. (3.8) 

The operators 12,14 , SZ, and T Z are four independent com­
muting operators. From (3.7), one would have the impres­
sion that one of the scalars C (2,0;2) or C (I, I ;2) is still indepen­
dent of the four operators mentioned. However, there is a 
relation, namely 

9[C(2,0;2)F + 12[C(,,';2)F + 3CIZ,0;2) 

X II2( - 4S z + 4T z + 15) + 4(S2)Z 

+ 16(T2)Z - 20S 2T z + 76T2 - lSS 2 + 18j 

+ 6C",';Z)12Iz - lOSz + 4Tz + 9j 

+ (IzfSZ(4S2 + 4Tz - 3) 

+ 2IzSZ( - 4(S2)Z + 12S 2T 2 

+ 16(T2f + 3S 2 - 4T2j 

+ SZ( 4(SZ)3 _ 28(S2)2TZ + 32S 2(T2)2 

+ 64(TZ)3 _ 3(S2)2 - 184S zT 2 

- 128(TZ)Z - 144S z + 204T2 + 108j = 0, (3,9) 
which shows, together with (3.7), that neither C(Z,0;2) nor 
C(I,I;Z)arefunctionallyindependentofI2,l4,S2, and T2. This 
is consistent with the fact that there is no missing label prob­
lem in the reduction osp(3,2)---+su(2) G1 su(2), as we shall see in 
Sec. V. Actually, the method of Sec. V showing that there is 
no degeneracy for osp(3,2)---+su(2) G1 su(2), provided the clue 
to the existence ofa relation of type (3.9). 

IV. SHIFT OPERATORS FOR osp(3,2)~su(2) G1 su(2) 

The Lie algebra osp(3,2)(j is a subalgebra of osp(3,2), 
hence every irreducible representation of osp(3,2) is also a 
representation of osp(3,2)(j zsu(2) G1 su(2). Consequently, the 
su(2) G1 su(2) labels can be used to classify the basis states of an 
osp(3,2) irrep. In Sec. V we shall see that there is no degener­
acy in the reduction osp(3,2)---+su(2) G1 su(2). Hence the states 
of an osp(3,2) irrep are completely determined by 

Is,m,t,n), (4.1) 

where sIs + 1), m, t (t + 1), and n are the eigenvalues of the 
operatorsS 2, SO, T Z

, and to, respectively. Ifm andn are irrele­
vant labels, which happens, for instance, in calculations 
which contain exclusively su(2) G1 su(2) scalars, whose eigen­
values are independent of m and n anyhow, we summarily 
denote the kets Is, m, t, n) as Is,t ). Formulas containing this 
shorthand notation should be understood as being valid for 
all permissable m- and n-values. 

The shift operators we shall need in order to analyze the 
irreps of osp(3,2) are su(2) G1 su(2) shift operators. Their ex­
plicit forms follow from the general analysis of su(2) shift 
operators by Hughes and Yadegar6 and the method to obtain 
su(2) G1 su(2) shift operators from them. II The following ex­
pressions are obtained: 

o s~~' - liZ, - 112 = - R _ I, _ IIZS+(S + m)(t + n) + R _ 1,1I2S +t _Is + m) 

- R I , _lIzL(s - m)(t + n) + RI, 1I2S_C(S - m) 
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+ {i[ Ro, _ I12(t + n) - RO,1I2t-](s + m)(s - m), 

o s:-;,~,1I2,1I2 = R _ 1,1I2S+(S + m)(t + n + 1) + R _ I. _ IIZs+t+(s + m) 

+ RI,I12L(S - m)(t + n + 1) + R I, _1/2Lt+(s - m) 

- {i[ Ro,lIz(t + n + 1) + Ro, _1I2t+ ](s + m)(s - m), 

O~'t,-;; 1/2, - 112 = R -I, _ 1I2S+(t + n) - R _ 1,1I2S+t- - R I , _ I12s_(t + n) 

+ RI, 1I2s_t_, 

O~'t~~2,112 = - R _ 1,I12S+(t + n + 1) - R _ I, _ I12S+t+ 

+ RI, 1I2S_(t + n + 1) + R
" 

_ 1I2s_t+, 

o ~:t:;; 112, -112 = R _ I, _ 1I2S+(S - m + l)(t + n) - R _ 1, 1I2 S+t_(S - m + 1) 

+ R I. _1/2L(S + m + l)(t + n) - R I •1I2LC(S + m + 1) 

+ {i [Ro, _ 112 (t + n) - RO,I/2 t _} (s + m + 1 )(s - m + 1), 
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(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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o ~:I~~2,1I2 = - R _ 1,1I2S+(S - m + l)(t + n + 1) - R -I, _1I2S+t+(S - m + 1) 

- RI,I/2L (s + m + 1)(t + n + 1) - RI,_ 1I2S_t+(S + m + 1) 

- ~[RO,1I2(t + n + 1) + Ro, _1I2t+ ](S + m + l)(s - m + 1). (4.7) 

Note that in the right-hand sides of (4.2)-(4.7) the labels sand t could have been replaced by operators sand t, respectively, 
whose actions on su(2) Ell su(2) states are given by 

sls,m,t,n) = sls,m,t,n), t Is,m,t,n) = t Is,m,t,n). (4.8) 

The operators (4.2)-(4.7) shift the eigenvalue s by - 1,0 or + I, and shift t and n by ±!: 

o ;.!:1Is,m,t,n) -Is + i,m,t + j,n + j) (i = 0, ± 1, j = ± !). (4.9) 

It is convenient to use the normalized operators whose actions on eigenstates Is,m,t,n) are related to those of the above 
operators by 

A ~:I± 112 = [Is + m + l)(s - m + l)(t + n +! ± !)] -I/ZO ~:I.~ I12,± 112, 

A 0, ± 112 = (t + n + 1 + 1)-1/20°, ± 112. ± 112 
s,t 2 - 2 S,l,n , (4.10) 

A s-:; I, ± 112 = [(S + m)(s - m)(t + n +! ± m- 1I20 s-:;,~·± 112,± 112. 

If we consider the set of quadratic products of shift operators, it is easy to see that six scalar operators A s~\-; ~ j A ;.1 
belong to this set. Of course, these six product operators are not all independent. The relations which exist among those 
products are the basis of our analysis. It turns out that for every two scalar products there exists a combination which can be 
expressed in terms of the invariants 12,14 and the subalgebra Casimirs S2 and T2. The relations are 

(2s + 4t + 3)A 1,1/2 A - I, - 112 _ (2s _ 4t _ I)A I, - 112 A - 1.112 
s-I~-1I2 ~ s-I~+I12 ~ 

- (2s - 1)(2t + 1){214 - [sis + 3) + 4t(t + 1)]12 - !(s - 2t)(s - 2t + l)(s + 2t+ 2)(s + 2t+ 3)J = 0, 

(4t + 3)A ~'_-I~{! 112A S-:; 1,112 + (2s + 4t + 3)A ~:I~ I(;~A ~:/12 

(4.11) 

- 2s(t + 1){2I4 - [3s(s + 2) + 4t (t + 1) + 4st ]12 + !(s + 2t)(s + 2t + 2)(s - 2t + 1)(3s + 2t + 3)J = 0, (4.12) 

- (2s - 4t - l)A ~'I~ Il~~A ~'11I2 + (4t + 3)A s-+\-;1~~2A ~)/2 

+ 2(s + l)(t + 1){2I4 - [3(s + l)(s - 1) + 4t 2 - 4st ]12 + !Is - 2t + l)(s - 2t - l)(s + 2t)(3s - 2t)J = 0, (4.13) 

(2s + 4t + 3)A s-+\-;1~~2A :)/2 - (2s - 4t - l)A s~li~{: 112A ~:1-1I2 

+ (2s + 3)(2t + 1){214 - [(s + l)(s - 2) + 4t(t + 1)]12 - !(s + 2t + l)(s + 2t)(s - 2t - 1)(s - 2t - 2)j = 0, (4.14) 

- (4t + l)A s-+Ii~{: 1/2A ::1- 112 - (2s + 4t + 3)A ~:/~2112A ~'1-1I2 

- 2(s + l)t {2I4 - [Is + 1)(3s + 1) + 4t(t + 1) + 4t(s + 1)]12 

+ !(s + 2t + 3)(s + 2t + 1)(s - 2t - 2)(3s + 2t + 2)j = 0, (4.15) 

(2s - 4t - l)A 0,112 A 0. - 112 _ (4t + l)A 1,112 A - I, - 1/2 
S,t - 1/2 s,t s - l,t - 1/2 s,t 

+ 2st {2I4 - [s(3s + 2) + 4t(t + 1) - 4st ]lz + !(s - 2t - 2)(s - 2t)(s + 2t + 3)(3s - 2t + I)J = 0. (4.16) 

Besides the relations among scalar products, there are also a 
set of relations connecting the nonscalar products of shift 
operators. Their explicit forms will be extremely useful in 
the analysis ofthe osp(3,2) representations. We obtain 
A ± I, ± 112 A ± I, ± 112 - A ± I, =t= 112 A ± I, =t= 112 - ° (4.17) s±I,I±I12 s,t - s±I,I=t=1I2 S,I - , 
(t + l)A s\li~{:' I12A s11, - 112 

+ tA s\Ii.-;1~~2A s1 1,112 = 0, 

(s - l)A s-:;; Di12A ~'I ± 112 

+ (s + 1)A 0, ± 112 A - I, ± 112 = ° S - 1,/ ± 1/2 S,I , 

(4.18) 

(4.19) 

(s + 2)A ;j; Di12A ~'I ± 112 + sA ~'ll~{! IIzA ::, ± 112 = 0, (4.20) 

A +1,±1I2 A -1,±I12_(2s_1)A°,± 1I2 AO,±I12_0 (421) s- I,I± 112 S,I S,I± 112 s,t -,' 
A - I, ± 112 A I, ± 112 + (2s + 3)A 0, ± 112 A 0, ± 112 - ° (4 22) S + 1,( ± 112 S,I S,I ± 112 S,I -, . 
(s + 2t + l)A 0,112 A - I, - 112 + 2stA 0. - 112 A - 1,112 s- 1,/- 112 S,I s-I,I+ 112 S,I 

+ (s - 1)(2t + l)A s:;~I(;~A ~'I- 112 = 0, (4.23) 
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(s - 2t - l)A 0, - 112 A - 1,112 - 2s(t + l)A 0,1/2 
s-I~+I12 ~ s-I~-I12 

xA s-:; I, -112 - (s - 1)(2t + l)A s-:;~ vil2A ~'11I2 = 0, 
(4.24) 

( - s + 2t)A ~·.!."L _ I12A ~:,- 1/2 - 2(s + l)tA ~'+-I~;~ 1/2A :)12 

- (s + 2)(2t + l)A :)~2112A ~'I- 112 = 0, (4.25) 

- (s + 2t + 2)A ~'+-I~{! I12A ::,1/2 + 2(s + l)(t + l)A ~·.!."~,'-1/2 

+ (s + 2)(2t + l)A ::,~ \j~A ~./12 = 0. (4.26) 

V. ANALYSIS OF osp(3,2) IRREPS 

We analyze the osp(3,2) irreps in the reduction osp­
(3,2)--+su(2) Ell su(2). The su(2) Ell su(2) irreps which appear in 
the decomposition of an osp(3,2) irrep are denoted by (s,t). 
We shall also give a pair of numbers which label the osp(3,2) 
irreps uniquely. 
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We do not restrict ourselves to finite-dimensional re­
presentations of osp(3,2). Therefore, the su(2) ffi su(2) irreps 
in which such a representation decomposes may also be infi­
nite-dimensional. Hence, we must bear in mind that the 
eigenvalues sand t can take on negative values, or even com­
plex values. 

We shall consider the representations of osp(3,2) for 
which the states can be connected by consecutive actions of 
the shift operators A ~~ (or 0 ~,{:;{). Since the matrix elements 
of the shift operators are proportional to reduced matrix ele­
ments of the tensor R [1.1121,6 this method will give us all the 
irreducible representations of osp(3,2). 

The nonscalar equations (4.17) show that if (s,t) and 
(s - 1,t - ~) are parts of an osp(3,2) irrep [always in the re­
duction to su(2) ffi su(2)], then neither (s + 1,t +!) nor 
(s - 2,t - 1) belong to that representation, because the 
square of A ± I. ± 112 is zero. Similarly, if(s,t) and (s + 1,t - !) 
appear in the decomposition of an osp(3,2) irrep, then 
(s - 1,t + ~) and (s + 2,t - 1) do not. Hence, we may assume 
that in general the irrep contains the representations (s',t '), 
(s' - 1,t' - !), and (s' + 1,t' - !), such that the actions of 
A 1,1/2 and A -1,1/2 upon states IS',t' > vanish. Suppose that 
A 0,1 12Is',f ') would not be zero, which means that (s',t' + ~) is 
a representation of the osp(3,2) irrep under consideration, 
then the application of (4.20) upon the states Is' - 1,t' - !) 
and of (4.19) upon Is' + 1,t' - D show that (s' - 1,t ') and 
(s' + I,t ') are also parts of the osp(3,2) irrep. Obviously, the 
actions of A ± 1,1/2 upon IS',t' +!) states are zero. But now 
also the action of A 0,1/2 upon IS',t' + D must vanish, because 
otherwise the application of (4.20) upon Is' - 1,t ') or of 
(4.19) upon Is' + I,t') would imply that the representations 
(s' - I,t' + !)and(s' + 1,t' + !) are parts oftheosp(3,2) irrep, 
which contradicts our assumption. Hence, we have shown 
that an osp(3,2) irrep always contains an su(2) ffi su(2) irrep 
(p,q) = (s',t' + !)such that the actions of A ± 1,l!2 andA 0,1/2 
upon Ip,q) states vanish. 

Let us first consider the cases where [PI > ~ and Iql >~. 
Since the actions of A ± 1.112 and A 0.1/2 upon [p,q) are zero, 
the application of Eqs. (4.12) and (4.13) immediately gives 
the following solutions for the eigenvalues of the invariants: 

12[p,q) = (p + 2q)(p - 2q + l)lp,q), 
(5.1) 

14 [p,q) = A(p + 2q)(p - 2q + I)[3p(p + 1) 

+ 2(q + 1)(2q - 3)] Ip,q)· 

The states lP,q) are connected to states IP + l,q -!) by 
means of the operator A ~:q- 112. The action of the scalar rela­
tion (4.14) then implies 
A - 1,112 A I. - II2[P q) p+ l,q-1I2 p,q , 

= 2(p + I)(2p + 3)(2q + l)(p + 2q)[P,q), (5.2) 

which shows that (p,q) and (p + 1,q -!) are parts of the 
same osp(3,2) irrep unless p + 2q = O. 

Now we proceed with the analysis starting from 
(p + l,q - !). The action of A 0,1/2 upon [p + 1,q - !) states 
vanishes, because otherwise the application of (4.26) upon 
Ip,q), namely 

(p + 2q + 2)A ~';I~~2+ II2A ~:!/2lp,q) 

= 2(p + l)(q + I)A ~'l"i.q- II2A ~:q-I/2[p,q), (5.3) 
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would imply that A l,l/2lP,q) #0. Similarly, the action of 
A 1,1/2 upon [p + 1,q -~) vanishes since otherwise (4.18) 
would show that A 1,1/2jp,q) #0. Obviously, the action of 
A 1,-1/2 upon [p + 1,q -!) vanishes because of (4.17): 
A ~';/,~2_ II2A ~:q- lI2[p,q) = O. But (p + 1,q -!) can be con­
nected to (p + I,q - 1), and so we get from Eqs. (4.15) and 
(5.1) the relation 

A ~,ytq_IA ~.;/.~2_1121P + l,q - P 
= 4(p + 2)2q(2q - 1)[P + I,q - p. (5.4) 

We continue our analysis by investigating which su(2) ffi su(2) 
representations can be connected to (p + 1,q - I), The ac­
tion of Eq. (4.25) upon the states [p + I,q - !) shows that 
A ~'~i.q-I jp + l,q - 1) vanishes. Similarly, the action 
of Eq. (4.20) upon [p + l,q - !) implies that 
A ~';I~~2_1 [p + 1,q - 1) = 0, and the action of (4.22) that 
A ~';I~~~ I II' + 1,q - 1) = O. We then consider the action 
A p-+\~ 2."~ [p + 1,q - 1). This is in general not zero, and the 
scalar relation (4.16) shows 

A ~:!<: 3/2A p-+\~ 2."; [p + l,q - 1) 
= - 4(p + 1)(2p + 3)(q - l)(p - 2p + 1) 

X Ip + I,q -1), (5.5) 

implying that (p + I,q - 1) and (p,q -~) are connected to 
eachotherunlessp - 2q + 1 = O. Using some of the nonsca­
lar relations (4.17)-(4.26), it is then straightforward to show 
that the actions of A 1,-1/2, A 0,-1/2, and A -1.-1/2 upon 

Ip,q -~) all vanish. Hence, the analysis of the enveloping 
polygon (see Fig. 1) of the multiplicity diagram for the reduc­
tion osp(3,2)---+su(2) ffi su(2) is completed for the side s)p, 
which consists of the points (p,q), (p + 1,q - !), 
(p + l,q - 1), and (p,q - ~). 

The analysis of the reduction of the osp(3,2) irrep for 
s<p is quite analogous, and therefore, we do not enter into 
the details of this investigation. The result is that on this side, 
the enveloping polygon consists of the points (p,q), 
(p - l,q - !), (p - l,q - 1), and (p,q - ~). Hence, the enve­
loping polygon for the multiplicity diagram of the reduction 
of an osp(3,2) irrep into su(2) ffi su(2) irreps is completely de­
termined. This analysis also shows that the osp(3,2) irrep 
itself is uniquely labeled by the pair (p;q), which is the label 
(s,t) of the su(2) ffi su(2) irrep with highest t-value and corre­
sponding highest s-value that appears in the reduction. The 
correspondence with the Kac-Dynkin labels4 (aI' 
a2;b = a l - ~a2)' for the finite-dimensional osp(3,2) irreps, is 
given by 

o 

FIG. I. Multiplicity diagram for a general osp(3,2) irreps in the reduction 
osp(3,2)-->so(3) $ sp(2), and the shift operators connecting the correspond­
ing so(3) $ sp(2) irreps. 
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p = a2/2, 

q = b /2 = (a J - ~a2)12. 

Inside the enveloping polygon, there are only two 
points which can correspond to an su(2) ED su(2) irrep of the 
osp(3,2) representation, namely (p,q -~) and (p,q - 1). The 
states [p,q - ~) always appear, since we find 

A ~:!/-= 112A ~:q-1I2[P,q) = 2p(p + 1)(2q - 1)(2q + 1)[P,q). 
(5.6) 

Whether the representation (p,q - 1) appears in the reduc­
tion or not, depends on the vanishing of p + 2q and 
p - 2q + 1, since an appropriate use of the scalar relations 
(4.11 )-(4.16) shows that 

A 0.112 A O. - 112 [p q _ 1) P.q - I P.q - 112' 2 

= - 2(p + 2q)(p - 2q + 1)[P,q - !). (5.7) 

The multiplicity ofthe irreps (s,t ) which correspond to points 
on the enveloping polygon is of course equal to one. But for 
the irreps (p,q - !) and (p,q - 1) there could appear a degen­
eracy. In order to investigate their multiplicity, we have to 
consider in how many independent ways a [p,q -!) state 
(resp. a [p,q - 1) state) can be obtained from the "highest 
states" [p,q). Therefore, let us define 

A ~:q- 1/2[p,q) = I (a);p,q - !), 
(5.8) 

A - 1,112 A 0, - 112 A I, - 112[P q) - I(b ).p q _ I) p+l,q-1 p+l,q-1I2 p,q , - " 2' 

where (a) and (b) are supplementary labels to distinguish 
between different (p,q -!) irreps if its multiplicity were 
greater than one. The previous analysis then shows 

I(b );p,q -!) -A p~I't~~2_1 [p + l,q - 1). (5.9) 

From (4.23) and (4.24) we obtain the relation 

(2t + l)A ~'_-I~{! I12A s~ 1.112 + 2s(t + l)A s~~10~A ~'t-1I2 

is one. As a consequence, there is no degeneracy for the re­
duction osp(3,2)---+su(2) ED su(2), and the states of an osp(3,2) 
irrep (p;q) are completely labeled by the su(2) ED su(2) labels 
Is,m,t,n), where (S,t)El!p,q),(p,q - !), (p ± l,q - ~), 
(p,q - I), (p ± l,q - 1), (p,q - ~)l. Figure 1 shows the re­
duction of a general osp(3,2) irrep, and the ways in which the 
corresponding states can be connected by means of the shift 
operators. Note that these eightfold patterns appear in the 
finite-dimensional case (2p and 2q non-negative integers) as 
well as in the infinite-dimensional case (where p and/or q can 
be negative real numbers). There are, however, two main 
exceptions to this eightfold reduction pattern. Indeed, in the 
analysis of the osp(3,2) irrep we have mentioned that if 
p - 2q + 1 = 0 or p + 2q = 0, some states are not connected 
to each other. In order to obtain a better insight into these 
situations, we summarize the matrix elements of the scalar 
product operators which connect the states to each other. 
Their expressions follow from the scalar relations (4.11)­
(4.16): 

A - 1,112 A I, - 1/2[P q) p+l,q-l12 p,q , 

= 2(p + 1)(2p + 3)(2q + l)(p + 2q)[P,q), (5.12) 

A ~:!~ II2A ~:q-1I2[P,q) = 2p(p + 1)(2q - 1)(2q + 1)[P,q), 
(5.13) 

A 1.112 A - I, - 112[P q) p-l.q-112 p,q , 

= - 2p(2p - 1)(2q + l)(p - 2q + 1)[P,q), 

A ~'~tq_IA ~';1~~2_112[P + l,q -!) 
= 4(p + 2)2q(2q - 1)[P + I,q - p, 

A 1,112 A - I, - 112 [p 1 1) p,q-I p+ l.q-1I2 +,q - '2 

(5.14) 

(5.15) 

= - 2p(2p + 3)(2q - l)(p - 2q + 1)[P + l,q - ~), 

(5.16) 
A -1,112 A 1,-112 [p I) p+l,q-1 p,q-l12 ,q-2 

- (s + 2t + l)A s~~viI2A ~:tIl2 = 0, (5.10) = 4pq(2p + 3)(p + 2q)[P,q - !), (5.17) 

h . th [p 1 I) d A 0.112 A O. - 112 [p q _ 1) W ose actlOn upon estate +,q - 2 pro uces p,q _ I p.q - 112, 2 

2qA ~:q-II2A p-+\~~2_1/2[P + l,q -!> = - 2(p + 2q)(p - 2q + 1)[P,q - !), (5.18) 

= - 2( p + l)(q + !)A p-+I't~~2_ I A ~.; 1~~2_ 112 A !·~i.q _ I A p--:q ~ 1/~12[P,q - !) 
X Ip + I,q - p. (5.11) = - 4(2p - l)(p + I)q(p - 2q + I)lp,q - !), (5.19) 

For the left-hand side of (5.11) we find 
A 0, - 112A - 1,112 [p + 1 q _ 1) -A 0, - 112[P q) p,q P + I.q - 112 , '2 p,q , 

-I(a);p,q - !), 
while the right-hand side gives 

A p-+\~~2_ IA ~';1~~2_ 112[P + I,q -!) 

-A p-+\~~~ I [p + I,q - 1) 

-I(b );p,q - !), 
from which we obtain that 

I (a);p,q -!) -I(b );p,q - !). 
This shows that the two ways defined in (5.8) are not inde­
pendent. It is easy to prove that all the other ways in which a 
[p,q -!> state might be defined are finally proportional to 
A ~:q- 112[p,q). Hence, the multiplicity of the (p,q - !) irrep is 
equal to one. The same reasoning is valid for the irrep 
(p,q - 1), so that also for this representation the multiplicity 
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A - U12A I, - 1/2 [p _ 1 q _ 1) p.q-I p-l,q-1I2 , 2 

= 2(p + I)(2p - I)(2q - I)(p + 2q)[P - I,q - !), 
(5.20) 

A 0,112 A O,-1I2 [p 1 1) p-I,q-I p-l,q-1I2 - ,q - 2 

= 4(p - I)2q(2q - I)[P - I,q - p, 
A I,1/2 A- I,-1I2[p 1 1) p,q-3/2 p+l,q-1 + ,q-

= - 4(p + I)(2p + 3)(q - 1) 

X(p - 2q + I)[P + I,q - 1), 

(5.21) 

(5.22) 

A ~:!/-= 3/2A ~:q-_Ii2[P,q - 1) = 8p(p + I)q(q - I)[P,q - 1), 
(5.23) 

A - 1.112 A I, - 112 [p - 1 q - 1) p,q-3/2 p-I,q-I , 

= 4p(2p - l)(q - I)(p + 2q)[P - I,q - 1). (5.24) 

Now it is easy to see that ifp - 2q + 1 = 0 (andp + 2q#0), 
the eightfold pattern decomposes into two irreducible repre-
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sentations of osp(3,2), since the actions (5.14), (5.16), (5.18), 
(5.19), and (5.22) are zero. They correspond to two parallelo­
grams in Fig. 1. The first irrep, which we label by (p;q), 
decomposes into the su(2) al su(2) irreps (p,q), (p, q - !), 
(p + I,q - !), and (p + 1,q - I), and the second osp(3,2) ir­
rep, which we label by (p - I;q - !), decomposes into 
(p - I,q - !), (p - I,q - I), (p,q - I), and (p,q - ~). These 
"fourfold" representations will tum out to be so-called 
atypical representations,4 whereas the "eightfold" irreps are 
typical. In general, these two fourfold representations, 
which we labeled by (p,q) and (p - l;q - !), are parts of a 
reducible but indecomposable osp(3,2) representation, 
where the representation space of (p;q) is the factor space, 
and that of (p - l;q - !) is the invariant space.4

•
5 Let V be 

the indecomposable (finite-dimensional) representation 
space, and V = VI al V2, where VI is the factor space and V2 

is the invariant space. When a basis is chosen in VI and V2 , 

the indecomposable representation p is schematically de­
scribed by 

p:X~ (~ ~) [XEosp(3,2)]. 

What we find are the irreducible representationsPI:X~(A) 
andp2:X~(D). Note that for all the fourfold representations 
the 12 and 14 eigenvalues are zero, sincep - 2q + 1 = O. This 
shows that the eigenvalues of the invariants do not specify 
the finite-dimensional irreps of the superalgebra uniquely, 
whereas for Lie algebras they always do. Analogously, if 
p + 2q = 0, the eightfold pattern decomposes into the two 
osp(3,2) irreps, the first one labeled by (p;q) and containing 
the su(2)alsu(2) irreps (p,q), (p,q-!), (p-l,q-!), and 
(p - 1,q - 1), and the second labeled by (p + l;q - !) and 
containing the subalgebra representations (p + 1,q - !), 
(p + 1,q - 1), (p,q - 1), and (p,q - ~). 

Until now we have supposed that !PI >~and Iql >~. The 
analysis of the remaining cases is similar to the previous one, 
and we shall not enter into the detailed calculations. An im­
portant difference, however, is that we shall have to distin­
guish between finite-dimensional and infinite-dimensional 
representations of su(2} al su(2). In order to understand this, 
let us consider the finite-dimensional su(2) al su(2) irrep (s,O) 
(2sEN), as part of a certain osp(3,2) irrep. Because of the fin­
ite-dimensionality the representation (s,O) contains the states 
Is,m,O,O), wherem = - s, - s + 1, ... 08. But then theexpres­
sions (4.2H4.7) show that the actions of the shift operators 
0;',-:;.112. -1I2(i = - 1,0,1) all vanish, since tit Is,m,O,O) = a 
for J.L = 0, ± and (t + n) = O. Hence, the values t = 0, and 
similarly s = 0, are limits which cannot be exceeded by the 
shift operators in the finite-dimensional case. On the con­
trary, if (s,O) is an infinite-dimensional su(2) al su(2) irrep, as 
part of an infinite-dimensional osp(3,2) irrep, the actions of 
the shift operators usually do not vanish. Suppose, for in­
stance, that the su(2) irrep labeled by s (s< - 1) is a discrete 
positive series D + with minimum m-value Jtl = - s, and 
that the su(2) irrep labeled by a is a discrete positive seriesD + 

with minimum n-value 7J = 1. Then the states of the irrep 
(s,O) are labeled by Is,m,O,n), where m and n take on an infin­
ity of values: m = - s, - s + 1, ... ; n = 1,2,3, .... Obviously, 

3340 J. Math. Phys., Vol. 25, No. 11 , November 1984 

the action of tit I,p = 0, ± ) or (t + n) on such states is in gen­
eral different from zero, and hence the actions of the shift 
operators usually do not vanish. As a consequence, there are 
no limits for the shift operators if we consider infinite-dimen­
sional representations. 

In the case !PI > ~ and Iql >~, we did not have to deal 
with the problem of finite- or infinite-dimensionality, since 
the eightfold patterns did not intersect the lines s = 0 or 
t = O. Let us now consider the case !PI <~ or Iql <1' and we 
first investigate the finite-dimensional representations of 
osp(3,2), which, of course, decompose into finite-dimension­
al su(2) al su(2) irreps (s,t). Thens and t are non-negative inte­
gers or half-odd integers. A detailed analysis by means of the 
relations (4.11)-(4.26) then shows that for PEt qJ and q>i, 
or for q = ~ and p> 1, we still have the common eightfold 
patterns [or the fourfold patterns whenp - 2q + I = 0, i.e., 
for (p,q) = (2,~l], and the expressions (5.12)-(5.24) are still 
valid. Because the shift operators cannot exceed the s = 0 
and t = 0 axes, the remaining cases will mainly consist of 
"truncated" eightfold patterns. We summarize the results. 

AI. q = 1,p> 1. The osp(3,2) irrep (p;l) reduces to the 
su(2) al su(2) irreps(p,l), (p,!), (p ± q), (p,O), and(p ± 1,0). 

A2. q = 1,p = 1. The osp(3,2) irrep (1;1) is an atypical 
representation (a fourfold pattern) and decomposes into 
(I, I), (I,!), (2,!), and (2,0). 

A3. q = I,p =!. This representation reduces to the 
su(2) al su(2) irreps (!, 1), (!,!), (!,O), (~, I), and (~,O). 

A4. q = I,p = o. The irrep (0;1) decomposes into the 
subalgebra representations (0,1), (I.!), and (1,0). Hence, this 
representation corresponds to the 12-dimensional adjoint re­
presentation of osp(3,2). 

BI. q = !,p> 1. Theosp(3,2) irreps (p;!) decompose into 
the sum of only three su(2) al su(2) irreps, namely (p,!), 
(p - 1,0) and (p + 1,0). 

B2. q = !, p = !. The irrep (!;!) of osp(3,2) reduces to (!,!) 
and (},O). 

B3. q = !, p = o. This representation reduces to (O,!) 
and (1,0), and is the five-dimensional standard representa­
tion by which the osp(3,2) algebra is usually defined. 

CI. q = 0, p = 0: the trivial representation of osp(3,2). 
D 1. p = !, q> 1. The (!;q) irreps of osp(3,2) decompose 

into the subalgebra representations (!,q) H,q - !), (!,q - I), 
(!,q - }), G,q - !), and (}, q - I). 

EI. P = O,q > 1. These representations, finally, reduce 
to the su(2) al su(2) irreps (O,q), (1 ,q - !), (1 ,q - 1), and 
(O,q-~). 
These situations complete the classification of the finite-di­
mensional osp(3,2) irreps.1t is obvious that all these cases are 
"parts" of the general eightfold pattern, and it is worthwhile 
remarking that for all these cases the corresponding parts of 
(5.12)-(5.24) are still valid. For instance, if we consider the 
representations Bl, the expressions (5.2) and (5.14) which 
correspond to the only possible ways by which the 
su(2) al su(2) irreps may be connected, are still correct. Also 
note that (5.13), (5.15), (5.16), (5.20), and (5.21) would vanish 
in the case Bl, which shows again that the BI series reduce to 
only three su(2) al su(2) irreps. 

We still have to investigate the infinite-dimensional 
osp(3,2) irreps in the case !PI<~ or Iql<~· These representa-
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tions reduce to infinite-dimensional su(2) $ su(2) irreps. 
Whether we have finite- or infinite-dimensional subalgebra 
representations depends in fact on the Hermiticity condi­
tions we choose for the subalgebra generators. If we take the 
usual conditions 

S6 = so, st± =s=t=' t6 = to, tt± = t=t=' (5.25) 
then this corresponds to the real compact forms of the two 
su(2) algebras, and we find only finite-dimensional represen­
tations for which s = 0,!,1, ... and t = 0,!,1, .... If we impose 
the Hermiticity conditions 

S6 = so, st± = -s=t=' t6 = to, tt± =t=t=, (5.26) 
then the first su(2) generators are a basis for the noncompact 
form ofsu(2), while the second su(2) algebra is compact. The 
unitary representations of this algebra, which we denote by 
su(I,I) $ su(2), are infinite-dimensional with respect to the 
first su(2)-subalgebra, and finite-dimensional with respect to 
the second. This means that the label s can take on negative 
real values (or, in the general case, also complex values 
- ! + ip, where pER), but for t we still have: 2tEN. The two 

remaining possibilities are denoted by the obvious notations 
su(2) $ suI 1, 1) and finally su(l, 1) $ suI 1, 1). 

Before continuing the analysis of the infinite-dimen­
sional osp(3,2) representations, we have to make an impor­
tant remark. It is known that there exists a relation between 
the matrix elements of the shift operators and the reduced 
matrix elements of the tensor.6 Such a relation reads 

o ~.Uls,m,t,n) ~ (s + i,t + jllR [1.112]lls,t) Is,m,t,n), 
(5.27) 

where the actual value of the coefficient is a well-known 
expression ins, m, t, n, i, andj. Once a Hermitian operation is 
chosen for the Lie superalgebra (which is a so-called star or 
grade star operation), the matrix elements of the shift opera­
tors can be determined from the expressions of the matrix 
elements of the product operators (5.12)-(5.24). We will do 
this explicitly in Sec. VII [see Eq. (7.12)]. Then the reduced 
matrix elements of R [1,112] are known, and from the 
Wigner-Eckart theorem 12 all the actions of its components 
are obtained: 

R a .{3ls,m,t,n) = s~. ,~.( - 1)"-m,( _~, a ~) 
. .( t' 21 nt) x( - I)' -n 

- n' {J 
X (s',t 'IIR (1, 1I2J lls,t) Is',m',t ',n'), 

(5.28) 
where the symbols on the right-hand side are Wigner 3j­
symbols with onej equal to 1 or!, for which explicit expres­
sions are given in the literature. 12 In the finite-dimensional 
case this procedure does not give rise to any problems. In the 
infinite-dimensional case, the Wigner 3j-symbols are "analy­
tical continuations" of the expressions for integral or half­
integralj's.13 Then problems might occur because of the ap­
pearance of factors like (2s + 1) or (2t + 1) in the coefficient 
for (5.27) or in the denominators of the 3j-symbols. Some­
times, these difficulties are solved because the same coeffi­
cients appear in the expression of the shift operator matrix 
element (which contributes finally to the numerator), and 
hence the singularities are dissolved by "taking the limit." 

A detailed study of the coefficients in (5.27) and the 3j­
symbols in (5.28) finally showed that we have to exclude the 
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infinite-dimensional osp(3,2) irreps (p;q) for which the 
su(l,l)s labelp isO, - ! or - 1, or for which the su(l, I), label 
q is 0 or !, because in these cases singularities appear which 
cannot be removed. 

We can now give a summary ofthe remaining inftnite­
dimensional osp(3,2) representations, where IPI.;q or Iql <~. 

(1) su(l, 1) e su(2). It is sufficient to consider p < 0, since 
an su(I,I) representation labeled by s is equivalent to the 
representation labeled by - s - 1. 

For p< -1, -l<p< -! or -!<p<O, and 
q;;;.~(qE!N), we still have the usual eightfold decomposition 
diagram, except when p + 2q = 0, which gives the fourfold 
decomposition pattern existing of (p,q), (p,q - !), 
(p - 1,q - !), and (p - l,q - 1). 

Forp<O(andp# - 1, - !),andq = 1 we have truncat­
ed diagrams, decomposing into (p,I), (p,!), (p ± l,!), (p,O), 
and (p ± 1,0), except for p = - 2, which gives again a four­
fold diagram decomposing into ( - 2,1), ( - 2,!), ( - 3,!), and 
( -3,0). 

For p < 0 (# - 1, - !) and q = !, the representations 
reduce into the su(I,I) e su(2) irreps (p,!), (p - 1,0), and 
(p + 1,0). This completes the analysis for su(l, 1) $ su(2). 

(2) su(2) e su(l,l). Now 2PEN, and because of the equiv­
alence for t-- - t - 1 we have only to consider q-values 
which satisfy q <!. 

For p = 1 or ~, and q < !(q¥O), the representation de­
composes into the usual eightfold pattern, except when 
p + 2q = O. Then (p;q) = (~; - i) decomposes into H, - i), 
G, - i), (!, - i), and (!, - ~), and (p;q) = (1; -!) into (1, - !), 
(1, - 1), (0, - 1), and (0, - ~). 

For p = ! and q < !(q#O), the (p;q) irrep reduces to the 
su(2) e su(l,l) representations (!,q), (!,q - !), (!,q - 1), 
(!,q - ~), (~,q - !), and G,q - 1). There is only one exception 
to this, i.e., when p + 2q = o. This is the representation 
(!; - !), and it decomposes into a doublet of subalgebra ir­
reps, namely (!, - !) and (!, - i). 

Finally, for p = 0 and q<! (q¥O), the (p;q) irrep de­
composes into the su(2) e suI 1,1) irreps (O,q), (l,q - !), 
(l,q - 1), and (O,q - ~). 

(3) su(I,I)esu(I,I). Because of the afore-mentioned 
symmetry, we can restrict ourselves to the values p < 0 and 
q <!. For all these values (p# - 1, -!, q#O) the osp(3,2) 
irreps (p;q) decompose into the usual set of eight 
suI 1,1) e suI 1,1) representations, except when 
p - 2q + 1 = 0 or p + 2q = o. If p - 2q + 1 = 0, the de­
composition contains only (p,q), (p,q - !), (p + l,q - !), 
and (p + l,q - 1), and if p + 2q = 0, it contains (p,q), 
(p,q - !), (p - l,q - !), and (p - l,q - 1). Note that 
p + 2q = 0 and p - 2q + 1 = 0 cannot occur simultaneous­
ly, because we had to exclude the possibility p = -!. 

This completes the analysis of osp(3,2) irreducible re­
presentations. We would like to remark that the expressions 
(5.12H5.24) are still valid for the above-mentioned represen­
tations if we first use them to obtain expressions like (5.28), 
and then "take the limit." In Sec. IV we will give an example 
ofthis for the osp(3,2) irrep (!; - i). 
VI. STAR AND GRADE STAR REPRESENTATIONS 

Star and grade star operations for Lie superalgebras are 
the equivalents of Hermitian operations for Lie algebras, and 
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have been discussed in general by Scheunert et al. 8 If L = Lo 
~LI is a Lie superalgebra, then the operationt:La---*La 
(a = 6,1) is a star operation if 

(aA + bB)t = a"A t + b "B t, 

[A,B]t= [Bt,At], (6.1) 

(A t)t =A, 

for all elements A, B of L and for all complex numbers a,b 
(the notation * denotes the complex conjugate). The oper­
ationt:La---*La (a = 6,1) is a grade star operation if 

(aA + bB)t = a"A t + b"B t, 

[A,B]t = (- qaP[Bt,A t], (6.Z) 

(A t)t = (- ItA, 

for all homogeneous elements A, B of L and for all complex 
numbersa,b. In (6.Z) a (resp.,{J) is the degree of A (resp.,B). 
The definitions (6.1) and (6.Z) imply that the restriction ofa 
star or grade star operation to the even part Lo is a Hermi­
tian operation of the Lie algebra Lo. Hence, in the case of 
osp(3,Z) we have only to consider all possible Hermitian 
operations on the even part, and investigate whether it is 
possible to extend them to a star or grade star operation for 
the Lie superalgebra. In Sec. V we have already mentioned 
four independent Hermitian operations on the Lie algebra 
su(Z) ~ su(Z). For each of them we give the possible exten­
sions: 

(I) su(Z) ® su(Z). No star operation can be defined for the 
Lie superalgebra, when the adjoint operation on the even 
part is as in (5.Z5). However, two grade star operations are 
consistent with (5.Z5), and we find 

(6.3) 
R t = (- 1)-<+1'+ !I2ER :t,1' --<, -1" 

where E is + I or - 1. 
(Z) suI I, I) ~ su(Z), Again, no star operation can be given 

if the adjoint operation is as in (5.Z6), but the following two 
grade star operations satisfy the definition (6.Z): 

sb = So, st± = - s =F' t 5 = to, t t± = t =F ' 

R 1.1' = ( - I r + 112ER -:t, _I' ' 

whereEE! + I, - IJ, 

(6.4) 

(3) su(Z)~su(I,I). If the adjoint operation on the even 
part is the one corresponding to su(Z) ~ su(I,I), the situation 
is opposite to the previous ones, and only two star operations 
can be defined: 

s6 = So, st± = s =F' t 6 = to' t t± = - t =F ' 

(6.5) 

Rtl' = (-I)-<+!ER_:t,_1' (E= + I or -I), 

(4) su(I,I) ~ su(I,I). The operations consistent with the 
adjoint operation on the even part are two star operations 

S6 = So, st± = - s =F' t 6 = 1o, I t± = - I =F ' 

(6.6) 
R1.,. = -ER_:t,_1' (E= + I or -I). 

Let p be a representation of the Lie superalgebra L into 
a graded representation space V = Vo ~ VI' Suppose that a 
nondegenerate Hermitian form (I) on V is given such that 

( VO WI ) = ! 0 J . (6.7) 
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If the nondegenerate Hermitian form (I) on V is positive 
definite, then Vis called a graded Hilbert space, B Let pi ( V) be 
the space of linear mappings of V into itself. It is known that 
also pi (V) is a graded vector space.! For every homogeneous 
element A of pi (V), the adjoint operator A t, respectively, 
grade adjoint operator A t, is defined byB 

(A txly) = (xIAy), VX,YEV, (6.8) 
resp., 

(A txly ) = ( - 1)at (xIAy), VXEVt , VYEV, (6.9) 

where a = degree (A ). Then, the representation p:L---* V is a 
star, resp., a grade star, representation if 

pIA t) = (P(A ))t, VAELa (a = 6,1), (6.10) 

resp., 

pIA t) = (P(A ))t, VAELa (a = 6,1). (6.11) 

In the following sections we shall investigate which of 
the representations, considered in Sec. V, are star or grade 
star representations. In particular we are interested for 
which ofthe irreps the representation space is a graded Hil­
bert space. 

VII. FINITE-DIMENSIONAL GRADE STAR 
REPRESENTATIONS OF osp(3,2) 

The only possible adjoint operations are given in (6.3). 
We first consider the general (p;q) irreps withp> 1 and q>~, 
and p - Zq + I #0, which reduce in su(Z) ~ su(Z) irreps (s,/), 
where 

(s,t)EI = !(p,q),(p,q - !),(p ± I,q - !), 

(p,q-l),(p± l,q-l),(p,q-m. (7.1) 

The representation space V is then spanned by 

! Is,m,l,n) l(s.1 )EI;m = - s. - s + 1 .... s; 

n= -t.-t+l ..... +/J. (7.Z) 

The adjoint operation on the even part of the superalgebra 
implies that the nondegenerate Hermitian form on Vis of the 
form 

(s',m',t ',n'ls,m,t,n) = g(s,t )t5s',so""om',mon',n' (7.3) 

where g(s,t )ElR. By appropriate rescaling of the basis states, 
the Hermitian form can be chosen such that for all (s,t )EI the 
factor g(s,/) satisfies Ig(s,t)1 = I. hence g(s./) = ± 1. If 
g(s,t) = 1 for all (S.I ), then V is a graded Hilbert space. 

Using some general properties of the shift operators6 

and making use of(6.3), we can show that the operators (4.2)­
(4.7) satisfy 

(0 I, ± 112. ± 112)t(2s + 1)(2! + I) 
= ± E(O - I.=F 112.=F 112)(1$ _ 1)(2t + 1 + 1), 

(0 0, ± 112, ± 112Ji(2t + I) 
= ±E(00,=F 1I2,=F 1I2)(Z!+ 1+1). 

(0 -I, ± 112, ± 112)t(2S + 1)(2! + 1) 

= ± E(O !.=F 112,=F 1/2)(1$ + 3)(21 + 1 + 1). 

(7.4) 

We did not write the indices s,t,n for the shift operators. 
because they are supposed to be expressed in terms of the 
osp(3,2) generators s and I [i.e., in the expressions (4.ZH4.7), 
s,m,t, and n are replaced by s, So, i, and to, respectively], and 
hence they can act on any state of V. The first relation in (7.4) 
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implies: 

(s - 1,t + !IA s:-;- 1, :Fl12 ls,t )(2s - 1)(2t + 1 =+= 1) 

= ±E(2s+ 1)(2t+ l)(s-l,t +!I(A~'_±I~:~1I2)tls,t), 
(7.5) 

and similar expressions are obtained for the rest of the rela­
tions in (7.4). Since the shift operators are represented by odd 
operators, we deduce by means of relations like (7.5) 

(s t IA += I, += 1/2 A ± I, ± 1121s t ) 
, s±1,t±1/2 s,t ' 

= _€(2s+ 1 + 2)(2t+ 1 + 1) (-l)"g(s + 1,t± I) 
+ (2s+ 1)(2t+ 1) - 2 

X I (s ± 1,t ± !IA s~ I, ± 112Is,t) 1
2

, (7.6) 

(s,t IA ~:,~ I(;~A ~'I± 1!2ls,t) 

= - € (21 + 1 + 1) (_ I)" (s,t + I) 
+ (21+ 1) g - 2 

X I (s,t ± ~IA ~,/!2ls,t W, 
(stlA ±I,+=1I2 A +=I,± 1I2 Ist) 

, s += 1,1 ± 112 S,I , 

= =+= € (2s + 1 =+= 2)(2t + 1 + 1) ( _ 1)" 
(2s + 1)(21 + 1) 

(7.7) 

Xg(s + 1,t ± m (s + 1,1 ± ~IA s} I, ± 112Is,t) 12
, (7.8) 

where (7 is the degree of state Is,t) [sometimes denoted as 
u(s,t )]. 

Equations (7.6)-(7.8) are applied on the irreps (p;q) un­
der consideration. We deduce from (5.12) and (7.8) that 

2(p + 1)(2q + l)(p + 2q)g(p,q) 

= ( - l)o(p,q)€(p + 1,q -!) 

X(2q)l(P + 1,q -~IA !:q-1I2[p,qW/(2p + 1)(2q + 1). 
(7.9) 

We first consider the operation with € = + 1. For the degree 
of the states [p,q) there are two possibilities: 

(a) u( p,q) = 6, 

(b) u( p,q) = I, 
If we are in case (a) [resp., (b)], Eq. (7.9) implies 

(a) g(p + I,q -!) =g(p,q), 

resp., 

(b) g(p + 1,q -!) = - g(p,q), 

and 

(7.10) 

(7.11) 

TABLE I. Degrees of the states /s,t> and of the factor g(s,t) in (7.3). 

I (P + I,q - ~IA !:q- 1!2[p,q) 12 

=2(p+ I)(2p+ 1) (2q+ W (p+2q). 
2q 

From (5.14) and (7.6), we obtain 

- 2p(2q + l)(p - 2q + 1)g(p,q) 

= ( - l)o(P,Q)g(p - I,q - ~)(2q) 

(7.12) 

X I (P - I,q - 11A P-:-/' - 112 [p,q) 12/(2p + 1)(2q + 1). 
(7.13) 

This shows that the sign of p - 2q + 1 plays a significant 
role. If p - 2q + 1 < 0, we have [(a) and (b) are referring to 
(7.10)] 

(a) g(p - l,q -~) =g(p,q). 

(b) g(p-l,q-~)= -g(p,q), 

whereas for p - 2q + 1 > 0, we obtain 

(a) g(p - 1,q - ~) = - g(p,q), 

(b) g(p-I,q-!)=g(p,q). 

(7.14) 

(7.15) 

In this way, the whole pattern is analyzed. We do not give the 
details of the calculations, but summarize the results for 
€ = + 1 in Table I. For the "highest states" [p,q) we have 
chosen, without loss of generality, g(p,q) = + 1. For 
€ = - 1, we obtain the same table where all 6 and I are 
interchanged. The remaining finite-dimensional osp(3,2) ir­
reps, i.e., the irreps (p;q) for whichp - 2q + 1 = O,po;;;;! or 
qo;;;; 1, are known to be "parts" of the general eightfold pat­
tern, and a detailed investigation shows that for such repre­
sentations we can just copy the corresponding parts of Table 
I. 

The main conclusion is the following: For none of the 
general osp(3,2) irreps (p;q), which reduce in the usual eight 
su(2) Gl su(2) irreps, is the representation space a graded Hil­
bert space. There always exists, however, a nondegenerate 
Hermitian form on V which is not positive definite, such that 
all the irreps (p;q) are grade star representations. 

A closer look at the "truncated" representations Al­
E 1, considered in Sec. V, and their corresponding parts in 
Table I, shows that there are only two exceptions, namely 
the five-dimensional irrep (o;!) and the eight-dimensional ir­
rep (!;!) (the situations B3 and B2, respectively). For 
€ = ± 1, the first representation is spanned by the even 
states 10,0,!, ±!) and the odd states II,m,O,O) (m = 0, ± 1). 
The second representation is spanned by the even states 

irreps (s,t ) p-2q+l<O p-2q+l<O p-2q+l>O p-2q+l>O 

of(p;q) deg/s,t> g(s,t) deg/s,t> g(s,t) deg/s,t> g(s,t) deg/s,t> g(s,t) 

(p,q) 5 +1 I +1 0 +1 I +1 
(p-l,q-!) I +1 5 -1 I -1 5 +1 
(p,q-!) I +1 0 -1 I +1 0 -1 
(p+l,q-!) I +1 0 -1 I +1 0 -1 
(p-l,q-l) 0 -1 I -1 0 +1 I +1 
(p,q-l) 0 -1 I -1 0 +1 I +1 
(p+l,q-l) 0 -1 I -1 0 -1 I -1 
(p,q-~) I -1 0 +1 I +1 0 -1 
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j!,m,!,n) (m,n = ±!) and the odd states j~,m,O,O) 
(m = ±~, ± !). It is only for these two cases that the Hermi­
tian form of the grade star representation is positive defi­
nite. 14 

It might seem rather strange that even the adjoint repre­
sentation is not a grade star representation if the Hermitian 
form is required to be positive definite, although it is possible 
to define a grade star operation for the Lie superalgebra. 
Therefore, we consider this in a second way. From Sec. VI 
we deduce that a grade star representation p satisfies 

(P(A t)xjy) = (- l)as (xjp(A lY), (7.16) 

for AELa, XE Vs' yE V. Let us apply this for p = ad. Then the 
space Vis osp(3,2) itself, and we can choose the basis states of 
V proportional to the generators of Sec. II. For A = R 1.112' 

X = R O•1I2 ' andy = s_, (7.16) becomes 

€/v'2(S_jL) = v'2(Ro,1I2IRo,1I2); (7.17) 

for A = R I ,II2' X = t+ andy = R _ 1,112' we obtain 

E(R_ I ,1I2IR _I,1I2) = -2(t+lt+). (7.18) 

These two relations show that, whatever choice of E we make 
in (6.3), the grade star representation is not consistent with a 
positive definite Hermitian form. 

The main reason why the general grade star representa­
tions are not consistent with a positive definite Hermitian 
form is the following. For grade star representations we have 
the rule that a minus sign is placed "whenever two odd ob­
jects are interchanged." But a Hermitian form on V satisfies 

(yjx)' = (xjy), 

for all x andy, and hence does not distinguish between "in­
terchanging" even or odd states. 

Finally, we give the relations between matrix elements 
of the shift operators and reduced matrix elements of the 
tensor R [I,1I2!. They follow from the general analysis of shift 
operators6

): 

(s + l,t ± !IIR [I, I12J lIs,t) 

=[ (2s+3) (2t+l±I)]1I2g(S+I,t+ l ) 

(2s + 2)(2s + 1) (2t + 1) - 2 

X (s + 1 t + IjA I, ± l12js t ) , _ ~ s,t " 

(s,t ± !IIR [1,l/2J IIs,t ) 

= [ 2(2s+ 1) (2t+ 1 + 1) ]112 (s,t+ I) 
(2s + 2)(2s) (2t + 1) g - 2 

X (s,t ± !IA ~:'± 112ls,t), (7.19) 

(s - l,t ± !jjR [I,l/2Jjjs,t) 

= _ [ (2s-1) (2t+ 1 + 1) ]112 (s-I,t+ I) 

(2s)(2s + 1) (2t + 1) g - 2 

X (s - 1,t ± !jA s:-; I, ± 112ls,t ). 

Now all the necessary elements are given to deduce explicit 
expressions for the actions of all the generators of osp(3,2) 
upon the basis states of an irrep (p;q). Indeed, (5.12)-(5.24) 
give the matrix elements of the shift operator products, from 
which the absolute values of the shift operator matrix ele­
ments are obtained by means of(7.6)-(7.8). The actual choice 
of the phase factor ( + 1 or - 1) for the shift operator matrix 
elements is determined by the nonscalar relations (4.17)-
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(4.26). Then (7.19) gives the expressions for all the reduced 
matrix elements of R [I,I12J, and finally the actions of the 
tensor components are obtained from (5.28). The actions of 
So, s ± ' to, and t ± are, of course, no problem. The only rea­
son why we do not write down the explicit expressions for 
the actions Ra,p js,m,t,n), is that this would be a tedious sum­
ming up of 48 formulas, which the reader can easily obtain 
himself by following the above-mentioned procedure. 

VIII. INFINITE-DIMENSIONAL STAR AND GRADE STAR 
REPRESENTATIONS OF osp(3,2) 

Before analyzing the star and grade star conditions on 
the infinite-dimensional osp(3,2) irreps, we give a brief view 
of infinite-dimensional unitary representations of sui 1,1), 
which is the Lie algebra generated by jo,j ± ([joJ ± ] 

= ±j ±' U+,j-] = 2jo) whose basis elements satisfy the ad-
joint condition J~ = jo and f± = - j 4= • Those representa­
tions are grouped into four series (see Ref. 13, p. 182-188): 

(a) The principal series D P, where j = - 1/2 + ip 
(pER), and m takes on an infinity of values. Here, of course, 
j(j + 1) is the eigenvalue of the Casimir J 2, and m is the k 
eigenvalue. No principal series will occur for osp(3,2), since if 
j = s (resp.,j = t) is an irrep, then also s ± 1 (resp., t ± !) are 
irreps appearing in the osp(3,2) representation, which would 
give complex numbers that cannot characterize su(l,l) ir­
reps. 

(b) The continuous series D s, where - 1 <j < 0, and 
mEl - 00 , ... ,mo - 1,mo,mo + 1, ... , + (0). Here, moEK 
satisfies - j - 1 < mo <j + 1 if - 1 <j< - !, and 
j<mo< - jif - !q<O. 

(c) The discrete positive series D +, wherejER and m is 
bounded from below: mEl rr.z,rr.z + 1,rr.z + 2, ... , + 00 J. Ifj>O, 
then rr.z =j + 1, ifj< -1 then rr.z = -j, and if -1 <j<O 
we have two possibilities: rr.z = j + 1 or rr.z = - j. 

(d) The discrete negative seriesD -, wherejER and m is 
bounded from above: mEl - oo, ... ,m - 2,m - I,m), ifj>O 
then m = - j - 1, if j< - 1 then m = j, and if - 1 <j < 0 
we have again two possibilities = m = - j - 1 or m ~ + j. 
The basis states of an sui 1,1) irrep are the simultaneous ei­
genstates of J2 andjo, and therefore they are rather charac­
terized by j(j + 1) and m instead of (j,m). This shows that we 
have the symmetry j-- - j - 1, and consequently we can 
restrict ourselves to representations for whichj< - !. 

For the infinite-dimensional cases, we shall analyze 
only the representations for which the representation space 
is a graded Hilbert space. Hence, the Hermitian form on Vis 
positive definite, and we may assume 

(8.1) 

We shall investigate whether the star (resp., grade star) oper­
ations are consistent with this Hermitian form. 

We use the shift operators 0 ~~~n rather than the normal­
ized operators A ~~ because the internal structure of infinite­
dimensional su(2) irreps is somewhat more complicated. 

A. The case su(1, 1) ® su(2) 

The grade star operation (6.4) implies that the Hermiti­
city properties for the shift operators are finally the same as 
in (7.4). From this we obtain 
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( "1ft + 1)(2t + l)(s m t nlO '1= I, '1= 112,'1= 112 0 ± I, ± 112, ± 112 Is m t n) 
"-l , " 5 ± I,t ± 1/2,n ± 112 s,t,n , " 

= + E( - It(ls + 1 ± 2)(2t + 1 ± 1)1 (s ± 1,m,t ± ~,n ± ~IO s~,~' ± 112, ± 1I2Is,m,t,n) 12, (8.2) 

(2t + l)(s m t nIOO,'1= 112,'1= 112 0°' ± 112, ± I12ls m t n) 
, " s,t ± 1/2.n ± 1/2 s,t,n , " 

= + E( - It(2t + 1 ± 1)1 (s,m,t ± ~,n ± ~IO~:t,=;; 112,± 1I2Is,m,t,n) 12, (8.3) 

(ls + 1)(2t + l)(s m t nlO ± 1,'1=112,'1=112 0 '1=I,± 112,± 112 Is m t n) 
, " s=F l,t± 1/2,n ± 1/2 S,I," , " 

= + E( - It(ls + 1 + 2)(2t + 1 ± 1)1 (s + 1,m,t ± !,n ± !IO s~,~' ± 112, ± 1I2Is,m,t,n) 12, (8.4) 

where (7 = degree (is,t»). Let us consider the situation where E = - 1. Since in this case te!N, Eqs. (8.2)-(8.4) imply that 

o 5-+1;,7' ;~:,}~ ~2112 0 ~:t,=;; 112, ± 112 has the sign of ± ( - It if s< - ~ or s> -!, [resp., of + ( - It if - ~<s < -!]; 
(8.5) 

0°' '1= 112, '1= 112 00' ± 112, ± 112 has the sign of + ( - 1)<7 for all s· (8.6) s,t ± 1I2,n ± 112 s,t.n -, 
0+ 1.'1=112,'1=112 0 -I,±1I2,±1/2 has the sign of ±(It if s< -lor s;>l, [resp., of +(_1)<7 if -l<s<l]. (8.7) 5 - I,t ± 1I2,n ± 112 s,t,n ~ ~ ~ ~ 

We shall also make use of the general property 

( 10 -i,-j,-j Oijj I ) - (. . 'IO ijj 0 -i.-j,-j I' . .) s,m,t,n S + i,t + j,n + j s,t,n s,m,t,n - s + l,m,t + j,n + j s,t,n s + i.t + j.n + j S + l,m,t + j,n + j , (8.8) 

whereieIO,± 1} andjel ±!}. 
Let us first consider the osp(3,2) irreps (p;q), where p < - 1 and q;>~, which always reduce to eight subalgebra irreps 

unlessp + 2q = 0, in which case they decompose in only four irreps. Equation (5.14) implies 

(p,m,q,n 10 !'~i:~/-= 1I2,n _ 1120 p~,~ - 112, - 112 Jp,m,q,n) = (p - m)(p + m)(q + n)( - 2p)(2p - 1)(2q + 1)(2q + l)(p - 2q + 1). 
(8.9) 

Because of (8.7), this should have the sign of - ( - 1 )oW,q). If 
oi,p,q) = 0 then (8.9) should be negative, hence 
(p - m)(p + m) should be negative for all m, which gives 
two possibilities for s = p, namely aD + with 11) = - p or a 
D - withm = p.lfoi,p,q) = I, then(8.9),or(p - m)(p + m), 
should be positive for all m, which cannot be satisfied be­
cause of the adjoint condition on su(l,l)s. So we must have: 
oi,p,q) = O. Now Eq. (5.13) gives 

(p m q n100,1I2,112 0 0, - 1/2, - 1I2Jp m q n) 
, " p,q - 1/2,n - 1/2 p,q,n , " 

= (q + n)(2p)(p + 1)(2q - 1)(2q + 1), (8.10) 

which is always positive. But according to (8.6), this should 
have the sign of - ( - l)oW,q), and this leads to a contradic­
tion. This shows that for the osp(3,2) irreps under considera-

(ls + 1)(2t + l)(s,m,t,n 10 s~i'i,-;1:J~;/+P ~~ln Is,m,t,n) 

I 

I 
tion the grade star condition is not consistent with the posi-
tive definite Hermitian form. A detailed analysis of all the 
other cases ( - 1 <p < ° or q< 1) showed that none of the 
representations (p;q) are grade star representations for the 
choice (8.1) of the Hermitian form. The situation E = + 1 
leads to the same conclusion. 

B. The case su(2} ® SU(1,1} or Osp(312,IR} 

The star operation (6.5) implies the following Hermiti­
city properties of the shift operators: 

(0 ijj)t(2S + 1)(2t + 1) 

= +E(O -i,-j,-j)(2S+ 1-2i)(2t+ 1-2j), (8.11) 

where iel - 1,0, + I} ,jel - !,!}. Then we obtain 

= + E(ls + 1 + 2i)(2t + 1 + 2j)1 (s + i,m,t + j,n + jlO ~~~n Is,m,t,n) 12. (8.12) 

If we choose E = + 1, then (8.12) requires that (if s;>!): 

O - i,.- 1/2, - 112 0 i,1I2,1I2 is positive for t < - 1 or t> - 1, and negative for - 1 < t < - 1, s + I.t + 1I2,n + 112 s,t,n 2 2 (8.13) 

(8.14) o s-}l{~' \~tn _ 112 0 ;.Zn 112, - 112 is positive for t < - 1/2 or t> 0, and negative for - 1/2 <f < 0. 

Let us first consider the osp(3,2) irreps for which p = Q,2, ... , and q < -!. Eq. (5.14) shows 

(p,m,q,nIO !'~i:~/-= 112,11 _ 112 0 p-:-q,~ - 112. - 112 Jp,q,n) = (p - m)(p + m)(q + n)( - 2p)(2p - 1)(2q + l)(p - 2q + 1), (8.15) 

and according to (8.14) this should be positive. This implies 
q + n;>O for all n, and hence we have aD + representation 
with~ = - q.1f - 1 <q < -! we have a second possibility, 
namely aD + with ~ = q + 1. Equations (8.8) and (8.15) im-
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I 
ply that also for (p - 1,q - !) and sui 1,1) part is aD + with 
~ = - q + !. Since q - ! < - 1 we have only one possibil­
ity, and hence also for (p,q) the situation ~ = q + 1 must be 
excluded. Equation (5.13) gives 
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(p m q nIOO.1I2.1/2 0°' - 112. - 112[P m q n) 
, " p,q - t/2,PI: - 1/2 p,q,n , " 

= (q + n)(2p)(p + 1)(2q - 1)(2q + I), (8.16) 

which shows again that q + n;;;.O. Because of (8.8) this also 
implies that for (p,q - !)thesu(l,l)partisaD + representa­
tion with '1 = - q +~. A similar investigation of(5.21) and 
(5.19) shows that also for (p - I,q - 1) we have aD + repre­
sentation with '1 = - q + 1. Hence, if p + 2q = 0, this com­
pletes the analysis and we find that the four (s,t) irreps, in 
which such an osp(3,2) irrep (p;q) decomposes, all consist of a 
finite-dimensional su(2) irrep s and a discrete positive suI I, 1) 
irrep t for which '1 = - t. 

Ifp + 2q=/-0, the osp(3,2) irrep reduces to eight (s,t) re­
presentations, and we have to continue our analysis step by 
step. Application of (5.12) gives 
(p m q nlO - 1.112.112 0 1. - 112. - 1/2[P m q n) 

, " p+ l.q- 1/2,n - 1/2 p,q.n , " 

= (p - m + I)(p + m + I)(q + n) 

x2(p + 1)(2p + 3)(2q + l)(p + 2q). (8.17) 

Because of (8.13) this expression must be positive. Since we 
have a D + for t = q in (p,q), q + n is positive, and (8.17) 
implies that p + 2q must be negative. In this case the analysis 
can be continued, and we find that none of the Eqs. (5.12)­
(5.24) leads to a contradiction. We conclude: Ifp + 2q<0, 
the osp(3,2) (p;q) is a star representation decomposing into 
eight su(2) Ell suI I, I) irreps (s,t) all consisting of a finite-di­
mensional su(2) irrepss and a positive discrete representation 
t with '1 = - t. On the other hand, if p + 2q > 0, the star 
conditions are not consistent with the Hermitian form (8.1). 
The analysis of the remaining cases for su(2) Ell suI 1, I) shows 
that the only other representations which are star, are the 
irreps (p;q), where p = ~ and q< - !. If q < -! they decom­
pose into the six (s,t ) irreps, summarized in Sec. V, all consist­
ing of a finite-dimensional su(2) irrep s and a positive discrete 
suI 1,1) representation t with '1 = - t. If q = - l, the repre­
sentation reduces to only two subalgebra irreps, namely 
(!, - !) and (!, - i). Then we have two possible solutions; a 
D + for t = -! with '1 = ! connected to a D + for t = - ~ 
with'1 = a' or aD + for t = -! with '1 = ~ connected to aD + 

for t = -i with '1 =!. Because of the symmetry 
t---+ - t - I, these two solutions are equivalent. This is the 
case of the "metaplectic representation," which we shall 
consider in detail in Sec. IX. 

For € = - 1, we obtain the same selection of osp(3,2) 
irreps which are star representations. The only difference is 
that all D + representations t with '1 = - t are replaced by 
D - representations t with Ii = t. 

In order to obtain general expressions for the actions of 
R a .{3 upon the states Is,m,t,n), we can use the method de­
scribed at the end of Sec. VII, except that we have to take 
more care of the signs of the factors appearing under the 
square root, as in (7.19). 

C. The case su(1, 1) ffi su(1, 1) 

The star conditions (6.6) on the Lie superalgebra imply 
that exactly the same relations (8.11) and (8.12) are valid in 
this case. The positivity and negativity conditions for the 
shift operator products follow from (8.12). For instance: 
01.1/2.112 ° -I. - 112. - 112 is positive if (s < - 1 or 

S - I.c - 112.n - 112 s.c.n 2 
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s> !) and (f< -! or t> 0) or if -! < s < ~ and -! <f < 0 
and negative in the other cases. Similar conclusions can be 
made for the remaining shift operator products. We consider 
the general osp(3,2) irreps (p;q) with p < - 1 and q < -!. 
The expressions (5.13) and (5.12) show that the following 
relations are valid: 

(p m q nIOo.1I2.112 0°' -112. -1I2[P m q n) 
, " P.q - 1/2,n - 1/2 p,q,n , " 

= (q + n)(2p)(p + I)(2q - I)(2q + 1), 

(p,m,q,n 10 ;+\I.~2..:.1~32.n _ 112 ° !:q-:;' 112. - 112 [p,m,q,n) 

= (p + m + I)(p - m + I)(q + n) 

(8.18) 

X2(p + I)(2p + 3)(2q + I)(p + 2q). (8.19) 

From (8.18) it follows that q + n;;;.O, since ° ~'/~\IJz~n _ 1/2 ° ~:c.-;. 112. - 1/2 must be positive for t < -~. 
The positivity and negativity conditions on ° s-+Ii~:=\j~.n _ 112 ° ~:t.-;' 1/2. - 1/2 show that it should be posi­
tive for s < - ~ (and t < -!) and negative for - ~ <s < - 1 
(and t < - !). In both cases, (8.19) implies 

(p + m + l)(p - m + 1);;;.0 (8.20) 

for all m-values. Obviously, such a condition is only satisfied 
by a finite-dimensional su(2) representation, and never by an 
infinite-dimensional su(I,I) irrep. Consequently, the repre­
sentations are not star representations. 

The remaining representations are analyzed in a similar 
way. The conclusion is that for none of the osp(3,2) irreps 
(p;q), where p and q are suI 1,1) labels, are the star conditions 
on the Lie algebra consistent with the Hermitian form (8.1). 

IX. THE METAPLECTIC REPRESENTATION 

In this section we consider the osp(3,2) irrep(!; - a)' We 
refer to this irrep as the "metaplectic representation," since 
in the reduction osp(3,2)::Jsu(2) ® su(I, I)::Jsu(1,I), it decom­
poses as the sum of two metaplectic representations of 
suI 1, 1 ).10 

The states of this representation are I~, ± !, - i,n), 
where n = 1,1 + 1.1 + 2, ... , and I!, ±!, - a,n), where 
n = M + q + 2, .... We used the method described at the 
end of Sec. VII in order to obtain the explicit expressions for 
the actions of R a{3 upon the basis states. They are given by 

R I .± 1/2 I!,!, - !,n) = 0, (9.1) 

R I • ± 1/2 I!, -!, - !,n) = ± (l/\"1)(4n ± I)1/21~,!, - a,n ± !), 
(9.2) 

Ro. ± 1/21 !,m, - !,n) 

= + m(4n ± 1)1/21!,m, - i,n ±~) (m = ± !), (9.3) 

R _ 1. ± 112 I!,!, - !,n) 

= =+= (l/\"1)(4n ± I)1I21!, -!, - a,n ± p, (9.4) 

R _ I. ± 112 I!, - !, - !,n) = 0, (9.5) 

R 1• ± 112 I!,!, - i,n) = 0, 

R I • ± 112 I!, -!, - ~,n) 

= ± (l/\"1)(4n ± I) I12 I!,!, - !,n ± !), 
Ro. ± 1121 !,m, - i,n) 

(9.6) 

(9.7) 

= =+= m(4n ± 1)1/21!,m, - !,n ± ~) (m = ± !), (9.8) 
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R _ I. ± 1121~,!, - a,n) 

= + (l/v'1)(4n ± 1)1/2 1!, - !, -i,n ± !), 
R _ I. ± 112 I!, - !, - a,n) = o. 
The actions of the subalgebra generators are 

(9.9) 

(9.10) 

sol!,m,t,n) = ml!,m,t,n), (9.11) 

s± I!,m,t,n) = [(!+m)(~ ± m)f/21!,m ± l,t,n), (9.12) 

tol!,m,t,n) = nl!,m,t,n), (9.13) 

t ± I~,m,t,n) = ± [ - (t =F n)(t ± n + 1)] 1/21~,m,t,n ± 1), 
(9.14) 

where t = - 1 or t = - i. 
The metaplectic representation of SU(l,l) has been 

studied by Sternberg and Wolf, 10 and by Hughes7 in the case 
ofOsp(I,2):)SU(I, 1). It can be realized in terms of the space 
JY(C,q of all holomorphic functionsfC---+C such that 

f If(zWexp( -lzI2)dtl (z) < 00, (9.15) 

wheretl is the Lebesgue measure on C. In the case of osp(3,2), 
the irrep under consideration decomposes into two meta­
plectic representations of suI 1,1), and therefore it will be pos­
sible to realize the basis states as elements of JY(C,C2

), the 
space of holomorphic functions fC---+Cz which satisfy 

f(lfl(zW + lfz(zW)exp( - IzlZ)dtl (z) < 00, (9.16) 

wherefl andf2 are the components off We shall denotefby 
(%). The generators of osp(3,2) are then operators acting in 
the space JY(C,C2). If z is a complex variable, then the 
osp(3,2) generators can be realized as 

S + = (~ ~), S _ = (~ ~), So = + ( -~ ~), 
_~(r 0) =~(d2/dZZ 

t+ - 0 2' t_ 0 2 z 2 

(~z!!.+~ 0) 2 dz 4 
to = 1 d l' 

o -z-+-
2 dz 4 

R - e - 31Ti/4(0 0) 
1.112 - Z 0' 

R -1Ti/4( 0 
1._I12=e d/dz ~), (9.17) 

R - __ 1_ e - 31TiI4( - Z 0z), 
0,112 - v1 0 

R _ I -1TiI4( - d /dz --e 
0, - 112 - v1 0 

R - _ e - 31Ti/4(0 z) 
-1.112 - 0 0' 

R - 1TiI4(0 d / dZ) 
-1.-1I2=-e 0 0 . 

It can be immediately verified that 

S2=(3/4 0) 
o 3/4' 

T2 = ( - 30/16 0) 
- 3/16 ' 
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(9.18) 

hence only the metaplectic representation can be realized in 
this way, 

The states of the representation are the following ele­
ments of JY(C,C2) (nEN): 

1
1 _ 1 _ 11 + n) = ei(1T/2)(n + 3/21(z2n/[(2n)!] 112) 
2' 2' 4'4 0 ' 

III _ 11 + n) = ei(1T12)(n + 312/ 0 ) 
2'Z' 4'4 \..z2n / [(2n)!] 1/2 ' 

(9.19) 

1

1 _ 1 _ 3 3 + n) = eil1Tl2ln(z2n + 1/[(2n + I)!] 1/2) 
2' 2' 4'4 0' 

II I _ 3 3 + n) _ ei(1T/2In( 0 ) 
2'2' 4'4 - \..z2n+I/[(2n + 1)!]1/2 . 

The normalization is chosen to correspond with the actions 
of the operators (9.17) as given in (9, 1)-(9.14). The star condi­
tions (6.5), with € = + 1, reduce to the Fock condition 
(d /dz)t = Z. If 

and 

(
falJ zi ) 

la) = ,:0 
L a2•k z

k 

k=O 
(9.20) 

are general states of the space spanned by (9.19), then the 
inner product is given by 

2 00 

(alb) = L L k!aj,kbj,k' (9.21) 
j= I k=O 

The expressions (9.19), considered as functions from C to C2
, 

form a complete orthonormal set in JY(C,C2), and the inner 
product which corresponds to (9.21) can be expressed as 

(fIg) = ~ ff(z)tg(z)exP( - Iz 12)dA (z). 

= ~ f [(I (zrgl (z) + fZ(Z)*g2(z)]exp( - Iz12)dA (z). 

(9.22) 

In the case of osp(I,2), one of the infinite-dimensional 
dispin representations, investigated by Hughes,7 could be re­
alized as a metaplectic representation. It is interesting that 
we find a similar result for a particular infinite-dimensional 
osp(3,2) representation. This extends the general result of 
Sternberg and Wolf, who show that the metaplectic repre­
sentation of Sp(2m) can be considered as an irreducible re­
presentation of Osp( 1 ,2m). 10 

X. THE HARMONIC OSCILLATOR WITH SPIN 1 STATES 

The Hamiltonian H of a one-dimensional harmonic os­
cillator may be written as (see, for instance, Ref. 13) 

(10.1) 
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where a+ and a are the boson creation and annihilation oper­
ators which satisfy 

[a,a+] = 1. (10.2) 

Suppose we also have the disposal of a pair of fermion cre­
ation and annihilation operators (in this section, anticommu­
tation is written as ( J); 

{b,b +J = 1, {c,c+J = 1, 

b 2 = (b +)2 = c2 = (C+)2 = 0, (10.3) 

{b (+\c(+)J = 0, 

which commute with the boson operators 

[a(+),b(+)] = [a<+),c(+)] = 0. (10.4) 

The fermion operators give rise to an SU(2) algebra 

S+ = b +c, s_ = c+b, So = !(b +b - c+c). (10.5) 

It follows thatb + andc+ (resp., bandc) can be interpreted as 
creation (resp., annihilation) operators of spin +! and -! 
states. 

Let us define a vacuum state by means of 

alO) = b 10) = clO) = 0. (10.6) 

We are interested in those states which are simultaneously 
eigenstates of the Hamiltonian H and of the total spin 
S2 = S+L + s~ - So with eigenvalues sIs + 1) = a (i.e., the 
states with nonvanishing total spin). We find 

(a+)nb +10) and (a+tc+IO) (n = 0,1,2, ... ). (10.7) 

But this is precisely the metaplectic representation, consid­
ered in Sec. IX. Indeed, the osp(3,2) algebra is realized by 
(10.5) and 

t+ = !{a+)2N, t_ = - !a2N, to = !(a+a + !)N, 
(10.8) 

where 
N = tS2 = b +b + c+c + 2b +c+bc, 

and 
R I.1I2 = -a+b+c, R_ I._ 1I2 = -ac+b, 

RO•1I2 = ~ a+(b +b - c+c), 

RD. -liZ = - ~ alb +b - c+c), 

R_ I.1I2 =a+c+b, R I._ IIZ =ab+c. 

(10.9) 

The identification with the states of Sec. IX is given by 

I ~,~,-~,~+n)= (a+)2n b+IO), 
2 2 4 4 ~(2n)! 

I 
1 1 1 1 ) (a + )2n 
z'-z'-"4'"4+ n = ~(2n)! c+IO), (10.10) 

1

1 1 3 3 ) (a+fn + I 
-,-,--,-+n = - b+IO), 
2 2 4 4 ~(2n + I)! 

1

1 1 3 3 ) (a+)2n + I 

Z' - '2' - "4' "4 + n = - ~(2n + I)! c+ 1°), 
The energy and spin eigenvalues are determined by 

3348 

HI!, ± !, - M + n) = (2n + !m, ± !, - i,i + n), 

HI!, ±!, - M + n) = (2n + ~m, ±!, -l, -l + n), 
(10.11) 
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S21!, ± !,t, - t + n) = m, ± !,t, - t + n), 

Sol!, ± !,t, - t + n) = ± m, ± !.t, - t + n), 

(t = - i, -l)(n = 0,1,2, ... ). 

Consequently, osp(3,2) is the spectrum generating algebra 
for the one-dimensional harmonic oscillator with spin ! 
states. 

XI. FINAL REMARKS 

We think it is useful, finally, to illustrate some proper­
ties, which are well known by pure mathematicians, in the 
case study of osp(3,2). In this section, (V) denotes the linear 
span over C of the subset V of a linear space W. 

We recall the definition of a Jordan superalgebra. 15 Let 
J = Jo EEl JI be a Z2-graded algebra with bilinear product xOy, 
which satisfies 

xOy = ( - 1)51Iy ox (11.1) 

for xE.!s' yEJ 7J' Then J is a commutative superalgebra. Let 
La be the element of End(J), defined by 

La:J-J 

x-La (x) = aOx. (11.2) 

Then J is called a Jordan superalgebra if 

{ - WY[ Laob,Lc] 

+ ( - afa[ Lboc,La] + ( - 1)YP [Lcoa,Lb] = 0, (11.3) 

for all aEJa , bEJp , and cEJy • 

We give an example of Jordan superalgebra by means of 
the following: Suppose that e is a basis for Jo and {a.,b J is a 
basis for JI . We define a nondegenerate bilinear form ( , ) on 
Jby (i) (e,e) = 1; (ii) the restriction oft , ) toJI is skew sym­
metric, with (a,b) = 1; (iii) (Jo,JI ) = 0. 
The multiplication on J is then defined as 

xOy = (e,xlY + (e,y)x - (x,y)e, 'r/x,yEJ. (11.4) 

This implies the following multiplication table for the basis 
elements of J: 

° e a b 

e e a b 

a a ° -e 

b b e ° 
(11.5) 

This example is a Jordan superalgebra of type D (see Ref. 15). 
Let us now return to the case of L = osp(3,2). It is easy 

to verify that this Lie superalgebra is a Z-graded Lie superal­
gebra15

•
16 

L =L -IEElLoEElL +1, (11.6) 

where 
(11. 7) 

L +1 = (S+,RI.1I2,RI._IIZ)' (11.8) 

L -I = (s_,R -1.1I2,R -I. -112)' (11.9) 

Note that the subsuperalgebra LOis in fact osp(I,2) EEl so(2). 
The Z-grading in (11.5)-(11.6) is obviously not consistent 
with the Z2-grading of L. 

Kac has proven 15 that for a Z-graded Lie superalgebra 
L = L -I EElL °EElL I, thespaceL -I =L 0- 1 EElL I-

1 is a Jor­
dan superalgebra if we let 

xOy = [[P,x],y J, x,yEL -I, (11.10) 

where pEL t I. In our case it is easy to verify that L -I is the 
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Jordan superalgebra of type 0 defined by (11.5). If we take 
p = is+/2, then the relation between the basis (11.5) and the 
basis (11.9) is given by 

e=is_, (11.11) 

a=v'2R_1.1I2 ' b=v'2R_ I._ 1I2 • 

More generally, the Lie superalgebra osp(3,2) is in fact that 
image of the Jordan superalgebra (11.5) under the Kantor 
factor Kan, which gives an isomorphism of the category of 
finite-dimensional Jordan superalgebras onto the category 
of finite-dimensional admissible Z-graded Lie superalge­
bras. IS 
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Some integrals involving three Bessel functions when their arguments 
satisfy the triangle inequalitiesa) 
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We calculate definite integrals involving three Bessel functions of the form 
fO'xJp.(ax)Jy(bx)Jp. + y(ex)dx and fO'xYp.(ax)Jy(bx)Jp.+ y(ex)dx, which appeared in some 
absorption calculations. Results are given for all relative positions oflengths a, b, e. They 
complete formulas outside the triangle case and correct some misprints given in tables. 

PACS numbers: 12.40.Pp, 02.30.Bi 

I. INTRODUCTION 

For a while, the phenomenology of high-energy physics 
relied heavily on the Regge formalism. To perform analyti­
cally the absorption-type calculation 1.2 the integral 

where the angles tPi (i = a,b, or e, ~itPi = 17') are defined in 
Fig. 1 and x is a real parameter, n is an integer, and,u is real. 

fO'rdrJa(rFt)Jp(r!=!')Ja+p(r,;-=t") was needed 

when the three real variables Ft, !=!" ,;-=t" obey 
the triangle inequalities. Unfortunately such integrals were 
known only in particular cases,3 for a = 0 say. On the other 
hand all the papers and books about the Bessel functions did 
give the values of these integrals but in the case 

,;-=t" >!=!' + Ft, where the value is zero. 
For all these reasons, it was interesting to compute ana­

lytically these integrals. To do that we have been led to com­
pute other integrals involving two or three Bessel functions 
of the form 

fO xJp. (ax)J ± y(bx)dx, 

(1.1) 
(bX)} 
(bx) Jp. + y(ex)dx. 

All these integrals are given in Tables I and II. 
The second part of this paper is devoted to the particu­

lar case when the three orders a, p, and r = a + P are inte­
gers and we give a very simple interpretation of the result so 
obtained by comparing it with the sum2

•
4 

2)2j + l)d~,m, (e3)d~,m3 (e2)dj
m,m, (el )· 

j 

In the third part, we treat the general case by extending the 
result about the normalization of the Bessel functions of in­
teger order to real order and get the announced result about 
integrals of type (1.1). In the last part we check known results 
compiled in Refs. 3 and 6 where particular cases are exam­
ined. A short summary of our new results is contained in the 
conclusion. 

II. INTEGRALS INVOLVING THREE BESSEL 
FUNCTIONS OF INTEGER ORDER FOR 
Ic-bl <a<c+b 

Following Graf,7.8 we write 
+00 

eiP.~bJp.(xa)= L Jp.+n(xe)Jn(xb)/n~a, (2.1) 
n = - 00 

alDedicted to the memory of Friedrich W, Bessel on his 200th birthday 

This yields at once 

J ( \ T ( b) 1 Sa
21T 

i(p.~b - n~ ~JJ ( , dJ. 2) p.+nxe/"nx =- e p.xa) 'l'a', (2. 
217' 0 

where 

a,2 = e2 + b 2 - 2eb cos tPa' 

and 

Sa 00 x dx Jp. (ax)Jn (bx)Jp. + n (ex) 

= _1_ foox dx Jp.(xa) f21Tei(P.~b - n~a'JXJp. (xa')dtPa" 
217' Jo Jo 

By inverting the order of the two integrations of the right­
hand side and taking advantage of the orthogonality relation 
for Bessel functions of integer order4 namely, 

Sa 
00 , 8(a - a') 

x dx Jm (xa)Jm (xa ) = 1/2 
o (aa') 

(2.3) 

we get for,u = m, m integer 

Sa 00 x dx Jm (ax)Jn (bx)Jm + n(ex) 

2 Sa21T 
8(a - a') = - dtPa' cos(mifJb - nifJa') 1/2 ' 

17' 0 (aa') 

where the factor 2 comes from the symmetry of the inte­
grand. 

Now 

8(a - a') _ 8(ifJa' - ifJa) 8(ifJa' - ifJa) 
(aa')1/2 - (aa,)1/2IJa'/JifJa.1 be sin ifJa 

(1784-1846), 
blChercheur au CNRS, FIG, 1. Convention for the angles of the triangle, 
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The final result reads 

1'" cos(mtPb - ntPa) 
x dx J m (ax)Jn (bx)J m + n (ex) = . . 

o 1rab sm tP c 

(2.4) 

(In a triangle be sin tPa = ab sin tPc = ae sin tPb') 
At this stage a comment is in order. By exactly the same 

kind of trick it is possible to get very easily the sum 

/= ~)2j + l)djmlm,(03)d~,m,(02)djm,m,(Od, 
j 

where the three unit vectors q I' q2' q3 have polar angles (0,0), 
(03,0), and (02,tpd, respectively, the angles between qi and qj 
being Ok (i,j,k = 1,2,3). 

Let llq, be a rotation which brings the unit vector z onto 
q2 such that II q~ I llq, is a rotation with Euler angle (0,03,0), 

II i. Illq, is a rotation with Euler angles (tpl,02'0) and 

II q-; Illq, is a rotation with Euler angles (tp3,01,tp2)' 

From 

we deduce at once 

m, 

or 

.. 1 12
". 

d'm,m, (02) d{",m, (OIl = 2x 21r 0 cos(mltpl + m2tp2 

+ m3tp i )d~,m, (03)dtp i 
and 

j 

X8(cos 03 - cos 0 3), 

Noting that cos 03 = cos 01 cos O2 - sin 01 sin O2 cos tp3 
and 

we get 

I(2j + 1)d~lm2(03)d~,m,(02)d~,m2(01) 
j 

sin 01 sin 03e-irp, = cos O2 - cos 01 cos 03 - iql'(Q2Xq3)' 

sin O2 sin 03e - irp, = cos 0 I - cos O2 cos 03 - iq 1·(q2 X Q3)' 

sin 01 sin 02e - irp, 

and 

= - [cos 03 - cos O2 cos 01 - iQI'(QZ XQ3)]' 

Iq!'(Q2 X Q3W = 1 - cos2 01 - cos2 O2 - cos2 03 

+ 2 cos 01 cos O2 cos 03 =.:1. 

As expected, result (2.5) is strikingly similar to the one 
obtained for the three Bessel functions. Indeed for large j and 
small 0, d'ex 13 (0 )~Jla _ 131 (j0 ) and the sum overinteger value 
ofj becomes an integral 

2 1~j dj Jim, - m,l (j03)Jlm, - m,1 (j02)Jlm, - m,1 (j0l)' 

For small 0i'S 

.:1 ~ - H 0 ~ + 0 i + 0 j - 20 ~ 0 ~ - 20 ~ 0; - 20; 0 n 
= -8/4, 

8 112 = ~ [0 ~ - (01 - O2)2] [(0 1 + 02f - 0 n, 
20103COStp2~0~ +0; -OL 20103sincp2~81/2, 

20203COSCPI~0~ +0; -Oi, 20203sincpI~8112, 

20102COSCP3~ +(0; -O~ -O~), 20102sinCP3~-8112, 

tpl + tp2 + tp3~0 
and 

fj dj Jim, - m,1 (j03)Jlm, - m,l (j02)Jlm2 - m,1 (j0l) 

~~ cos[(ml - m3)tp1 ~ (m3 - m2)tp2] e ( _ 8). (2.6) 
1r 0201 sm CP3 

We get at once that the integral is zero if 01,02,03 do not fulfill 
the triangle inequalities. 

In the next part, we show that it is possible to generalize 
the formula (2.4) in the case where both m and m' are real 
and for the case were J;. is replaced by the Neumann func­
tion Y;.. 

III. DERIVATION OF THE INTEGRALS 

A. Some preliminary results 

One of the main problems we shall encounter is the 
estimation of the integral 

L'" xJ;.(ex)Jp(ex)dx = lim (xJ;.(ex)Jp(ex)dx, 
o R---JoooJo 

where e, e are positive numbers. Provided Re(A + p) > - 2, 
the behavior at x = 0 is regular. For large R, the result in­
volves very rapidly oscillating functions whose limits are ac­
tually the distribution 8 (e - e) and P.P.I(e2 

_ e2 ) (P.P. 
stands for principal part). 

Starting with the indefinite integral9 

(e2 - e2)f xJ;.(ex)Jp(ex)dx + (A 2 _ p2)f J;.(ex~p(ex) dx 

= ~ cos(mltpl + m3tp3 + m2tp2) e (.:1 ) 
1r IQ1'(Q2 X q3)1 ' (2.5) = exJp (ex)J;. _ I (ex) - exJp _ I (ex)J;. (ex) 

where e is the Heaviside step function + (p -A )J;.(ex)Jp(ex), (3.1) 
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and using the well-known behavior of Bessel functions for 
small and large (real) variables, we get 

i

R ('2 2)iRJ (exl T (cx) 
xJ,dex)Jp(cx)dx + ~2 -~ " I"p dx 

o e -e 0 x 

= _ 1 { cos[(c + c)R - (A + p)1T12] 
7T(ec) 1/2 e + c 

_ Sin[(C-e)R_-(p-A)1T12]} +O(~), 
e-e R 

where we have assumed Re(A + p) > 0 (behavior at x = 0). 
Now lO 

r"" J" (ex)Jp (ex) dx 
Jo x 

= _I (~)p F((A +p)/2)F((p -A )/2) 
21T e F(p + 1) 

XSin[(p -A) ;] X~I(P ;A,P ;\0 + 1;::) 
with c < e, and a similar result holds for c> e by the ex­
changes A+-+p, c+-+c. 

For e = C, both expressions have the same limit lO 

2 sin[(p - A )1T12] 
1T p2 -A 2 

Ase+c>O, 

cos[e + c)R ] 
d 

sin[(e + c)R ] 
an 

e+c 
are bounded and rapidly oscillate as R -. ct:J; in further inte­
grations, they give a vanishing contribution. Terms like 

sin(c - e)R d cos [(c - c)R ] 
an 

c-e c-e 

may give a large (ofthe order of R ) contribution in a region 
c - c = O(1/R); when further integrated, the larger-order 
terms give a finite, nonzero contribution. Thus 

iR 
xJ,,(ex)Jp(cx)dx 

behaves like 

__ 1_{ cos[(e +c)R - ~ +p)7T/2] 

1TJCC e + e 
_ sin[(c - e)R_ - (p - A )1T12]} 

e-e 

(A 2 _ p2) r""J,,(ex)Jp(cx)dx 

c2 
- c2 Jo x 

or, using the notation of distribution 

1"" xJ,,(cx)Jp(cx)dx 

with 

3352 

= cos[(p - A )1T12] 8(c _ c) _ (A 2 _ p2) 
(ec)I/2 21T 

X F((p + A )/2)F((p - A )/2)sin[(p - A )1T12] 
F(p+ 1) 

(~)p Ii' (p +A P -A. I.C2)~ (3.2a) 
X ~ I 2' 2 ;p + , 2 -2 2' e e e-e 
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Re(A +p»O and c>c. (3.2b) 

The singular behavior coming from the division by c2 - e2 is 
killed by the oscillating contribution cos[(c - e)R ]f(c - c) 
and is replaced by a principal part. Result (3.2a) for x =1= y was 
already proposed by Schindler.!! 

When p = A, the second term disappears and we have 
the closure relation 

r"" xJ" (ex)J" (cx)dx = ~(c - c), Jo (ee) 
(3.3) 

which generalizes the well-known formula4 when A is an 
integer. The condition Re A > 0 may be relaxed to 
Re A> - 1 as the integral I(J"J)jx) dx does not come in. 
Expression (3.2) may be extended to the case A + p = 0 by 
starting again from the indefinite integral (3.1) as again 
I(J" J _" Ix) dx must not be taken into account. Some care is 
needed to examine the behavior near x = 0 of the right­
hand-side. The final normalization condition reads 

1"" xJ" (ex)J _" (cx)dx = co~~: c5(c - c) 
o (ee) 

_ 2 sin 1TA (~)" ~ Re A> _ I (3.4a) 
1T c c2 _ e2 ' 

or more simply 

1"" xJ,,(ex)Y,,(cx)dx = 2(~)" _;.P. 2' ReA> - 1, 
o 1T C e-e 

(3.4b) 

where the condition c < e may be removed, and Y" is the 
Bessel function of the second kind. 12 For A = t integer, result 
(3.4a) is obvious since J _ / = ( - )/ J/. For A =1= t, we have an 
extra term as expected from Carlson's theorem. 

B. Calculation of f;xJ,JaxjJvfbxjJp + vfcxjdx= I 

The basic formula is the expression of Jp (Z)J" (z) for real 
Z,z as an integral13 

J (Z)J ( ) =- -i"O ze J (-)dO I f11" (Z+ iO )(1'+,,)/2 

I' " z 2 e Z + _ iO I' +" WI 1T - 11" ze 
sin V1TizIZ _ ,,_ I{ Z - zp }(p + ,,)12 -

- -- p Z I. Jp+,,(A )dp, 
1T I -z P 

where z < Z, mi = Z 2 + r + 2Zz cos 0, A 2 = Z 2 + r 
- Zz( p + 1/ pl. There exists a similar formula for Z < z by 

exchanging Il and v and Z and z. For Z = z, we get the well­
known formula for the isosceles triangle l4 

1 f + 11"/2 
Jp (z)J,,(z) = - COS[(1l - v)O ]Jp +v(2z cos 0 )dO. 

1T - 11"/2 

With some changes in the notations (Z~, z=}bx) and var­
iables (0-. - O-+1T - 0, P = eU 

) we rewrite it in a more sym­
metrical form 

1 i11". . ( a - beiO 
)( I' + ,,)/2 

J (ax)J,,(bx) = - Re e'V7Te - ,,,0 _ . 
I' 1T 0 a-be'o 

. ilnalb 
J )dO sm V1T - vu 

X p+,,(WIX - --- e 
1T 0 

(
a beu )(1' + ,,)/2 

X - Jp + ,,(Ax)du, 
a - be- u 

(3.5a) 
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with 

b < a, wf = a2 + b 2 - 2ba cos (), 

A 2 = a2 + b 2 - 2ab cosh u. (3.Sb) 

Now, 

lim r
R 
xJ/t (ax)Jv(bx)J/t + v (cx)dx 

R-+CQ)O 

_ sin V1T to alb e _ vu( a - be~ )! /t + v)l2 

1T Jo a - be U 

X lim rRxJ/t +v (cx)J/t +v (Ax)dx, 
R-+ooJo 

Re(JL + v» - 1. 

We may permute the integrations, as the intervals are finite 
and all integrals have a meaning. Using formula (3.3) for 
A = p = JL + v and with c = either WI or A, we get 

1=- 8(c-wIlRe e-iV1T-iv8 a- ~. d() 1 ifT { (b i8 )! /t + v)12 } 
1TC 0 a - be .8 

sin V1T i lO alb ( a - beu )! /t + v)12 
- -- 8(c -A )e- VU du, 

1TC 0 a-be- u 

Re(JL + v» - 1, a <b. (3.6) 

Three cases may occur. 
(i) either c > a + b, then c > WI for every ()e[O,1T] 

and c > A for uE[O,ln alb]. (3.7) 

Hence, both terms are zero and I = O. (See formula 2.6 for 
integer indices.) 

(ii) a - b < c < a + b (triangular configuration). Then 
c2 =a2 +b 2 -2abcostPc, where tPa,tPb'tPc (O<tPi<1T) are 
the angles related to sides a,b,c of the triangle (see Fig. 1), 
then c>A for uE[O,ln alb]. The second term in the right­
hand side of (3.6) is zero; but there exists () = tPc such that 

WI = c and the first term is not zero. 
As 

8 (c - WI) = 2c8(c2 
- wf) 

c 
= .....:......o(cos () - cos tPc) 

ab 

= c 8(() ,I.) 
ab sin tPc - 'f'c 

we get for the first term 

1= cos(vtPa - JLtPb) , (3.8a) 
1Tab sin tPc 

..:1 = ~ab sin tPc = !bc sin tPa = ~ca sin tPb' (3.8b) 

where..:1 is the area of the triangle; we have explicitly used the 
relation 1T = tP a + tP b + tP c to restore the symmetry (JL~-W), 
(a++b ). Note that formula (3.8a) is the generalization off or­
mula (2.4) obtained fro m = JL and n = v integers. 

(iii) 0 < c < a-b. We introduce the three positive argu­
ments ua,ub,uc which generalize the angles tP in the triangle 
case (ii) (a 2 = b 2 + c2 + 2bc cosh U a, b 2 = a2 + ~ 
- 2ac cosh Ub' c2 = a2 + b 2 - 2ab cosh uc). Only the last 

term in (3.6) gives a nonzero contribution. As 8 (A - c) 
= c8(u - Uc )/(ab sinh uc ), we get, after some manipula­

tions, the nearly symmetric formula 

1= - (sin v1T121TJ )e - vu. -/tUb, (3.9a) 

with 

J = ~ab sinh Uc = !bc sinh Ua = !ca sinh Ub. (3.9b) 

Alternative formulations may be derived by using the gener­
alized triangle properties, mainly the relation Ua = Ub + Uc' 
Expressions (3.7)-(3.9) are listed on Table I (without the re­
striction a > b). For integer indices, we recover the result 
given in (2.6). 

Result (3.7) was already known. IS It is a particular case 
of a more general formula involving products of J functions 
(Ref. 3, pp. 691 and 694). Result (3.8) was calculated only in 

TABLE I. Definite integrals involving three Bessel functions of the first kind. 

1 = .r xJ" (ax)./.(bx)./" + v (cx)dx [Re( It + vI> - 1], 

(il e>a + b. 1=0. 

(iiI a+b>e>la-bl. 1 = ~ cos( W/Jb - w/J. I (triangle casel. 
21T.<1 

(Hilla - b I > e> 0 

ifa>b 1= - ~sinV1Te-"·-"·' 
21T.<1 • 

1 = - Sinl!:..1T e - vu.-".'. 
21T.<1 

Notations: Cases (il and (iiil 

3353 

ri = b 2 +? ± 2bc cosh U.. b 2 = ? + ri ± 2ac cosh Ub. ? = a2 + b 2 ± 2ab cosh Uco 
U •• Ub• Uc > 0; + sign only for the largest length. If a> b. c U. = Ub + Uc' 

Case (iiI 
a2 = b 2 +c2 

_ 2bccost/J •• b 2 =? +a2 
_ 2acCOSt/Jb' ? =a2 + b 2 

- 2ab cos t/Jc. 
o <t/J •• t/Jb' t/Jc <1T. t/J. + t/Jb + t/Jc = 1T. 
2.<1 = be sin t/Ja = ca sin t/Jb = ab sin t/Jc. 
2J = be sinh Ua = ca sinh Ub = ab sinh Uc' 
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particular cases and is new in this general form. As to result 
(3.9), it was found already, but in a very sophisticated form. 
As b,e < a, we may set b = a sin f/J cos 1/1, e = a cos f/J sin 1/1 
(0 < f/J,I/I < 1T12), where 2e2 tan2 f/J (resp. 2b 2 tan2 1/1) = a2 

_ b 2 _ e2 ± .Jl(~ = a4 + b 4 + e4 _ lo 2b 2 _ lo2e2 

- 2e2b 2). Then, the formula of Ref. 15 readsl6 

J:'" xJv(bx).!1' (ax).!1' + v (ex)dx 

= J:'" xJv(ax sin f/J cos I/I).!,.(ax) 

XJI' + v (ax sin 1/1 cos f/J)dx 

= _ 2 sin V1T( sin f/J )V( sin 1/1 )1' + v 

1Ta2 eos 1/1 cos f/J 

X 1 , 
cos(f/J + I/I)cos(f/J - 1/1) 

and after some manipulations we recover (3.9a). Neverthe­
less, the formula in Ref. 15 keeps some ambiguities; mainly it 
implies that cos(t,6 + 1/1) > 0 and it does not fix completely the 
determination oftan2 f/J and tan2 1/1 which must be the small­
est of the two (positive) roots of each equation. Formula 
(3.9a) has no such ambiguity. 

C. Integrals Involving Bessel functions of the second 
kind 

As Yp is a linear combination of Jp and J _ p' the above 
results may be used to calculate integrals involving one Bes­
sel function of the second kind, perhaps with further restric­
tions on the indices. Assuming always that a > b, we consider 
the two cases 

J = J:'" xYI'(ax).!,,(bx).!1' + v (ex)dx, 

K = Sa'" xJl' (ax) Yvlbx).!1' + v (ex)dx, 

for all three positions of e: a + b<e, a - b <e <a + b, 
O<e<a - b. 

Integral J involves as an intermediate step the integrals 

f xJ,. (ax).!v(bx).!1' + v (ex)dx 

and 

f xJ -I' (ax).!,. +v (ex).!v (bx)dx, 

whence the integrals 

f xJl' + v (cx).!1' + v (ex)dx 

and 

f xJv(bx).!" (bx)dx 

for some c, b which are of the same kind as the lUI and A of 
formula (3.5H3.6). Provided Re( JL + v) > - 1 and 
Re v> - 1, all calculations may be completely carried out 
as we deal only with the distribution ~. The same holds for 
integral K provided Re( JL + v) > - 1 and Re v> - 1. Re­
sults are listed on Table II and some particular cases which 
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TABLE II. Definite integrals involving two Bessel functions of the first 
kind and one of the second kind for a > b. Notations are the same as in Table 
I. 

(a>b) 

J = i~xy,,(aX)Jy(bX)J,,+ y(cxldx (Rep + v> - I, Re v> - I), 

K= i~xJ,,(aX)Yv(bX)JI'+v(cx)dX (Rep+v> -I,Rep> -I), 

(i)c>a +b, 

J - 1 -VU<l+j.lU" - - ---=-e , 
217'..1 

(ii) a + b>o la - b I, 
J = - K = _1_ sin (vtPQ - PtPb) (triangle case), 

217'..1 
(iii) la - b 1 >00, 

already appeared in the literature are checked in the next 
section. Most of the results are new. 

As to the last possibility 

L = Sa'" xJl' (ax).!v (bx) YI' + v (ex)dx 

it involves the intermediate integral 

Sa'" xJl-' + v(cx)Yjt + ,,(ex)dx, 

i.e., a principal part. In that case the integration is hopeless, 
except in some particular cases which are already known. 

Wejust set the general equation. From (3.3H3.5) we get 

L = -Re e'VlTe - ,vIJ --...:....:...-2 Sa"" . ( a - beiIJ )11'+VI/2 
~ 0 a_be- iIJ 

(3.10) 

where 

lU~ = a2 + b 2 - lob cos e = (a - beiIJ)(a - be- iIJ ), 

A 2 = a2 + b 2 _ lob cosh u = (a - be")(a - be - ") 
[cf. Eq. (3.5b)]. The integrals can be calculated only in very 
special cases, for example v = 0 (so that the second term on 
the right-hand side disappears). 

IV. CHECKING PARTICULAR RESULTS 

A. Integrals Involving three J functions 

(i) When JL = v = 0, we get 

I = Sa"" xJo(ax).!o(bx).!o(ex)dx 

{

lin the triangular case, 
= 021T..1 

otherwise, 
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where.:1 is the area of the triangle (Ref. 3, p. 696, formula 9 
with v = 0). 

(ii) WhenJl = 0 and v:;60, 

1= 100 

xJo(ax)J,,(bx)J,,(ex)dx 

o ff e>a+b 

cos(vtPa) 

1Tbe sin tPa 

o 

sin V1Te - 'VIl. 

1Tbe sinh Ua 
if 0 < e < la - b 1 

(cf. Ref. 3, pg. 695, formula 8 with Jl = 0).17 
For v = 112, 

I = ~ roo Jo(ax)sin bx sin ex dx 
1T Jo 

b<a, 

= - Jo(ax)[cos(b - c)x - cos(b + e)x]dx 1 Loo 
1T 0 

is the cosine Fourier transform of Jo(ax) and can be checked 
with tables of integral transforms. 18 

(iii) When a = b andJl = (.4. + n)/2, v = (.4. - n)/2 (Ref. 
3, p. 674, formula 11), 

1= 100 

xJ(;. + n)l2 (ax)J(;. _ n)/2 (ax)J;. (ex)dx 

{ 
= cos(ntPa) if e < 2a (isosceles triangle) 

= 1Ta2 sin 2¢Ja 

= 0 ife>2a. 

As cos tPa = el2a, the result may be rewritten 

1= 22 2 1/2Tn(~) if e<2a 
1Tb (4a - e ) 2a 

= 0 otherwise 

(where Tn is the Tchebyscheff polynomial). 

B. Integrals Involving two J functions and one Y 
function 

(i) When Jl = 0, 

100 

x Yo(ax)J"(bx)J"(ex)dx 

1 -vu - -=-e • 
21T.:1 

1 '-1. 
--Slnv'f'a 
21T.:1 

if la-bl<e<a+b 

sg(a - b) cos 1TVe- vu
• if O<c< la - b I, 

21T.:1 

where we have removed condition a > b 

(sg(a - b ) = { ~ ~ if a>b) 
if a<b . 

At this stage, a comment is in order. In a recent preprint 
Askey, Koomwinder, and Rahmanl9 give the result for the 
integral So Y"(ax)J"(bx)J"(ex)x" + I dx, and they agree with 
us for v = O. The result outside the triangle is reported in 
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[ ) a.b 
c2=a2 .. b2.2ab cosh u, 

liI-bl (c (a.b 
c2=;f.b2-2i1b [os., 

o ([ (iI-b 
c2=i.b2-Zab cosll u, 

Im.---r 
FIG. 2. Contours in the B-plane for the calculation of L (v = 0) for the three 
possible c's. 

Ref. 3 (p. 695, formula 5 with Jl = 0) but in an incorrect 
manner. The largest length must be a (a > b + e) or 
b (b > a + e) but not e like in their hypothesis. It is in contra­
diction with their formula 13, p. 696 for the isosceles case. 
The above result may be tested for v = ~ by using the Fourier 
cosine transform of YO(X).14 

In the case of the isosceles triangle and for Ii = v = 0 we 
get two different integrals, listed in Ref. 3 (p. 695, formulas 
12 and 13) 

Loo xYo(bx)Jo(ax)Jo(ax)dx 

o 
2 

1Tb (b 2 _ 4a2)1/2 

LOO x Yo(ax)Jo(ax)Jo(bx)dx 

o 
2 

if b>2a, 
1Tb (b 2 _ 4a2)1/2 

(ii) When Ii = v = .4. 12 (Ref. 3, p. 673, formula 10), 

100 

xJ;'/2 (ax) Y;'/2 (ax)J;. (ex)dx 

2 I 
--- ifc>2a 
- 1Te (e2 _ 4a2)1/2 

= 0 if e < 2a (isosceles triangle). 

C. Calculation of some particular L Integrals for v = 0 

It was already calculated in (4.1 )-(4.2) (with exchange of 
a and c). We may derive it directly. From (3.10) we have 

L = ~ Re (1T( a - be
ie

. )1-'/2(~)1-' P.P. de. 
r Jo a - be - Ie e c2 - wf 

This integral can be calculated by using a path in the e plane 
which depends on the relative value of a,b,c (see Fig. 2). The 
two principal parts integrals along the imaginary axes do not 
contribute (pure imaginary result). The path at infinity gives 
zero and finally the integral is (to a ± sign) the real part of 
the only residue near the integration contour. 

V. SUMMARY AND CONCLUSION 

In this paper, we have shown that it is possible to get 
integrals of three Bessel functions when the arguments either 
satisfy the triangle inequalities or not. The key point of the 
proof is the use of the normalization relations between the 
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J). 's which are well-defined distributions. Since the math­
ematical theory of the distributions is rather recent as com­
pared to the theory of Bessel functions, it is not astonishing 
to discover new results by using a new technique. We hope 
that this will be an incentive for other Bessel buffs to study 
other properties unknown up to now. 
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ERRATA 

Erratum: Functional integrals as integrals on locally noncom pact groups with 
generalized measures [J. Math. Phys. 25, 1412 (1984)] 

N. N. Meiman 
Maxim Gorky nab. 4/22, ap. 57, Moscow 11 3127, USSR 

(Received 17 July 1984; accepted for publication 27 July 1984) 

PACS numbers: 03.65. - w, 02.20. + b, 99.10. + g 

The following are corrections to be made to the article 
cited above. 

On page 1412 in the right-hand column, the fourth line 
from the bottom should read 

doig') = exp[ - (illi)S(g')]dll(g'). 

On page 1415, the first line after Eq. (1.13) should read 
geG'. 

On page 1415, the second line ofEq. (1.16) should read 

exp~[S!L(g') -S!L(g~)]. 
Ii 

On page 1417, in the right-hand column, the fourth line 
from the top should read as follows: band being the curves 
x=F (t). 

On page 1417, in the right-hand column, the last line 

should read as follows: Il H ( { X -,x + 1;') of a channel 

{x_,x+ 1; is the solution of. 
On the page 1418, the third term on the right-hand side 

of Eq. (2.16) should read 

~ (iii aA). 
2 ax 

On page 1420, the first of the right-hand sides of Eq. 
(2.37) should read 

f(Xk+ 1_ Xk)2KO(xk+ I,t k+ Ilxkt k)dxk. 

On page 1421, the limit on the second integral in Eq. 
(2.45) should read (r8 -1;-1). 

On page 1421, the second r on the line just below Eq. 
(2.45) should read y. 

On page 1422, Eq. (3.2) should read dll(l) instead of 
dll(41. 

On page 1422, the numerator of the fraction on the 
right-hand side ofEq. (3.13) should read (x' - xif 

On page 1422, in the right-hand column, the fourth line 
from the bottom should read dllH, (r) instead of d81lH, (r). 

On page 1423, the first integral on the right-hand side of 
Eq. (3.15) should read 

i'f 1 . 
-my; dt. 

I' 2 

On page 1423, the second ofEqs. (3.27) should read 

. IIlH({X-,x+ 1;) I 11m ,.( = 1. 
IlHoOX-,x+ lxd 

On page 1424, the left-hand side of Eq. (3.34) should 

read UK [{x_,x+ l;;y',yo]. 

On page 1424, Eq. (3.35) should read 

lim L~(y')exp [~SH(r') 
- (1") Ii 

- ~ SHirO) ]IlHo [ {x_,x+ 1; - y']. 

On page 1424, Eq. (3.36) should read 

lim L exp [~SH(r') - ~SHlrO)]IlHO [{x-,x+l; - r']. 
(1") Ii Ii 

On page 1425 left-hand column, the beginning of the 
eighth line from the top should read t f~t i. 

On page 1425, the left-hand side of Eq. (3.42) should 
read K (xl,t1IH Ix2,t2 ). 

On page 1426, the first term on the right-hand side of 
the third of Eqs. (3.60) should read K v, (O,tfIO,t i). 

On page 1427, the integral on the right-hand side ofEq. 
(3.68) should read 

( dIlHo(r), 
JU(yt+l,M) 

and the last term should be deleted. 

On page 1427, Eq. (3.69) from the first exp on the right­
hand side should read 

exp [ - ~ ( V dt] ( exp [~( V dt 
Ii Jyt+l JU(yt+l,N a ) Ii Jyt+l 

- ~ i V dt ] dIlHo(r)· 

On page 1429, the right-hand side of Eq. (4.9) should 
read 

K~(x't f\ xft
i
) = f exp [ ~ Lv (r;i)] dafj{)· 

On page 1429, the left-hand side of Eq. (4.10) should 
read du(r;i). 

On page 1430, the line 18th from the top should read 
2L1xk + 1 instead of Lixk + I • 
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Erratum: Inverse scattering for optical couplers. Exact solution 
of Marchenko equations [J. Math. Phys. 25, 1900 (1984)] 

G. P. 8ava and G. Ghione 
Dipartimento di Eiettronica, Politecnico di Torino, Torino, Italy 

(Received 25 July 1984; accepted for publication 9 August 1984) 

PACS numbers: 03.80. + r, 02.30.Rz, 42.80.Lt, 99.10. + g 

Formula (2) must be written as (29) 

hmn = kmn(x)exp[ - (- ItiPox] (m#n). (2) 

In Sec. III B, point 3, instead of r(k - ko) one must read 
r(k - kr/2). 

In Figs. 3-7 the scale of the vertical axis of the diagrams 
showing /R , should be doubled (i.e., 2.0 instead of 1.0 and so 
on). Formula (29) must be written as 

Erratum: Linear response theory revisited. IV. Applications [J. Math. Phys. 25, 
1391 (1984)] 

P. Vasilopoulos and C. M. Van Vliet 
Centre de Recherche de Mathematiques Appliquees, Universite de Montreal, Quebec, H3C 3J7, Canada and 
Department of Electrical Engineering, University of Florida, Gainesville, Florida 32611 

(Received 17 July 1983; accepted for publication 27 July 1984) 

PACS numbers: 03.60. + w, n.lO. - d, n.lO.Di, 99.10. + g 

(I) Using (4.2) it can be easily shown that the two terms 
in the brackets of Eq. (4.1) are equal. Thus, for all tempera­
tures(4.1)becomes 

O"~~(O)=O"yX = ~ L(N + 1)(nN)eq 
En k,N 

x(1 - (n N + 1 )eq}(1 - e- tfflwo
); 

this, together with onlY!N(1-!N)-zP- 18(£-£p) [cf. Eq. 
(4.3)] brings about the following changes: in Eqs. (4.6), (4.14), 

and (4.15), 2N + 1 is replaced by 2(N + 1) and Eq. (4.16) is 
divided by 2; further, Eq. (4.18) is replaced by [the two terms 
in the brackets ofEq. (4.17) cancel each other] 

for all temperatures and the comment following Eq. (4.18) 
does not apply. 

(2) The wL/N 0- P [third line after Eq, (3.32)] should be 
replaced by w L / Wo - P. 
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